transformer_2d.py 23.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
15
from typing import Any, Dict, Optional
16
17
18
19
20
21
22

import torch
import torch.nn.functional as F
from torch import nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..models.embeddings import ImagePositionalEmbeddings
23
from ..utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
24
from .attention import BasicTransformerBlock
25
from .embeddings import PatchEmbed, PixArtAlphaTextProjection
26
from .lora import LoRACompatibleConv, LoRACompatibleLinear
27
from .modeling_utils import ModelMixin
Sayak Paul's avatar
Sayak Paul committed
28
from .normalization import AdaLayerNormSingle
29
30
31
32
33


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
34
35
    The output of [`Transformer2DModel`].

36
37
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
Steven Liu's avatar
Steven Liu committed
38
39
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
40
41
42
43
44
45
46
    """

    sample: torch.FloatTensor


class Transformer2DModel(ModelMixin, ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
47
    A 2D Transformer model for image-like data.
48
49
50
51
52

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
Steven Liu's avatar
Steven Liu committed
53
            The number of channels in the input and output (specify if the input is **continuous**).
54
55
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Steven Liu's avatar
Steven Liu committed
56
57
58
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
59
        num_vector_embeds (`int`, *optional*):
Steven Liu's avatar
Steven Liu committed
60
            The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
61
            Includes the class for the masked latent pixel.
Steven Liu's avatar
Steven Liu committed
62
63
64
65
66
67
68
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*):
            The number of diffusion steps used during training. Pass if at least one of the norm_layers is
            `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
            added to the hidden states.

            During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
69
        attention_bias (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
70
            Configure if the `TransformerBlocks` attention should contain a bias parameter.
71
72
    """

73
74
    _supports_gradient_checkpointing = True

75
76
77
78
79
80
    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
Kashif Rasul's avatar
Kashif Rasul committed
81
        out_channels: Optional[int] = None,
82
83
84
85
86
87
88
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
Kashif Rasul's avatar
Kashif Rasul committed
89
        patch_size: Optional[int] = None,
90
91
92
93
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
94
        double_self_attention: bool = False,
95
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
96
97
        norm_type: str = "layer_norm",
        norm_elementwise_affine: bool = True,
Sayak Paul's avatar
Sayak Paul committed
98
        norm_eps: float = 1e-5,
99
        attention_type: str = "default",
Sayak Paul's avatar
Sayak Paul committed
100
        caption_channels: int = None,
101
102
103
104
105
106
107
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

108
109
110
        conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
        linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear

Alexander Pivovarov's avatar
Alexander Pivovarov committed
111
        # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
112
        # Define whether input is continuous or discrete depending on configuration
Kashif Rasul's avatar
Kashif Rasul committed
113
        self.is_input_continuous = (in_channels is not None) and (patch_size is None)
114
        self.is_input_vectorized = num_vector_embeds is not None
Kashif Rasul's avatar
Kashif Rasul committed
115
116
117
118
119
120
121
122
123
124
125
126
        self.is_input_patches = in_channels is not None and patch_size is not None

        if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
            deprecation_message = (
                f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
                " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
                " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
                " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
                " would be very nice if you could open a Pull request for the `transformer/config.json` file"
            )
            deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
            norm_type = "ada_norm"
127
128
129
130
131
132

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
Kashif Rasul's avatar
Kashif Rasul committed
133
134
135
136
137
138
        elif self.is_input_vectorized and self.is_input_patches:
            raise ValueError(
                f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
                " sure that either `num_vector_embeds` or `num_patches` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
139
            raise ValueError(
Kashif Rasul's avatar
Kashif Rasul committed
140
141
                f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
                f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
142
143
144
145
146
147
148
149
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
            if use_linear_projection:
150
                self.proj_in = linear_cls(in_channels, inner_dim)
151
            else:
152
                self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
153
154
155
156
157
158
159
160
161
162
163
164
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )
Kashif Rasul's avatar
Kashif Rasul committed
165
166
167
168
169
170
171
        elif self.is_input_patches:
            assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"

            self.height = sample_size
            self.width = sample_size

            self.patch_size = patch_size
Sayak Paul's avatar
Sayak Paul committed
172
173
            interpolation_scale = self.config.sample_size // 64  # => 64 (= 512 pixart) has interpolation scale 1
            interpolation_scale = max(interpolation_scale, 1)
Kashif Rasul's avatar
Kashif Rasul committed
174
175
176
177
178
179
            self.pos_embed = PatchEmbed(
                height=sample_size,
                width=sample_size,
                patch_size=patch_size,
                in_channels=in_channels,
                embed_dim=inner_dim,
Sayak Paul's avatar
Sayak Paul committed
180
                interpolation_scale=interpolation_scale,
Kashif Rasul's avatar
Kashif Rasul committed
181
            )
182
183
184
185
186
187
188
189
190
191
192
193
194
195

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
196
                    double_self_attention=double_self_attention,
197
                    upcast_attention=upcast_attention,
Kashif Rasul's avatar
Kashif Rasul committed
198
199
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
Sayak Paul's avatar
Sayak Paul committed
200
                    norm_eps=norm_eps,
201
                    attention_type=attention_type,
202
203
204
205
206
207
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
Kashif Rasul's avatar
Kashif Rasul committed
208
        self.out_channels = in_channels if out_channels is None else out_channels
209
        if self.is_input_continuous:
Alexander Pivovarov's avatar
Alexander Pivovarov committed
210
            # TODO: should use out_channels for continuous projections
211
            if use_linear_projection:
212
                self.proj_out = linear_cls(inner_dim, in_channels)
213
            else:
214
                self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
215
216
217
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
Sayak Paul's avatar
Sayak Paul committed
218
        elif self.is_input_patches and norm_type != "ada_norm_single":
Kashif Rasul's avatar
Kashif Rasul committed
219
220
221
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
            self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
Sayak Paul's avatar
Sayak Paul committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        elif self.is_input_patches and norm_type == "ada_norm_single":
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
            self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)

        # 5. PixArt-Alpha blocks.
        self.adaln_single = None
        self.use_additional_conditions = False
        if norm_type == "ada_norm_single":
            self.use_additional_conditions = self.config.sample_size == 128
            # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
            # additional conditions until we find better name
            self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)

        self.caption_projection = None
        if caption_channels is not None:
238
            self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
239

240
241
        self.gradient_checkpointing = False

242
243
244
245
    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

246
247
    def forward(
        self,
248
249
250
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
Sayak Paul's avatar
Sayak Paul committed
251
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
252
253
254
255
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
256
257
258
        return_dict: bool = True,
    ):
        """
Steven Liu's avatar
Steven Liu committed
259
260
        The [`Transformer2DModel`] forward method.

261
        Args:
Steven Liu's avatar
Steven Liu committed
262
263
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
                Input `hidden_states`.
264
            encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
265
266
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
267
            timestep ( `torch.LongTensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
268
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
Kashif Rasul's avatar
Kashif Rasul committed
269
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Steven Liu's avatar
Steven Liu committed
270
271
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
272
273
274
275
276
277
278
279
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `torch.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
Steven Liu's avatar
Steven Liu committed
280
281
282
283
284
285
286
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
287
                above. This bias will be added to the cross-attention scores.
288
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
289
290
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
291
292

        Returns:
Steven Liu's avatar
Steven Liu committed
293
294
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
295
        """
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

319
320
321
        # Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

322
323
        # 1. Input
        if self.is_input_continuous:
Kashif Rasul's avatar
Kashif Rasul committed
324
            batch, _, height, width = hidden_states.shape
325
326
327
328
            residual = hidden_states

            hidden_states = self.norm(hidden_states)
            if not self.use_linear_projection:
329
330
331
332
333
                hidden_states = (
                    self.proj_in(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_in(hidden_states)
                )
334
335
336
337
338
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
            else:
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
339
340
341
342
343
                hidden_states = (
                    self.proj_in(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_in(hidden_states)
                )
344

345
346
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
347
        elif self.is_input_patches:
348
            height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
Kashif Rasul's avatar
Kashif Rasul committed
349
            hidden_states = self.pos_embed(hidden_states)
350

Sayak Paul's avatar
Sayak Paul committed
351
352
353
354
355
356
357
358
359
360
            if self.adaln_single is not None:
                if self.use_additional_conditions and added_cond_kwargs is None:
                    raise ValueError(
                        "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
                    )
                batch_size = hidden_states.shape[0]
                timestep, embedded_timestep = self.adaln_single(
                    timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
                )

361
        # 2. Blocks
Sayak Paul's avatar
Sayak Paul committed
362
363
364
365
366
        if self.caption_projection is not None:
            batch_size = hidden_states.shape[0]
            encoder_hidden_states = self.caption_projection(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])

367
        for block in self.transformer_blocks:
368
            if self.training and self.gradient_checkpointing:
369
370
371
372
373
374
375
376
377
378
379

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
380
                hidden_states = torch.utils.checkpoint.checkpoint(
381
                    create_custom_forward(block),
382
383
384
385
386
387
388
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    timestep,
                    cross_attention_kwargs,
                    class_labels,
389
                    **ckpt_kwargs,
390
391
392
393
394
395
396
397
398
399
400
                )
            else:
                hidden_states = block(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=class_labels,
                )
401
402
403
404
405

        # 3. Output
        if self.is_input_continuous:
            if not self.use_linear_projection:
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
406
407
408
409
410
                hidden_states = (
                    self.proj_out(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_out(hidden_states)
                )
411
            else:
412
413
414
415
416
                hidden_states = (
                    self.proj_out(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_out(hidden_states)
                )
417
418
419
420
421
422
423
424
425
426
427
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()

            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()
Sayak Paul's avatar
Sayak Paul committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

        if self.is_input_patches:
            if self.config.norm_type != "ada_norm_single":
                conditioning = self.transformer_blocks[0].norm1.emb(
                    timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
                shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
                hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
                hidden_states = self.proj_out_2(hidden_states)
            elif self.config.norm_type == "ada_norm_single":
                shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
                hidden_states = self.norm_out(hidden_states)
                # Modulation
                hidden_states = hidden_states * (1 + scale) + shift
                hidden_states = self.proj_out(hidden_states)
                hidden_states = hidden_states.squeeze(1)
Kashif Rasul's avatar
Kashif Rasul committed
444
445

            # unpatchify
446
447
            if self.adaln_single is None:
                height = width = int(hidden_states.shape[1] ** 0.5)
Kashif Rasul's avatar
Kashif Rasul committed
448
449
450
451
452
453
454
            hidden_states = hidden_states.reshape(
                shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
            )
            hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
            output = hidden_states.reshape(
                shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
            )
455
456
457
458
459

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)