"docs/vscode:/vscode.git/clone" did not exist on "5f04fc2b31410a8801d729207fd8f28ce233bd92"
transformer_2d.py 22.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
15
from typing import Any, Dict, Optional
16
17
18
19
20
21
22

import torch
import torch.nn.functional as F
from torch import nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..models.embeddings import ImagePositionalEmbeddings
23
from ..utils import USE_PEFT_BACKEND, BaseOutput, deprecate
24
from .attention import BasicTransformerBlock
Sayak Paul's avatar
Sayak Paul committed
25
from .embeddings import CaptionProjection, PatchEmbed
26
from .lora import LoRACompatibleConv, LoRACompatibleLinear
27
from .modeling_utils import ModelMixin
Sayak Paul's avatar
Sayak Paul committed
28
from .normalization import AdaLayerNormSingle
29
30
31
32
33


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
34
35
    The output of [`Transformer2DModel`].

36
37
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
Steven Liu's avatar
Steven Liu committed
38
39
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
40
41
42
43
44
45
46
    """

    sample: torch.FloatTensor


class Transformer2DModel(ModelMixin, ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
47
    A 2D Transformer model for image-like data.
48
49
50
51
52

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
Steven Liu's avatar
Steven Liu committed
53
            The number of channels in the input and output (specify if the input is **continuous**).
54
55
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Steven Liu's avatar
Steven Liu committed
56
57
58
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
59
        num_vector_embeds (`int`, *optional*):
Steven Liu's avatar
Steven Liu committed
60
            The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
61
            Includes the class for the masked latent pixel.
Steven Liu's avatar
Steven Liu committed
62
63
64
65
66
67
68
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*):
            The number of diffusion steps used during training. Pass if at least one of the norm_layers is
            `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
            added to the hidden states.

            During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
69
        attention_bias (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
70
            Configure if the `TransformerBlocks` attention should contain a bias parameter.
71
72
73
74
75
76
77
78
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
Kashif Rasul's avatar
Kashif Rasul committed
79
        out_channels: Optional[int] = None,
80
81
82
83
84
85
86
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
Kashif Rasul's avatar
Kashif Rasul committed
87
        patch_size: Optional[int] = None,
88
89
90
91
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
92
        double_self_attention: bool = False,
93
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
94
95
        norm_type: str = "layer_norm",
        norm_elementwise_affine: bool = True,
Sayak Paul's avatar
Sayak Paul committed
96
        norm_eps: float = 1e-5,
97
        attention_type: str = "default",
Sayak Paul's avatar
Sayak Paul committed
98
        caption_channels: int = None,
99
100
101
102
103
104
105
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

106
107
108
        conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
        linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear

Alexander Pivovarov's avatar
Alexander Pivovarov committed
109
        # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
110
        # Define whether input is continuous or discrete depending on configuration
Kashif Rasul's avatar
Kashif Rasul committed
111
        self.is_input_continuous = (in_channels is not None) and (patch_size is None)
112
        self.is_input_vectorized = num_vector_embeds is not None
Kashif Rasul's avatar
Kashif Rasul committed
113
114
115
116
117
118
119
120
121
122
123
124
        self.is_input_patches = in_channels is not None and patch_size is not None

        if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
            deprecation_message = (
                f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
                " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
                " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
                " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
                " would be very nice if you could open a Pull request for the `transformer/config.json` file"
            )
            deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
            norm_type = "ada_norm"
125
126
127
128
129
130

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
Kashif Rasul's avatar
Kashif Rasul committed
131
132
133
134
135
136
        elif self.is_input_vectorized and self.is_input_patches:
            raise ValueError(
                f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
                " sure that either `num_vector_embeds` or `num_patches` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
137
            raise ValueError(
Kashif Rasul's avatar
Kashif Rasul committed
138
139
                f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
                f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
140
141
142
143
144
145
146
147
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
            if use_linear_projection:
148
                self.proj_in = linear_cls(in_channels, inner_dim)
149
            else:
150
                self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
151
152
153
154
155
156
157
158
159
160
161
162
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )
Kashif Rasul's avatar
Kashif Rasul committed
163
164
165
166
167
168
169
        elif self.is_input_patches:
            assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"

            self.height = sample_size
            self.width = sample_size

            self.patch_size = patch_size
Sayak Paul's avatar
Sayak Paul committed
170
171
            interpolation_scale = self.config.sample_size // 64  # => 64 (= 512 pixart) has interpolation scale 1
            interpolation_scale = max(interpolation_scale, 1)
Kashif Rasul's avatar
Kashif Rasul committed
172
173
174
175
176
177
            self.pos_embed = PatchEmbed(
                height=sample_size,
                width=sample_size,
                patch_size=patch_size,
                in_channels=in_channels,
                embed_dim=inner_dim,
Sayak Paul's avatar
Sayak Paul committed
178
                interpolation_scale=interpolation_scale,
Kashif Rasul's avatar
Kashif Rasul committed
179
            )
180
181
182
183
184
185
186
187
188
189
190
191
192
193

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
194
                    double_self_attention=double_self_attention,
195
                    upcast_attention=upcast_attention,
Kashif Rasul's avatar
Kashif Rasul committed
196
197
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
Sayak Paul's avatar
Sayak Paul committed
198
                    norm_eps=norm_eps,
199
                    attention_type=attention_type,
200
201
202
203
204
205
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
Kashif Rasul's avatar
Kashif Rasul committed
206
        self.out_channels = in_channels if out_channels is None else out_channels
207
        if self.is_input_continuous:
Alexander Pivovarov's avatar
Alexander Pivovarov committed
208
            # TODO: should use out_channels for continuous projections
209
            if use_linear_projection:
210
                self.proj_out = linear_cls(inner_dim, in_channels)
211
            else:
212
                self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
213
214
215
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
Sayak Paul's avatar
Sayak Paul committed
216
        elif self.is_input_patches and norm_type != "ada_norm_single":
Kashif Rasul's avatar
Kashif Rasul committed
217
218
219
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
            self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
Sayak Paul's avatar
Sayak Paul committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        elif self.is_input_patches and norm_type == "ada_norm_single":
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
            self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)

        # 5. PixArt-Alpha blocks.
        self.adaln_single = None
        self.use_additional_conditions = False
        if norm_type == "ada_norm_single":
            self.use_additional_conditions = self.config.sample_size == 128
            # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
            # additional conditions until we find better name
            self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)

        self.caption_projection = None
        if caption_channels is not None:
            self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim)
237

238
239
        self.gradient_checkpointing = False

240
241
    def forward(
        self,
242
243
244
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
Sayak Paul's avatar
Sayak Paul committed
245
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
246
247
248
249
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
250
251
252
        return_dict: bool = True,
    ):
        """
Steven Liu's avatar
Steven Liu committed
253
254
        The [`Transformer2DModel`] forward method.

255
        Args:
Steven Liu's avatar
Steven Liu committed
256
257
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
                Input `hidden_states`.
258
            encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
259
260
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
261
            timestep ( `torch.LongTensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
262
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
Kashif Rasul's avatar
Kashif Rasul committed
263
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Steven Liu's avatar
Steven Liu committed
264
265
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
266
267
268
269
270
271
272
273
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `torch.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
Steven Liu's avatar
Steven Liu committed
274
275
276
277
278
279
280
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
281
                above. This bias will be added to the cross-attention scores.
282
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
283
284
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
285
286

        Returns:
Steven Liu's avatar
Steven Liu committed
287
288
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
289
        """
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

313
314
315
        # Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

316
317
        # 1. Input
        if self.is_input_continuous:
Kashif Rasul's avatar
Kashif Rasul committed
318
            batch, _, height, width = hidden_states.shape
319
320
321
322
            residual = hidden_states

            hidden_states = self.norm(hidden_states)
            if not self.use_linear_projection:
323
324
325
326
327
                hidden_states = (
                    self.proj_in(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_in(hidden_states)
                )
328
329
330
331
332
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
            else:
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
333
334
335
336
337
                hidden_states = (
                    self.proj_in(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_in(hidden_states)
                )
338

339
340
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
341
342
        elif self.is_input_patches:
            hidden_states = self.pos_embed(hidden_states)
343

Sayak Paul's avatar
Sayak Paul committed
344
345
346
347
348
349
350
351
352
353
            if self.adaln_single is not None:
                if self.use_additional_conditions and added_cond_kwargs is None:
                    raise ValueError(
                        "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
                    )
                batch_size = hidden_states.shape[0]
                timestep, embedded_timestep = self.adaln_single(
                    timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
                )

354
        # 2. Blocks
Sayak Paul's avatar
Sayak Paul committed
355
356
357
358
359
        if self.caption_projection is not None:
            batch_size = hidden_states.shape[0]
            encoder_hidden_states = self.caption_projection(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])

360
        for block in self.transformer_blocks:
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
            if self.training and self.gradient_checkpointing:
                hidden_states = torch.utils.checkpoint.checkpoint(
                    block,
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    timestep,
                    cross_attention_kwargs,
                    class_labels,
                    use_reentrant=False,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=class_labels,
                )
383
384
385
386
387

        # 3. Output
        if self.is_input_continuous:
            if not self.use_linear_projection:
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
388
389
390
391
392
                hidden_states = (
                    self.proj_out(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_out(hidden_states)
                )
393
            else:
394
395
396
397
398
                hidden_states = (
                    self.proj_out(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_out(hidden_states)
                )
399
400
401
402
403
404
405
406
407
408
409
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()

            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()
Sayak Paul's avatar
Sayak Paul committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

        if self.is_input_patches:
            if self.config.norm_type != "ada_norm_single":
                conditioning = self.transformer_blocks[0].norm1.emb(
                    timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
                shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
                hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
                hidden_states = self.proj_out_2(hidden_states)
            elif self.config.norm_type == "ada_norm_single":
                shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
                hidden_states = self.norm_out(hidden_states)
                # Modulation
                hidden_states = hidden_states * (1 + scale) + shift
                hidden_states = self.proj_out(hidden_states)
                hidden_states = hidden_states.squeeze(1)
Kashif Rasul's avatar
Kashif Rasul committed
426
427
428
429
430
431
432
433
434
435

            # unpatchify
            height = width = int(hidden_states.shape[1] ** 0.5)
            hidden_states = hidden_states.reshape(
                shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
            )
            hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
            output = hidden_states.reshape(
                shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
            )
436
437
438
439
440

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)