transformer_2d.py 19.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
15
from typing import Any, Dict, Optional
16
17
18
19
20
21
22

import torch
import torch.nn.functional as F
from torch import nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..models.embeddings import ImagePositionalEmbeddings
23
from ..utils import USE_PEFT_BACKEND, BaseOutput, deprecate
24
from .attention import BasicTransformerBlock
Kashif Rasul's avatar
Kashif Rasul committed
25
from .embeddings import PatchEmbed
26
from .lora import LoRACompatibleConv, LoRACompatibleLinear
27
28
29
30
31
32
from .modeling_utils import ModelMixin


@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
33
34
    The output of [`Transformer2DModel`].

35
36
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
Steven Liu's avatar
Steven Liu committed
37
38
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
39
40
41
42
43
44
45
    """

    sample: torch.FloatTensor


class Transformer2DModel(ModelMixin, ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
46
    A 2D Transformer model for image-like data.
47
48
49
50
51

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
Steven Liu's avatar
Steven Liu committed
52
            The number of channels in the input and output (specify if the input is **continuous**).
53
54
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Steven Liu's avatar
Steven Liu committed
55
56
57
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
58
        num_vector_embeds (`int`, *optional*):
Steven Liu's avatar
Steven Liu committed
59
            The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
60
            Includes the class for the masked latent pixel.
Steven Liu's avatar
Steven Liu committed
61
62
63
64
65
66
67
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*):
            The number of diffusion steps used during training. Pass if at least one of the norm_layers is
            `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
            added to the hidden states.

            During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
68
        attention_bias (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
69
            Configure if the `TransformerBlocks` attention should contain a bias parameter.
70
71
72
73
74
75
76
77
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
Kashif Rasul's avatar
Kashif Rasul committed
78
        out_channels: Optional[int] = None,
79
80
81
82
83
84
85
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
Kashif Rasul's avatar
Kashif Rasul committed
86
        patch_size: Optional[int] = None,
87
88
89
90
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
91
        double_self_attention: bool = False,
92
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
93
94
        norm_type: str = "layer_norm",
        norm_elementwise_affine: bool = True,
95
        attention_type: str = "default",
96
97
98
99
100
101
102
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

103
104
105
        conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
        linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear

Alexander Pivovarov's avatar
Alexander Pivovarov committed
106
        # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
107
        # Define whether input is continuous or discrete depending on configuration
Kashif Rasul's avatar
Kashif Rasul committed
108
        self.is_input_continuous = (in_channels is not None) and (patch_size is None)
109
        self.is_input_vectorized = num_vector_embeds is not None
Kashif Rasul's avatar
Kashif Rasul committed
110
111
112
113
114
115
116
117
118
119
120
121
        self.is_input_patches = in_channels is not None and patch_size is not None

        if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
            deprecation_message = (
                f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
                " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
                " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
                " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
                " would be very nice if you could open a Pull request for the `transformer/config.json` file"
            )
            deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
            norm_type = "ada_norm"
122
123
124
125
126
127

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
Kashif Rasul's avatar
Kashif Rasul committed
128
129
130
131
132
133
        elif self.is_input_vectorized and self.is_input_patches:
            raise ValueError(
                f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
                " sure that either `num_vector_embeds` or `num_patches` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
134
            raise ValueError(
Kashif Rasul's avatar
Kashif Rasul committed
135
136
                f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
                f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
137
138
139
140
141
142
143
144
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
            if use_linear_projection:
145
                self.proj_in = linear_cls(in_channels, inner_dim)
146
            else:
147
                self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
148
149
150
151
152
153
154
155
156
157
158
159
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )
Kashif Rasul's avatar
Kashif Rasul committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        elif self.is_input_patches:
            assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"

            self.height = sample_size
            self.width = sample_size

            self.patch_size = patch_size
            self.pos_embed = PatchEmbed(
                height=sample_size,
                width=sample_size,
                patch_size=patch_size,
                in_channels=in_channels,
                embed_dim=inner_dim,
            )
174
175
176
177
178
179
180
181
182
183
184
185
186
187

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
188
                    double_self_attention=double_self_attention,
189
                    upcast_attention=upcast_attention,
Kashif Rasul's avatar
Kashif Rasul committed
190
191
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
192
                    attention_type=attention_type,
193
194
195
196
197
198
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
Kashif Rasul's avatar
Kashif Rasul committed
199
        self.out_channels = in_channels if out_channels is None else out_channels
200
        if self.is_input_continuous:
Alexander Pivovarov's avatar
Alexander Pivovarov committed
201
            # TODO: should use out_channels for continuous projections
202
            if use_linear_projection:
203
                self.proj_out = linear_cls(inner_dim, in_channels)
204
            else:
205
                self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
206
207
208
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
Kashif Rasul's avatar
Kashif Rasul committed
209
210
211
212
        elif self.is_input_patches:
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
            self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
213

214
215
        self.gradient_checkpointing = False

216
217
    def forward(
        self,
218
219
220
221
222
223
224
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
225
226
227
        return_dict: bool = True,
    ):
        """
Steven Liu's avatar
Steven Liu committed
228
229
        The [`Transformer2DModel`] forward method.

230
        Args:
Steven Liu's avatar
Steven Liu committed
231
232
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
                Input `hidden_states`.
233
            encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
234
235
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
236
            timestep ( `torch.LongTensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
237
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
Kashif Rasul's avatar
Kashif Rasul committed
238
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Steven Liu's avatar
Steven Liu committed
239
240
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
241
242
243
244
245
246
247
248
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `torch.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
Steven Liu's avatar
Steven Liu committed
249
250
251
252
253
254
255
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
256
                above. This bias will be added to the cross-attention scores.
257
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
258
259
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
260
261

        Returns:
Steven Liu's avatar
Steven Liu committed
262
263
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
264
        """
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

288
289
290
        # Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

291
292
        # 1. Input
        if self.is_input_continuous:
Kashif Rasul's avatar
Kashif Rasul committed
293
            batch, _, height, width = hidden_states.shape
294
295
296
297
            residual = hidden_states

            hidden_states = self.norm(hidden_states)
            if not self.use_linear_projection:
298
299
300
301
302
                hidden_states = (
                    self.proj_in(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_in(hidden_states)
                )
303
304
305
306
307
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
            else:
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
308
309
310
311
312
                hidden_states = (
                    self.proj_in(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_in(hidden_states)
                )
313

314
315
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)
Kashif Rasul's avatar
Kashif Rasul committed
316
317
        elif self.is_input_patches:
            hidden_states = self.pos_embed(hidden_states)
318
319
320

        # 2. Blocks
        for block in self.transformer_blocks:
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
            if self.training and self.gradient_checkpointing:
                hidden_states = torch.utils.checkpoint.checkpoint(
                    block,
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    timestep,
                    cross_attention_kwargs,
                    class_labels,
                    use_reentrant=False,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=class_labels,
                )
343
344
345
346
347

        # 3. Output
        if self.is_input_continuous:
            if not self.use_linear_projection:
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
348
349
350
351
352
                hidden_states = (
                    self.proj_out(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_out(hidden_states)
                )
353
            else:
354
355
356
357
358
                hidden_states = (
                    self.proj_out(hidden_states, scale=lora_scale)
                    if not USE_PEFT_BACKEND
                    else self.proj_out(hidden_states)
                )
359
360
361
362
363
364
365
366
367
368
369
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()

            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()
Kashif Rasul's avatar
Kashif Rasul committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        elif self.is_input_patches:
            # TODO: cleanup!
            conditioning = self.transformer_blocks[0].norm1.emb(
                timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
            shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
            hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
            hidden_states = self.proj_out_2(hidden_states)

            # unpatchify
            height = width = int(hidden_states.shape[1] ** 0.5)
            hidden_states = hidden_states.reshape(
                shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
            )
            hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
            output = hidden_states.reshape(
                shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
            )
388
389
390
391
392

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)