test_stable_diffusion.py 62.2 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
import traceback
21
22
23
24
import unittest

import numpy as np
import torch
25
from huggingface_hub import hf_hub_download
Aryan's avatar
Aryan committed
26
27
28
29
30
from transformers import (
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
)
31
32
33
34

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
35
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
36
37
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
    LCMScheduler,
39
40
41
42
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
43
    logging,
44
)
45
from diffusers.models.attention_processor import AttnProcessor
46
47
48
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Patrick von Platen's avatar
Patrick von Platen committed
49
    load_image,
Dhruv Nair's avatar
Dhruv Nair committed
50
51
    load_numpy,
    nightly,
52
    numpy_cosine_similarity_distance,
53
    require_accelerate_version_greater,
Dhruv Nair's avatar
Dhruv Nair committed
54
    require_python39_or_higher,
55
56
    require_torch_2,
    require_torch_gpu,
57
    require_torch_multi_gpu,
58
    run_test_in_subprocess,
59
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
60
61
    slow,
    torch_device,
62
)
63

64
65
66
67
68
69
from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
Aryan's avatar
Aryan committed
70
71
72
73
74
75
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
76

77

78
79
80
81
82
83
enable_full_determinism()


# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
84
    try:
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)

        sd_pipe.unet.to(memory_format=torch.channels_last)
        sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)

        sd_pipe.set_progress_bar_config(disable=None)

        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
104

105
106
107
108
109
110
111
        assert np.abs(image_slice - expected_slice).max() < 5e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
112
113


114
class StableDiffusionPipelineFastTests(
Aryan's avatar
Aryan committed
115
116
117
118
119
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
120
):
121
    pipeline_class = StableDiffusionPipeline
122
123
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
124
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
125
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
126
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
127

Patrick von Platen's avatar
Patrick von Platen committed
128
    def get_dummy_components(self, time_cond_proj_dim=None):
129
        torch.manual_seed(0)
130
        unet = UNet2DConditionModel(
131
132
            block_out_channels=(4, 8),
            layers_per_block=1,
133
            sample_size=32,
Patrick von Platen's avatar
Patrick von Platen committed
134
            time_cond_proj_dim=time_cond_proj_dim,
135
136
137
138
139
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
140
            norm_num_groups=2,
141
        )
142
143
144
145
146
147
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
148
149
        )
        torch.manual_seed(0)
150
        vae = AutoencoderKL(
151
            block_out_channels=[4, 8],
152
153
154
155
156
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
157
            norm_num_groups=2,
158
159
        )
        torch.manual_seed(0)
160
        text_encoder_config = CLIPTextConfig(
161
162
163
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
164
            intermediate_size=64,
165
            layer_norm_eps=1e-05,
166
167
            num_attention_heads=8,
            num_hidden_layers=3,
168
169
170
            pad_token_id=1,
            vocab_size=1000,
        )
171
172
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
173

174
175
176
177
178
179
180
181
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
182
            "image_encoder": None,
183
184
185
186
187
188
189
190
191
192
193
194
195
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
Aryan's avatar
Aryan committed
196
            "output_type": "np",
197
198
        }
        return inputs
199
200
201
202

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

203
204
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
205
        sd_pipe = sd_pipe.to(torch_device)
206
207
        sd_pipe.set_progress_bar_config(disable=None)

208
209
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
210
211
212
213
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

214
        assert image.shape == (1, 64, 64, 3)
215
        expected_slice = np.array([0.3203, 0.4555, 0.4711, 0.3505, 0.3973, 0.4650, 0.5137, 0.3392, 0.4045])
216
217
218

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    def test_stable_diffusion_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.3454, 0.5349, 0.5185, 0.2808, 0.4509, 0.4612, 0.4655, 0.3601, 0.4315])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    def test_stable_diffusion_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.3454, 0.5349, 0.5185, 0.2808, 0.4509, 0.4612, 0.4655, 0.3601, 0.4315])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = negative_prompt
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

376
377
378
379
380
381
    def test_ip_adapter_single(self):
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.3203, 0.4555, 0.4711, 0.3505, 0.3973, 0.4650, 0.5137, 0.3392, 0.4045])
        return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)

382
383
384
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

385
386
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
387
388
389
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

390
391
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
392
393
394
395
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

396
        assert image.shape == (1, 136, 136, 3)
397
        expected_slice = np.array([0.4346, 0.5621, 0.5016, 0.3926, 0.4533, 0.4134, 0.5625, 0.5632, 0.5265])
398
399
400
401
402

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
403
404
405
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
406
407
408
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

409
410
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
411
412
413
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

414
        assert image.shape == (1, 64, 64, 3)
415
        expected_slice = np.array([0.3411, 0.5032, 0.4704, 0.3135, 0.4323, 0.4740, 0.5150, 0.3498, 0.4022])
416

417
418
419
420
421
422
423
424
425
426
427
428
429
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

430
431
432
433
434
435
436
437
438
439
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

440
441
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
442

443
444
445
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
446
447
448
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

449
450
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
451
452
453
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

454
        assert image.shape == (1, 64, 64, 3)
455
        expected_slice = np.array([0.3149, 0.5246, 0.4796, 0.3218, 0.4469, 0.4729, 0.5151, 0.3597, 0.3954])
456

hlky's avatar
hlky committed
457
458
459
460
461
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

462
463
464
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
465
466
467
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

468
469
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
470
471
472
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

473
        assert image.shape == (1, 64, 64, 3)
474
        expected_slice = np.array([0.3151, 0.5243, 0.4794, 0.3217, 0.4468, 0.4728, 0.5152, 0.3598, 0.3954])
475

hlky's avatar
hlky committed
476
477
478
479
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
480

481
482
483
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
484
485
486
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

487
488
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
489
490
491
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

492
        assert image.shape == (1, 64, 64, 3)
493
        expected_slice = np.array([0.3149, 0.5246, 0.4796, 0.3218, 0.4469, 0.4729, 0.5151, 0.3597, 0.3954])
494

495
496
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

497
498
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
499
500
501
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
502
503
504
505
506
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

507
508
509
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
510
511
512

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
513
514
515
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
516
517
518
519

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    def test_stable_diffusion_vae_tiling(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        components["safety_checker"] = None
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure tiled vae decode yields the same result
        sd_pipe.enable_vae_tiling()
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1

543
544
545
546
547
548
        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
            zeros = torch.zeros(shape).to(device)
            sd_pipe.vae.decode(zeros)

549
550
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
551
552
553
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
554
555
556
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

557
        inputs = self.get_dummy_inputs(device)
558
        negative_prompt = "french fries"
559
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
560
561
562
563

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

564
        assert image.shape == (1, 64, 64, 3)
565
        expected_slice = np.array([0.3458, 0.5120, 0.4800, 0.3116, 0.4348, 0.4802, 0.5237, 0.3467, 0.3991])
566

567
568
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

569
    def test_stable_diffusion_long_prompt(self):
570
571
572
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
573
574
575
576
577
578
579
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
580
        logger.setLevel(logging.WARNING)
581
582
583

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
584
            negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt(
585
586
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
587
588
            if negative_text_embeddings is not None:
                text_embeddings = torch.cat([negative_text_embeddings, text_embeddings])
589

590
591
592
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25

593
594
        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
595
            negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt(
596
597
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
598
599
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
600

601
602
603
604
605
606
607
608
609
610
        assert cap_logger.out == cap_logger_2.out

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
            if negative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3])

611
612
613
614
        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77
        assert cap_logger_3.out == ""

615
    def test_stable_diffusion_height_width_opt(self):
616
617
618
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
619
620
621
622
623
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

624
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
625
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
626
        assert image_shape == (64, 64)
627

628
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
629
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
630
        assert image_shape == (96, 96)
631
632
633

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
634
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
635
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
636
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
637
        assert image_shape == (192, 192)
638

639
640
641
642
643
644
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

645
646
    # MPS currently doesn't support ComplexFloats, which are required for freeU - see https://github.com/huggingface/diffusers/issues/7569.
    @skip_mps
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    def test_freeu_enabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        output_freeu = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        assert not np.allclose(
            output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]
        ), "Enabling of FreeU should lead to different results."

    def test_freeu_disabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        sd_pipe.disable_freeu()

        freeu_keys = {"s1", "s2", "b1", "b2"}
        for upsample_block in sd_pipe.unet.up_blocks:
            for key in freeu_keys:
                assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."

        output_no_freeu = sd_pipe(
            prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)
        ).images

        assert np.allclose(
            output[0, -3:, -3:, -1], output_no_freeu[0, -3:, -3:, -1]
        ), "Disabling of FreeU should lead to results similar to the default pipeline results."

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        sd_pipe.fuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        sd_pipe.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."

Dhruv Nair's avatar
Dhruv Nair committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    def test_pipeline_interrupt(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        num_inference_steps = 3

        # store intermediate latents from the generation process
        class PipelineState:
            def __init__(self):
                self.state = []

            def apply(self, pipe, i, t, callback_kwargs):
                self.state.append(callback_kwargs["latents"])
                return callback_kwargs

        pipe_state = PipelineState()
        sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="np",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=pipe_state.apply,
        ).images

        # interrupt generation at step index
        interrupt_step_idx = 1

        def callback_on_step_end(pipe, i, t, callback_kwargs):
            if i == interrupt_step_idx:
                pipe._interrupt = True

            return callback_kwargs

        output_interrupted = sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="latent",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=callback_on_step_end,
        ).images

        # fetch intermediate latents at the interrupted step
        # from the completed generation process
        intermediate_latent = pipe_state.state[interrupt_step_idx]

        # compare the intermediate latent to the output of the interrupted process
        # they should be the same
        assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)

771
772

@slow
773
@require_torch_gpu
774
class StableDiffusionPipelineSlowTests(unittest.TestCase):
775
    def setUp(self):
776
777
778
        gc.collect()
        torch.cuda.empty_cache()

779
780
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
781
782
783
784
785
786
787
788
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
789
            "output_type": "np",
790
791
792
793
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
794
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
795
796
797
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

798
799
800
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
801

802
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
803
        expected_slice = np.array([0.4363, 0.4355, 0.3667, 0.4066, 0.3970, 0.3866, 0.4394, 0.4356, 0.4059])
804
        assert np.abs(image_slice - expected_slice).max() < 3e-3
805

806
807
808
809
810
811
812
813
814
815
816
817
818
819
    def test_stable_diffusion_v1_4_with_freeu(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        image = sd_pipe(**inputs).images
        image = image[0, -3:, -3:, -1].flatten()
        expected_image = [0.0721, 0.0588, 0.0268, 0.0384, 0.0636, 0.0, 0.0429, 0.0344, 0.0309]
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

820
821
822
823
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
824

825
826
827
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
828

829
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
830
        expected_slice = np.array([0.5740, 0.4784, 0.3162, 0.6358, 0.5831, 0.5505, 0.5082, 0.5631, 0.5575])
831
        assert np.abs(image_slice - expected_slice).max() < 3e-3
832

833
834
835
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
836
837
838
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

839
840
841
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
842

843
844
845
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
846

847
848
849
850
851
852
853
854
855
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
856
857

        assert image.shape == (1, 512, 512, 3)
858
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
859
        assert np.abs(image_slice - expected_slice).max() < 3e-3
860

861
862
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
863
864
865
866
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            sd_pipe.scheduler.config,
            final_sigmas_type="sigma_min",
        )
867
868
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
869

870
871
872
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
873
874

        assert image.shape == (1, 512, 512, 3)
875
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
876
        assert np.abs(image_slice - expected_slice).max() < 3e-3
877

878
    def test_stable_diffusion_attention_slicing(self):
879
        torch.cuda.reset_peak_memory_stats()
880
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
881
        pipe.unet.set_default_attn_processor()
882
        pipe = pipe.to(torch_device)
883
884
        pipe.set_progress_bar_config(disable=None)

885
        # enable attention slicing
886
        pipe.enable_attention_slicing()
887
888
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
889
890
891
892
893
894

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

895
        # disable slicing
896
        pipe.disable_attention_slicing()
897
        pipe.unet.set_default_attn_processor()
898
899
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
900
901
902
903

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
904
905
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-3
906

907
908
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
909
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
910
        pipe = pipe.to(torch_device)
911
912
913
914
915
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
916
917
918
919
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
920
921
922
923
924
925
926
927

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
928
929
930
931
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
932
933
934
935
936

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
937
938
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-2
939

940
941
942
    def test_stable_diffusion_vae_tiling(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
943
944
945
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None
        )
946
947
948
949
950
951
952
953
954
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
        pipe.vae = pipe.vae.to(memory_format=torch.channels_last)

        prompt = "a photograph of an astronaut riding a horse"

        # enable vae tiling
        pipe.enable_vae_tiling()
955
956
957
958
959
960
961
962
963
        pipe.enable_model_cpu_offload()
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_chunked = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
964
            output_type="np",
965
966
        )
        image_chunked = output_chunked.images
967
968
969
970
971

        mem_bytes = torch.cuda.max_memory_allocated()

        # disable vae tiling
        pipe.disable_vae_tiling()
972
973
974
975
976
977
978
979
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
980
            output_type="np",
981
982
        )
        image = output.images
983

984
        assert mem_bytes < 1e10
985
986
        max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten())
        assert max_diff < 1e-2
987

988
    def test_stable_diffusion_fp16_vs_autocast(self):
989
990
        # this test makes sure that the original model with autocast
        # and the new model with fp16 yield the same result
991
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
992
        pipe = pipe.to(torch_device)
993
994
        pipe.set_progress_bar_config(disable=None)

995
996
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
997
998

        with torch.autocast(torch_device):
999
1000
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
1001
1002

        # Make sure results are close enough
1003
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
1004
1005
1006
1007
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

1008
    def test_stable_diffusion_intermediate_state(self):
1009
1010
        number_of_steps = 0

1011
1012
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
1013
1014
            nonlocal number_of_steps
            number_of_steps += 1
1015
            if step == 1:
1016
1017
1018
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1019
1020
1021
1022
1023
                expected_slice = np.array(
                    [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1024
            elif step == 2:
1025
1026
1027
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1028
1029
1030
1031
1032
                expected_slice = np.array(
                    [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1033

1034
        callback_fn.has_been_called = False
1035

1036
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1037
1038
1039
1040
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

1041
1042
1043
1044
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
1045

1046
    def test_stable_diffusion_low_cpu_mem_usage(self):
1047
1048
1049
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
1050
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
1051
1052
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
1053
1054

        start_time = time.time()
1055
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
1056
        normal_load_time = time.time() - start_time
1057

1058
        assert 2 * low_cpu_mem_usage_time < normal_load_time
1059

1060
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
1061
1062
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1063
        torch.cuda.reset_peak_memory_stats()
1064

1065
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1066
1067
1068
1069
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
1070

1071
1072
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
1073
1074

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1075
1076
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
1077

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1091
        pipe.unet.set_default_attn_processor()
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1104
        pipe.unet.set_default_attn_processor()
1105
1106
1107
1108
1109
1110
1111

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
1112
1113
        inputs = self.get_inputs(torch_device, dtype=torch.float16)

1114
1115
1116
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

1117
1118
1119
1120
1121
        images = outputs.images
        offloaded_images = outputs_offloaded.images

        max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten())
        assert max_diff < 1e-3
1122
1123
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3.5 * 10**9
1124
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()

        assert mem_bytes_slicing < mem_bytes_offloaded
        assert mem_bytes_slicing < 3 * 10**9

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
    def test_stable_diffusion_textual_inversion(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
1162
        assert max_diff < 8e-1
1163

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
    def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_model_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

    def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_sequential_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

Dhruv Nair's avatar
Dhruv Nair committed
1214
    @require_python39_or_higher
1215
    @require_torch_2
1216
    def test_stable_diffusion_compile(self):
1217
1218
1219
1220
1221
1222
1223
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs)
1224

Patrick von Platen's avatar
Patrick von Platen committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
    def test_stable_diffusion_lcm(self):
        unet = UNet2DConditionModel.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", subfolder="unet")
        sd_pipe = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", unet=unet).to(torch_device)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 6
        inputs["output_type"] = "pil"

        image = sd_pipe(**inputs).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_full/stable_diffusion_lcm.png"
        )

        image = sd_pipe.image_processor.pil_to_numpy(image)
        expected_image = sd_pipe.image_processor.pil_to_numpy(expected_image)

        max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())

        assert max_diff < 1e-2

1248

1lint's avatar
1lint committed
1249
1250
1251
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
1252
1253
1254
1255
1256
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1lint's avatar
1lint committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_download_from_hub(self):
        ckpt_paths = [
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
            "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt",
        ]

        for ckpt_path in ckpt_paths:
Patrick von Platen's avatar
Patrick von Platen committed
1269
            pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
1lint's avatar
1lint committed
1270
1271
1272
1273
1274
1275
1276
1277
            pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_local(self):
1278
1279
        ckpt_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt")
        config_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-inference.yaml")
1lint's avatar
1lint committed
1280

1281
1282
1283
        pipe = StableDiffusionPipeline.from_single_file(
            ckpt_filename, config_files={"v1": config_filename}, torch_dtype=torch.float16
        )
1lint's avatar
1lint committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"

1294
1295
1296
1297
        sf_pipe = StableDiffusionPipeline.from_single_file(ckpt_path)
        sf_pipe.scheduler = DDIMScheduler.from_config(sf_pipe.scheduler.config)
        sf_pipe.unet.set_attn_processor(AttnProcessor())
        sf_pipe.to("cuda")
1lint's avatar
1lint committed
1298
1299

        generator = torch.Generator(device="cpu").manual_seed(0)
1300
        image_single_file = sf_pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
1lint's avatar
1lint committed
1301
1302
1303
1304
1305
1306
1307

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
1308
        image = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
1lint's avatar
1lint committed
1309

1310
        max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten())
1311
1312

        assert max_diff < 1e-3
1lint's avatar
1lint committed
1313

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
    def test_single_file_component_configs(self):
        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"
        single_file_pipe = StableDiffusionPipeline.from_single_file(ckpt_path, load_safety_checker=True)

        for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
            if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
                continue
            assert pipe.text_encoder.config.to_dict()[param_name] == param_value

        PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "architectures", "_use_default_values"]
        for param_name, param_value in single_file_pipe.unet.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.unet.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.vae.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.vae.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.safety_checker.config.to_dict().items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.safety_checker.config.to_dict()[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

1lint's avatar
1lint committed
1347

1348
1349
1350
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
1351
1352
1353
1354
1355
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1356
1357
1358
1359
1360
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1361
1362
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
1363
1364
1365
1366
1367
1368
1369
1370
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
1371
            "output_type": "np",
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
1416
        assert max_diff < 3e-3
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564


# (sayakpaul): This test suite was run in the DGX with two GPUs (1, 2).
@slow
@require_torch_multi_gpu
@require_accelerate_version_greater("0.27.0")
class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, generator_device="cpu", seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "np",
        }
        return inputs

    def get_pipeline_output_without_device_map(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
        ).to(torch_device)
        sd_pipe.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        no_device_map_image = sd_pipe(**inputs).images

        del sd_pipe

        return no_device_map_image

    def test_forward_pass_balanced_device_map(self):
        no_device_map_image = self.get_pipeline_output_without_device_map()

        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        device_map_image = sd_pipe_with_device_map(**inputs).images

        max_diff = np.abs(device_map_image - no_device_map_image).max()
        assert max_diff < 1e-3

    def test_components_put_in_right_devices(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )

        assert len(set(sd_pipe_with_device_map.hf_device_map.values())) >= 2

    def test_max_memory(self):
        no_device_map_image = self.get_pipeline_output_without_device_map()

        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5",
            device_map="balanced",
            max_memory={0: "1GB", 1: "1GB"},
            torch_dtype=torch.float16,
        )
        sd_pipe_with_device_map.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        device_map_image = sd_pipe_with_device_map(**inputs).images

        max_diff = np.abs(device_map_image - no_device_map_image).max()
        assert max_diff < 1e-3

    def test_reset_device_map(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        for name, component in sd_pipe_with_device_map.components.items():
            if isinstance(component, torch.nn.Module):
                assert component.device.type == "cpu"

    def test_reset_device_map_to(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `to()` can be used and the pipeline can be called.
        pipe = sd_pipe_with_device_map.to("cuda")
        _ = pipe("hello", num_inference_steps=2)

    def test_reset_device_map_enable_model_cpu_offload(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `enable_model_cpu_offload()` can be used and the pipeline can be called.
        sd_pipe_with_device_map.enable_model_cpu_offload()
        _ = sd_pipe_with_device_map("hello", num_inference_steps=2)

    def test_reset_device_map_enable_sequential_cpu_offload(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `enable_sequential_cpu_offload()` can be used and the pipeline can be called.
        sd_pipe_with_device_map.enable_sequential_cpu_offload()
        _ = sd_pipe_with_device_map("hello", num_inference_steps=2)