test_stable_diffusion.py 56.7 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
import traceback
21
22
23
24
import unittest

import numpy as np
import torch
25
from huggingface_hub import hf_hub_download
Aryan's avatar
Aryan committed
26
27
28
29
30
from transformers import (
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
)
31
32
33
34

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
35
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
36
37
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
    LCMScheduler,
39
40
41
42
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
43
    logging,
44
)
45
from diffusers.models.attention_processor import AttnProcessor
46
47
48
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Patrick von Platen's avatar
Patrick von Platen committed
49
    load_image,
Dhruv Nair's avatar
Dhruv Nair committed
50
51
    load_numpy,
    nightly,
52
    numpy_cosine_similarity_distance,
Dhruv Nair's avatar
Dhruv Nair committed
53
    require_python39_or_higher,
54
55
56
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
57
58
    slow,
    torch_device,
59
)
60

61
62
63
64
65
66
from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
Aryan's avatar
Aryan committed
67
68
69
70
71
72
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
73

74

75
76
77
78
79
80
enable_full_determinism()


# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
81
    try:
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)

        sd_pipe.unet.to(memory_format=torch.channels_last)
        sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)

        sd_pipe.set_progress_bar_config(disable=None)

        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
101

102
103
104
105
106
107
108
        assert np.abs(image_slice - expected_slice).max() < 5e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
109
110


111
class StableDiffusionPipelineFastTests(
Aryan's avatar
Aryan committed
112
113
114
115
116
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
117
):
118
    pipeline_class = StableDiffusionPipeline
119
120
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
121
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
122
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
123
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
124

Patrick von Platen's avatar
Patrick von Platen committed
125
    def get_dummy_components(self, time_cond_proj_dim=None):
126
        torch.manual_seed(0)
127
        unet = UNet2DConditionModel(
128
129
            block_out_channels=(4, 8),
            layers_per_block=1,
130
            sample_size=32,
Patrick von Platen's avatar
Patrick von Platen committed
131
            time_cond_proj_dim=time_cond_proj_dim,
132
133
134
135
136
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
137
            norm_num_groups=2,
138
        )
139
140
141
142
143
144
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
145
146
        )
        torch.manual_seed(0)
147
        vae = AutoencoderKL(
148
            block_out_channels=[4, 8],
149
150
151
152
153
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
154
            norm_num_groups=2,
155
156
        )
        torch.manual_seed(0)
157
        text_encoder_config = CLIPTextConfig(
158
159
160
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
161
            intermediate_size=64,
162
            layer_norm_eps=1e-05,
163
164
            num_attention_heads=8,
            num_hidden_layers=3,
165
166
167
            pad_token_id=1,
            vocab_size=1000,
        )
168
169
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
170

171
172
173
174
175
176
177
178
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
179
            "image_encoder": None,
180
181
182
183
184
185
186
187
188
189
190
191
192
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
Aryan's avatar
Aryan committed
193
            "output_type": "np",
194
195
        }
        return inputs
196
197
198
199

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

200
201
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
202
        sd_pipe = sd_pipe.to(torch_device)
203
204
        sd_pipe.set_progress_bar_config(disable=None)

205
206
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
207
208
209
210
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

211
        assert image.shape == (1, 64, 64, 3)
212
        expected_slice = np.array([0.3203, 0.4555, 0.4711, 0.3505, 0.3973, 0.4650, 0.5137, 0.3392, 0.4045])
213
214
215

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def test_stable_diffusion_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.3454, 0.5349, 0.5185, 0.2808, 0.4509, 0.4612, 0.4655, 0.3601, 0.4315])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    def test_stable_diffusion_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.3454, 0.5349, 0.5185, 0.2808, 0.4509, 0.4612, 0.4655, 0.3601, 0.4315])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = negative_prompt
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

373
374
375
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

376
377
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
378
379
380
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

381
382
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
383
384
385
386
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

387
        assert image.shape == (1, 136, 136, 3)
388
        expected_slice = np.array([0.4346, 0.5621, 0.5016, 0.3926, 0.4533, 0.4134, 0.5625, 0.5632, 0.5265])
389
390
391
392
393

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
394
395
396
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
397
398
399
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

400
401
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
402
403
404
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

405
        assert image.shape == (1, 64, 64, 3)
406
        expected_slice = np.array([0.3411, 0.5032, 0.4704, 0.3135, 0.4323, 0.4740, 0.5150, 0.3498, 0.4022])
407

408
409
410
411
412
413
414
415
416
417
418
419
420
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

421
422
423
424
425
426
427
428
429
430
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

431
432
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
433

434
435
436
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
437
438
439
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

440
441
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
442
443
444
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

445
        assert image.shape == (1, 64, 64, 3)
446
        expected_slice = np.array([0.3149, 0.5246, 0.4796, 0.3218, 0.4469, 0.4729, 0.5151, 0.3597, 0.3954])
447

hlky's avatar
hlky committed
448
449
450
451
452
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

453
454
455
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
456
457
458
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

459
460
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
461
462
463
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

464
        assert image.shape == (1, 64, 64, 3)
465
        expected_slice = np.array([0.3151, 0.5243, 0.4794, 0.3217, 0.4468, 0.4728, 0.5152, 0.3598, 0.3954])
466

hlky's avatar
hlky committed
467
468
469
470
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
471

472
473
474
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
475
476
477
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

478
479
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
480
481
482
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

483
        assert image.shape == (1, 64, 64, 3)
484
        expected_slice = np.array([0.3149, 0.5246, 0.4796, 0.3218, 0.4469, 0.4729, 0.5151, 0.3597, 0.3954])
485

486
487
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

488
489
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
490
491
492
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
493
494
495
496
497
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

498
499
500
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
501
502
503

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
504
505
506
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
507
508
509
510

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    def test_stable_diffusion_vae_tiling(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        components["safety_checker"] = None
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure tiled vae decode yields the same result
        sd_pipe.enable_vae_tiling()
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1

534
535
536
537
538
539
        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
            zeros = torch.zeros(shape).to(device)
            sd_pipe.vae.decode(zeros)

540
541
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
542
543
544
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
545
546
547
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

548
        inputs = self.get_dummy_inputs(device)
549
        negative_prompt = "french fries"
550
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
551
552
553
554

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

555
        assert image.shape == (1, 64, 64, 3)
556
        expected_slice = np.array([0.3458, 0.5120, 0.4800, 0.3116, 0.4348, 0.4802, 0.5237, 0.3467, 0.3991])
557

558
559
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

560
    def test_stable_diffusion_long_prompt(self):
561
562
563
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
564
565
566
567
568
569
570
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
571
        logger.setLevel(logging.WARNING)
572
573
574

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
575
            negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt(
576
577
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
578
579
            if negative_text_embeddings is not None:
                text_embeddings = torch.cat([negative_text_embeddings, text_embeddings])
580

581
582
583
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25

584
585
        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
586
            negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt(
587
588
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
589
590
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
591

592
593
594
595
596
597
598
599
600
601
        assert cap_logger.out == cap_logger_2.out

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
            if negative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3])

602
603
604
605
        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77
        assert cap_logger_3.out == ""

606
    def test_stable_diffusion_height_width_opt(self):
607
608
609
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
610
611
612
613
614
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

615
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
616
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
617
        assert image_shape == (64, 64)
618

619
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
620
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
621
        assert image_shape == (96, 96)
622
623
624

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
625
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
626
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
627
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
628
        assert image_shape == (192, 192)
629

630
631
632
633
634
635
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    def test_freeu_enabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        output_freeu = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        assert not np.allclose(
            output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]
        ), "Enabling of FreeU should lead to different results."

    def test_freeu_disabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        sd_pipe.disable_freeu()

        freeu_keys = {"s1", "s2", "b1", "b2"}
        for upsample_block in sd_pipe.unet.up_blocks:
            for key in freeu_keys:
                assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."

        output_no_freeu = sd_pipe(
            prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)
        ).images

        assert np.allclose(
            output[0, -3:, -3:, -1], output_no_freeu[0, -3:, -3:, -1]
        ), "Disabling of FreeU should lead to results similar to the default pipeline results."

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        sd_pipe.fuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        sd_pipe.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."

Dhruv Nair's avatar
Dhruv Nair committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
    def test_pipeline_interrupt(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        num_inference_steps = 3

        # store intermediate latents from the generation process
        class PipelineState:
            def __init__(self):
                self.state = []

            def apply(self, pipe, i, t, callback_kwargs):
                self.state.append(callback_kwargs["latents"])
                return callback_kwargs

        pipe_state = PipelineState()
        sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="np",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=pipe_state.apply,
        ).images

        # interrupt generation at step index
        interrupt_step_idx = 1

        def callback_on_step_end(pipe, i, t, callback_kwargs):
            if i == interrupt_step_idx:
                pipe._interrupt = True

            return callback_kwargs

        output_interrupted = sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="latent",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=callback_on_step_end,
        ).images

        # fetch intermediate latents at the interrupted step
        # from the completed generation process
        intermediate_latent = pipe_state.state[interrupt_step_idx]

        # compare the intermediate latent to the output of the interrupted process
        # they should be the same
        assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)

760
761

@slow
762
@require_torch_gpu
763
class StableDiffusionPipelineSlowTests(unittest.TestCase):
764
    def setUp(self):
765
766
767
        gc.collect()
        torch.cuda.empty_cache()

768
769
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
770
771
772
773
774
775
776
777
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
778
            "output_type": "np",
779
780
781
782
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
783
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
784
785
786
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

787
788
789
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
790

791
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
792
        expected_slice = np.array([0.4363, 0.4355, 0.3667, 0.4066, 0.3970, 0.3866, 0.4394, 0.4356, 0.4059])
793
        assert np.abs(image_slice - expected_slice).max() < 3e-3
794

795
796
797
798
799
800
801
802
803
804
805
806
807
808
    def test_stable_diffusion_v1_4_with_freeu(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        image = sd_pipe(**inputs).images
        image = image[0, -3:, -3:, -1].flatten()
        expected_image = [0.0721, 0.0588, 0.0268, 0.0384, 0.0636, 0.0, 0.0429, 0.0344, 0.0309]
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

809
810
811
812
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
813

814
815
816
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
817

818
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
819
        expected_slice = np.array([0.5740, 0.4784, 0.3162, 0.6358, 0.5831, 0.5505, 0.5082, 0.5631, 0.5575])
820
        assert np.abs(image_slice - expected_slice).max() < 3e-3
821

822
823
824
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
825
826
827
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

828
829
830
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
831

832
833
834
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
835

836
837
838
839
840
841
842
843
844
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
845
846

        assert image.shape == (1, 512, 512, 3)
847
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
848
        assert np.abs(image_slice - expected_slice).max() < 3e-3
849

850
851
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
852
853
854
855
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            sd_pipe.scheduler.config,
            final_sigmas_type="sigma_min",
        )
856
857
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
858

859
860
861
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
862
863

        assert image.shape == (1, 512, 512, 3)
864
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
865
        assert np.abs(image_slice - expected_slice).max() < 3e-3
866

867
    def test_stable_diffusion_attention_slicing(self):
868
        torch.cuda.reset_peak_memory_stats()
869
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
870
        pipe.unet.set_default_attn_processor()
871
        pipe = pipe.to(torch_device)
872
873
        pipe.set_progress_bar_config(disable=None)

874
        # enable attention slicing
875
        pipe.enable_attention_slicing()
876
877
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
878
879
880
881
882
883

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

884
        # disable slicing
885
        pipe.disable_attention_slicing()
886
        pipe.unet.set_default_attn_processor()
887
888
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
889
890
891
892

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
893
894
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-3
895

896
897
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
898
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
899
        pipe = pipe.to(torch_device)
900
901
902
903
904
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
905
906
907
908
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
909
910
911
912
913
914
915
916

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
917
918
919
920
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
921
922
923
924
925

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
926
927
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-2
928

929
930
931
    def test_stable_diffusion_vae_tiling(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
932
933
934
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None
        )
935
936
937
938
939
940
941
942
943
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
        pipe.vae = pipe.vae.to(memory_format=torch.channels_last)

        prompt = "a photograph of an astronaut riding a horse"

        # enable vae tiling
        pipe.enable_vae_tiling()
944
945
946
947
948
949
950
951
952
        pipe.enable_model_cpu_offload()
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_chunked = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
953
            output_type="np",
954
955
        )
        image_chunked = output_chunked.images
956
957
958
959
960

        mem_bytes = torch.cuda.max_memory_allocated()

        # disable vae tiling
        pipe.disable_vae_tiling()
961
962
963
964
965
966
967
968
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
969
            output_type="np",
970
971
        )
        image = output.images
972

973
        assert mem_bytes < 1e10
974
975
        max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten())
        assert max_diff < 1e-2
976

977
    def test_stable_diffusion_fp16_vs_autocast(self):
978
979
        # this test makes sure that the original model with autocast
        # and the new model with fp16 yield the same result
980
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
981
        pipe = pipe.to(torch_device)
982
983
        pipe.set_progress_bar_config(disable=None)

984
985
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
986
987

        with torch.autocast(torch_device):
988
989
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
990
991

        # Make sure results are close enough
992
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
993
994
995
996
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

997
    def test_stable_diffusion_intermediate_state(self):
998
999
        number_of_steps = 0

1000
1001
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
1002
1003
            nonlocal number_of_steps
            number_of_steps += 1
1004
            if step == 1:
1005
1006
1007
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1008
1009
1010
1011
1012
                expected_slice = np.array(
                    [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1013
            elif step == 2:
1014
1015
1016
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1017
1018
1019
1020
1021
                expected_slice = np.array(
                    [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1022

1023
        callback_fn.has_been_called = False
1024

1025
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1026
1027
1028
1029
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

1030
1031
1032
1033
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
1034

1035
    def test_stable_diffusion_low_cpu_mem_usage(self):
1036
1037
1038
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
1039
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
1040
1041
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
1042
1043

        start_time = time.time()
1044
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
1045
        normal_load_time = time.time() - start_time
1046

1047
        assert 2 * low_cpu_mem_usage_time < normal_load_time
1048

1049
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
1050
1051
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1052
        torch.cuda.reset_peak_memory_stats()
1053

1054
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1055
1056
1057
1058
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
1059

1060
1061
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
1062
1063

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1064
1065
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
1066

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1080
        pipe.unet.set_default_attn_processor()
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1093
        pipe.unet.set_default_attn_processor()
1094
1095
1096
1097
1098
1099
1100

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
1101
1102
        inputs = self.get_inputs(torch_device, dtype=torch.float16)

1103
1104
1105
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

1106
1107
1108
1109
1110
        images = outputs.images
        offloaded_images = outputs_offloaded.images

        max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten())
        assert max_diff < 1e-3
1111
1112
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3.5 * 10**9
1113
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()

        assert mem_bytes_slicing < mem_bytes_offloaded
        assert mem_bytes_slicing < 3 * 10**9

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
    def test_stable_diffusion_textual_inversion(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
1151
        assert max_diff < 8e-1
1152

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_model_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

    def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_sequential_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

Dhruv Nair's avatar
Dhruv Nair committed
1203
    @require_python39_or_higher
1204
    @require_torch_2
1205
    def test_stable_diffusion_compile(self):
1206
1207
1208
1209
1210
1211
1212
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs)
1213

Patrick von Platen's avatar
Patrick von Platen committed
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    def test_stable_diffusion_lcm(self):
        unet = UNet2DConditionModel.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", subfolder="unet")
        sd_pipe = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", unet=unet).to(torch_device)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 6
        inputs["output_type"] = "pil"

        image = sd_pipe(**inputs).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_full/stable_diffusion_lcm.png"
        )

        image = sd_pipe.image_processor.pil_to_numpy(image)
        expected_image = sd_pipe.image_processor.pil_to_numpy(expected_image)

        max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())

        assert max_diff < 1e-2

1237

1lint's avatar
1lint committed
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_download_from_hub(self):
        ckpt_paths = [
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
            "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt",
        ]

        for ckpt_path in ckpt_paths:
Patrick von Platen's avatar
Patrick von Platen committed
1253
            pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
1lint's avatar
1lint committed
1254
1255
1256
1257
1258
1259
1260
1261
            pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_local(self):
1262
1263
        ckpt_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt")
        config_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-inference.yaml")
1lint's avatar
1lint committed
1264

1265
1266
1267
        pipe = StableDiffusionPipeline.from_single_file(
            ckpt_filename, config_files={"v1": config_filename}, torch_dtype=torch.float16
        )
1lint's avatar
1lint committed
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"

1278
1279
1280
1281
        sf_pipe = StableDiffusionPipeline.from_single_file(ckpt_path)
        sf_pipe.scheduler = DDIMScheduler.from_config(sf_pipe.scheduler.config)
        sf_pipe.unet.set_attn_processor(AttnProcessor())
        sf_pipe.to("cuda")
1lint's avatar
1lint committed
1282
1283

        generator = torch.Generator(device="cpu").manual_seed(0)
1284
        image_single_file = sf_pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
1lint's avatar
1lint committed
1285
1286
1287
1288
1289
1290
1291

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
1292
        image = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
1lint's avatar
1lint committed
1293

1294
        max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten())
1295
1296

        assert max_diff < 1e-3
1lint's avatar
1lint committed
1297

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
    def test_single_file_component_configs(self):
        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"
        single_file_pipe = StableDiffusionPipeline.from_single_file(ckpt_path, load_safety_checker=True)

        for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
            if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
                continue
            assert pipe.text_encoder.config.to_dict()[param_name] == param_value

        PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "architectures", "_use_default_values"]
        for param_name, param_value in single_file_pipe.unet.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.unet.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.vae.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.vae.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.safety_checker.config.to_dict().items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.safety_checker.config.to_dict()[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

1lint's avatar
1lint committed
1331

1332
1333
1334
1335
1336
1337
1338
1339
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1340
1341
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
1342
1343
1344
1345
1346
1347
1348
1349
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
1350
            "output_type": "np",
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
1395
        assert max_diff < 3e-3
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3