test_if.py 4.89 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import torch

from diffusers import (
    IFPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
25
from diffusers.utils.import_utils import is_xformers_available
26
from diffusers.utils.testing_utils import (
27
    backend_empty_cache,
28
    backend_max_memory_allocated,
29
30
    backend_reset_max_memory_allocated,
    backend_reset_peak_memory_stats,
31
32
    load_numpy,
    require_accelerator,
Marc Sun's avatar
Marc Sun committed
33
    require_hf_hub_version_greater,
34
    require_torch_accelerator,
Marc Sun's avatar
Marc Sun committed
35
    require_transformers_version_greater,
36
37
38
39
    skip_mps,
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin


@skip_mps
class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
    pipeline_class = IFPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}

    def get_dummy_components(self):
        return self._get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
66
            "output_type": "np",
Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
        }

        return inputs

71
72
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
Patrick von Platen's avatar
Patrick von Platen committed
73
74
    def test_save_load_float16(self):
        # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
75
        super().test_save_load_float16(expected_max_diff=1e-1)
Patrick von Platen's avatar
Patrick von Platen committed
76
77
78
79
80
81
82
83
84
85
86
87

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)

    def test_save_load_local(self):
        self._test_save_load_local()

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-2,
        )

88
89
90
91
92
93
94
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)

Marc Sun's avatar
Marc Sun committed
95
96
97
98
99
    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_save_load_dduf(self):
        super().test_save_load_dduf(atol=1e-2, rtol=1e-2)

100
101
102
103
    @unittest.skip("Functionality is tested elsewhere.")
    def test_save_load_optional_components(self):
        pass

Patrick von Platen's avatar
Patrick von Platen committed
104
105

@slow
106
@require_torch_accelerator
Patrick von Platen's avatar
Patrick von Platen committed
107
class IFPipelineSlowTests(unittest.TestCase):
108
109
110
111
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
112
        backend_empty_cache(torch_device)
113

Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
118
        backend_empty_cache(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
119

120
121
122
    def test_if_text_to_image(self):
        pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
        pipe.unet.set_attn_processor(AttnAddedKVProcessor())
123
        pipe.enable_model_cpu_offload(device=torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
124

125
126
127
        backend_reset_max_memory_allocated(torch_device)
        backend_empty_cache(torch_device)
        backend_reset_peak_memory_stats(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
128
129

        generator = torch.Generator(device="cpu").manual_seed(0)
130
131
        output = pipe(
            prompt="anime turtle",
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
137
138
            num_inference_steps=2,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

139
        mem_bytes = backend_max_memory_allocated(torch_device)
140
        assert mem_bytes < 12 * 10**9
Patrick von Platen's avatar
Patrick von Platen committed
141
142
143
144
145

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy"
        )
        assert_mean_pixel_difference(image, expected_image)
146
        pipe.remove_all_hooks()