test_if.py 4.39 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import torch

from diffusers import (
    IFPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
25
from diffusers.utils.import_utils import is_xformers_available
26
27
28
29
30
31
32
33
from diffusers.utils.testing_utils import (
    load_numpy,
    require_accelerator,
    require_torch_gpu,
    skip_mps,
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin


@skip_mps
class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
    pipeline_class = IFPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}

    def get_dummy_components(self):
        return self._get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
60
            "output_type": "np",
Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
66
67
        }

        return inputs

    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

68
69
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
Patrick von Platen's avatar
Patrick von Platen committed
70
71
    def test_save_load_float16(self):
        # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
72
        super().test_save_load_float16(expected_max_diff=1e-1)
Patrick von Platen's avatar
Patrick von Platen committed
73
74
75
76
77
78
79
80
81
82
83
84

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)

    def test_save_load_local(self):
        self._test_save_load_local()

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-2,
        )

85
86
87
88
89
90
91
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)

Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
95

@slow
@require_torch_gpu
class IFPipelineSlowTests(unittest.TestCase):
96
97
98
99
100
101
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Patrick von Platen's avatar
Patrick von Platen committed
102
103
104
105
106
107
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

108
109
110
111
    def test_if_text_to_image(self):
        pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
        pipe.unet.set_attn_processor(AttnAddedKVProcessor())
        pipe.enable_model_cpu_offload()
Patrick von Platen's avatar
Patrick von Platen committed
112

113
114
115
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
Patrick von Platen's avatar
Patrick von Platen committed
116
117

        generator = torch.Generator(device="cpu").manual_seed(0)
118
119
        output = pipe(
            prompt="anime turtle",
Patrick von Platen's avatar
Patrick von Platen committed
120
121
122
123
124
125
126
127
            num_inference_steps=2,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        mem_bytes = torch.cuda.max_memory_allocated()
128
        assert mem_bytes < 12 * 10**9
Patrick von Platen's avatar
Patrick von Platen committed
129
130
131
132
133

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy"
        )
        assert_mean_pixel_difference(image, expected_image)
134
        pipe.remove_all_hooks()