test_if.py 4.66 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import torch

from diffusers import (
    IFPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
25
from diffusers.utils.import_utils import is_xformers_available
26
27
28
from diffusers.utils.testing_utils import (
    load_numpy,
    require_accelerator,
Marc Sun's avatar
Marc Sun committed
29
    require_hf_hub_version_greater,
30
    require_torch_gpu,
Marc Sun's avatar
Marc Sun committed
31
    require_transformers_version_greater,
32
33
34
35
    skip_mps,
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin


@skip_mps
class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
    pipeline_class = IFPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}

    def get_dummy_components(self):
        return self._get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
62
            "output_type": "np",
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
67
68
69
        }

        return inputs

    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

70
71
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
Patrick von Platen's avatar
Patrick von Platen committed
72
73
    def test_save_load_float16(self):
        # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
74
        super().test_save_load_float16(expected_max_diff=1e-1)
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82
83
84
85
86

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)

    def test_save_load_local(self):
        self._test_save_load_local()

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-2,
        )

87
88
89
90
91
92
93
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)

Marc Sun's avatar
Marc Sun committed
94
95
96
97
98
    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_save_load_dduf(self):
        super().test_save_load_dduf(atol=1e-2, rtol=1e-2)

Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102

@slow
@require_torch_gpu
class IFPipelineSlowTests(unittest.TestCase):
103
104
105
106
107
108
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Patrick von Platen's avatar
Patrick von Platen committed
109
110
111
112
113
114
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

115
116
117
118
    def test_if_text_to_image(self):
        pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
        pipe.unet.set_attn_processor(AttnAddedKVProcessor())
        pipe.enable_model_cpu_offload()
Patrick von Platen's avatar
Patrick von Platen committed
119

120
121
122
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
Patrick von Platen's avatar
Patrick von Platen committed
123
124

        generator = torch.Generator(device="cpu").manual_seed(0)
125
126
        output = pipe(
            prompt="anime turtle",
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
132
133
134
            num_inference_steps=2,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        mem_bytes = torch.cuda.max_memory_allocated()
135
        assert mem_bytes < 12 * 10**9
Patrick von Platen's avatar
Patrick von Platen committed
136
137
138
139
140

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy"
        )
        assert_mean_pixel_difference(image, expected_image)
141
        pipe.remove_all_hooks()