"docs/source/ko/using-diffusers/schedulers.md" did not exist on "a0597f33aca9ead4323800120c6ecfc323ccba48"
unet.py 6.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.

# helpers functions

import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
19
from torch import nn
20

Patrick von Platen's avatar
Patrick von Platen committed
21
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
22
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
23
from .attention import AttentionBlock
24
from .embeddings import get_timestep_embedding
25
from .resnet import Downsample2D, ResnetBlock2D, Upsample2D
Patrick von Platen's avatar
Patrick von Platen committed
26
from .unet_new import UNetMidBlock2D
27
28


Patrick von Platen's avatar
improve  
Patrick von Platen committed
29
30
31
def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)
32
33


Patrick von Platen's avatar
improve  
Patrick von Platen committed
34
35
def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
36
37


Patrick von Platen's avatar
Patrick von Platen committed
38
class UNetModel(ModelMixin, ConfigMixin):
39
40
    def __init__(
        self,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
41
42
43
44
45
46
47
48
49
        ch=128,
        out_ch=3,
        ch_mult=(1, 1, 2, 2, 4, 4),
        num_res_blocks=2,
        attn_resolutions=(16,),
        dropout=0.0,
        resamp_with_conv=True,
        in_channels=3,
        resolution=256,
50
51
    ):
        super().__init__()
52
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
            ch=ch,
            out_ch=out_ch,
            ch_mult=ch_mult,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            in_channels=in_channels,
            resolution=resolution,
        )
        ch_mult = tuple(ch_mult)
        self.ch = ch
        self.temb_ch = self.ch * 4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # timestep embedding
        self.temb = nn.Module()
        self.temb.dense = nn.ModuleList(
            [
                torch.nn.Linear(self.ch, self.temb_ch),
                torch.nn.Linear(self.temb_ch, self.temb_ch),
            ]
78
        )
79

Patrick von Platen's avatar
improve  
Patrick von Platen committed
80
81
82
83
84
85
86
87
88
89
90
91
92
        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
Patrick von Platen's avatar
Patrick von Platen committed
93
                    ResnetBlock2D(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
94
95
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
96
                )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
97
98
                block_in = block_out
                if curr_res in attn_resolutions:
Patrick von Platen's avatar
Patrick von Platen committed
99
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
100
101
102
103
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
104
                down.downsample = Downsample2D(block_in, use_conv=resamp_with_conv, padding=0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
105
106
107
108
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
109
110
111
112
113
114
115
116
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock2D(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
        self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True)
        self.mid.block_2 = ResnetBlock2D(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
117
        self.mid_new = UNetMidBlock2D(in_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
118
119
120
        self.mid_new.resnets[0] = self.mid.block_1
        self.mid_new.attentions[0] = self.mid.attn_1
        self.mid_new.resnets[1] = self.mid.block_2
121

Patrick von Platen's avatar
improve  
Patrick von Platen committed
122
123
124
125
126
127
128
129
130
131
132
        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            skip_in = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                if i_block == self.num_res_blocks:
                    skip_in = ch * in_ch_mult[i_level]
                block.append(
Patrick von Platen's avatar
Patrick von Platen committed
133
                    ResnetBlock2D(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
134
135
136
137
138
139
140
141
                        in_channels=block_in + skip_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
Patrick von Platen's avatar
Patrick von Platen committed
142
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
143
144
145
146
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
147
                up.upsample = Upsample2D(block_in, use_conv=resamp_with_conv)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
148
149
150
151
152
153
154
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

155
156
    def forward(self, sample, timesteps):
        x = sample
Patrick von Platen's avatar
improve  
Patrick von Platen committed
157
158
        assert x.shape[2] == x.shape[3] == self.resolution

patil-suraj's avatar
patil-suraj committed
159
160
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
161
162

        # timestep embedding
patil-suraj's avatar
patil-suraj committed
163
        temb = get_timestep_embedding(timesteps, self.ch)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        temb = self.temb.dense[0](temb)
        temb = nonlinearity(temb)
        temb = self.temb.dense[1](temb)

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
180
        h = self.mid_new(hs[-1], temb)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h