unet.py 6.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.

# helpers functions

import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
19
from torch import nn
20

Patrick von Platen's avatar
Patrick von Platen committed
21
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
22
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
23
from .attention import AttentionBlock
24
from .embeddings import get_timestep_embedding
25
from .resnet import Downsample2D, ResnetBlock2D, Upsample2D
Patrick von Platen's avatar
Patrick von Platen committed
26
from .unet_new import UNetMidBlock2D
27
28


Patrick von Platen's avatar
improve  
Patrick von Platen committed
29
30
31
def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)
32
33


Patrick von Platen's avatar
improve  
Patrick von Platen committed
34
35
def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
36
37


Patrick von Platen's avatar
Patrick von Platen committed
38
class UNetModel(ModelMixin, ConfigMixin):
39
40
    def __init__(
        self,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
41
42
43
44
45
46
47
48
49
        ch=128,
        out_ch=3,
        ch_mult=(1, 1, 2, 2, 4, 4),
        num_res_blocks=2,
        attn_resolutions=(16,),
        dropout=0.0,
        resamp_with_conv=True,
        in_channels=3,
        resolution=256,
50
51
    ):
        super().__init__()
52
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
            ch=ch,
            out_ch=out_ch,
            ch_mult=ch_mult,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            in_channels=in_channels,
            resolution=resolution,
        )
        ch_mult = tuple(ch_mult)
        self.ch = ch
        self.temb_ch = self.ch * 4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # timestep embedding
        self.temb = nn.Module()
        self.temb.dense = nn.ModuleList(
            [
                torch.nn.Linear(self.ch, self.temb_ch),
                torch.nn.Linear(self.temb_ch, self.temb_ch),
            ]
78
        )
79

Patrick von Platen's avatar
improve  
Patrick von Platen committed
80
81
82
83
84
85
86
87
88
89
90
91
92
        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
Patrick von Platen's avatar
Patrick von Platen committed
93
                    ResnetBlock2D(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
94
95
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
96
                )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
97
98
                block_in = block_out
                if curr_res in attn_resolutions:
Patrick von Platen's avatar
Patrick von Platen committed
99
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
100
101
102
103
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
104
                down.downsample = Downsample2D(block_in, use_conv=resamp_with_conv, padding=0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
105
106
107
108
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
Patrick von Platen's avatar
Patrick von Platen committed
109
110
        self.mid = UNetMidBlock2D(
            in_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, overwrite_qkv=True, overwrite_unet=True
Patrick von Platen's avatar
improve  
Patrick von Platen committed
111
        )
112

Patrick von Platen's avatar
improve  
Patrick von Platen committed
113
114
115
116
117
118
119
120
121
122
123
        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            skip_in = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                if i_block == self.num_res_blocks:
                    skip_in = ch * in_ch_mult[i_level]
                block.append(
Patrick von Platen's avatar
Patrick von Platen committed
124
                    ResnetBlock2D(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
125
126
127
128
129
130
131
132
                        in_channels=block_in + skip_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
Patrick von Platen's avatar
Patrick von Platen committed
133
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
134
135
136
137
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
138
                up.upsample = Upsample2D(block_in, use_conv=resamp_with_conv)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
139
140
141
142
143
144
145
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

patil-suraj's avatar
patil-suraj committed
146
    def forward(self, x, timesteps):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
147
148
        assert x.shape[2] == x.shape[3] == self.resolution

patil-suraj's avatar
patil-suraj committed
149
150
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
151
152

        # timestep embedding
patil-suraj's avatar
patil-suraj committed
153
        temb = get_timestep_embedding(timesteps, self.ch)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        temb = self.temb.dense[0](temb)
        temb = nonlinearity(temb)
        temb = self.temb.dense[1](temb)

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
Patrick von Platen's avatar
Patrick von Platen committed
170
171
172
173
        h = self.mid(hs[-1], temb)
        #        h = self.mid.block_1(h, temb)
        #        h = self.mid.attn_1(h)
        #        h = self.mid.block_2(h, temb)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h