unet.py 9.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.

# helpers functions

import copy
import math
from pathlib import Path

import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23
from torch import nn
24
25
26
27
from torch.cuda.amp import GradScaler, autocast
from torch.optim import Adam
from torch.utils import data

Patrick von Platen's avatar
improve  
Patrick von Platen committed
28
from PIL import Image
29
30
from tqdm import tqdm

Patrick von Platen's avatar
Patrick von Platen committed
31
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
32
from ..modeling_utils import ModelMixin
33
from .embeddings import get_timestep_embedding
patil-suraj's avatar
patil-suraj committed
34
from .resnet import Downsample, Upsample
35
36


Patrick von Platen's avatar
improve  
Patrick von Platen committed
37
38
39
def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)
40
41


Patrick von Platen's avatar
improve  
Patrick von Platen committed
42
43
def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
44
45
46


class ResnetBlock(nn.Module):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
47
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
48
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
90
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
91
        self.in_channels = in_channels
92

Patrick von Platen's avatar
improve  
Patrick von Platen committed
93
94
95
96
97
        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
98
99

    def forward(self, x):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
100
101
102
103
104
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)
105

Patrick von Platen's avatar
improve  
Patrick von Platen committed
106
107
108
109
110
111
112
113
        # compute attention
        b, c, h, w = q.shape
        q = q.reshape(b, c, h * w)
        q = q.permute(0, 2, 1)  # b,hw,c
        k = k.reshape(b, c, h * w)  # b,c,hw
        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)
114

Patrick von Platen's avatar
improve  
Patrick von Platen committed
115
116
117
118
119
        # attend to values
        v = v.reshape(b, c, h * w)
        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
        h_ = h_.reshape(b, c, h, w)
120

Patrick von Platen's avatar
improve  
Patrick von Platen committed
121
        h_ = self.proj_out(h_)
122

Patrick von Platen's avatar
improve  
Patrick von Platen committed
123
        return x + h_
124
125


Patrick von Platen's avatar
Patrick von Platen committed
126
class UNetModel(ModelMixin, ConfigMixin):
127
128
    def __init__(
        self,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
129
130
131
132
133
134
135
136
137
        ch=128,
        out_ch=3,
        ch_mult=(1, 1, 2, 2, 4, 4),
        num_res_blocks=2,
        attn_resolutions=(16,),
        dropout=0.0,
        resamp_with_conv=True,
        in_channels=3,
        resolution=256,
138
139
    ):
        super().__init__()
140
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            ch=ch,
            out_ch=out_ch,
            ch_mult=ch_mult,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            in_channels=in_channels,
            resolution=resolution,
        )
        ch_mult = tuple(ch_mult)
        self.ch = ch
        self.temb_ch = self.ch * 4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # timestep embedding
        self.temb = nn.Module()
        self.temb.dense = nn.ModuleList(
            [
                torch.nn.Linear(self.ch, self.temb_ch),
                torch.nn.Linear(self.temb_ch, self.temb_ch),
            ]
166
        )
167

Patrick von Platen's avatar
improve  
Patrick von Platen committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    ResnetBlock(
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
184
                )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
185
186
187
188
189
190
191
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttnBlock(block_in))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
patil-suraj's avatar
patil-suraj committed
192
                down.downsample = Downsample(block_in, use_conv=resamp_with_conv, padding=0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
193
194
195
196
197
198
199
200
201
202
203
204
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
205

Patrick von Platen's avatar
improve  
Patrick von Platen committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            skip_in = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                if i_block == self.num_res_blocks:
                    skip_in = ch * in_ch_mult[i_level]
                block.append(
                    ResnetBlock(
                        in_channels=block_in + skip_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttnBlock(block_in))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
patil-suraj's avatar
patil-suraj committed
231
                up.upsample = Upsample(block_in, use_conv=resamp_with_conv)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
232
233
234
235
236
237
238
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

patil-suraj's avatar
patil-suraj committed
239
    def forward(self, x, timesteps):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
240
241
        assert x.shape[2] == x.shape[3] == self.resolution

patil-suraj's avatar
patil-suraj committed
242
243
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
244
245

        # timestep embedding
patil-suraj's avatar
patil-suraj committed
246
        temb = get_timestep_embedding(timesteps, self.ch)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        temb = self.temb.dense[0](temb)
        temb = nonlinearity(temb)
        temb = self.temb.dense[1](temb)

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h