configuration_utils.py 21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" ConfigMixin base class and utilities."""
17
import dataclasses
18
import functools
Patrick von Platen's avatar
improve  
Patrick von Platen committed
19
import inspect
20
21
22
import json
import os
import re
Patrick von Platen's avatar
Patrick von Platen committed
23
from collections import OrderedDict
24
25
from typing import Any, Dict, Tuple, Union

26
from huggingface_hub import hf_hub_download
27
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
Patrick von Platen's avatar
Patrick von Platen committed
28
from requests import HTTPError
29

Patrick von Platen's avatar
Patrick von Platen committed
30
from . import __version__
31
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging
32

33

34
35
36
37
38
logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


Patrick von Platen's avatar
Patrick von Platen committed
39
class ConfigMixin:
40
    r"""
Patrick von Platen's avatar
Patrick von Platen committed
41
42
43
44
45
46
47
    Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
    methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
        - [`~ConfigMixin.from_config`]
        - [`~ConfigMixin.save_config`]

    Class attributes:
        - **config_name** (`str`) -- A filename under which the config should stored when calling
48
          [`~ConfigMixin.save_config`] (should be overridden by parent class).
Patrick von Platen's avatar
Patrick von Platen committed
49
        - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
50
          overridden by parent class).
51
    """
52
    config_name = None
Patrick von Platen's avatar
Patrick von Platen committed
53
    ignore_for_config = []
54

55
    def register_to_config(self, **kwargs):
56
57
58
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
        kwargs["_class_name"] = self.__class__.__name__
59
60
        kwargs["_diffusers_version"] = __version__

61
62
63
64
        # Special case for `kwargs` used in deprecation warning added to schedulers
        # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
        # or solve in a more general way.
        kwargs.pop("kwargs", None)
65
66
67
68
69
70
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                logger.error(f"Can't set {key} with value {value} for {self}")
                raise err
71

Patrick von Platen's avatar
Patrick von Platen committed
72
73
74
75
76
77
        if not hasattr(self, "_internal_dict"):
            internal_dict = kwargs
        else:
            previous_dict = dict(self._internal_dict)
            internal_dict = {**self._internal_dict, **kwargs}
            logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
78

Patrick von Platen's avatar
Patrick von Platen committed
79
        self._internal_dict = FrozenDict(internal_dict)
80

81
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
82
83
        """
        Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
Patrick von Platen's avatar
Patrick von Platen committed
84
        [`~ConfigMixin.from_config`] class method.
85
86
87
88
89
90
91
92
93
94

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

95
96
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
97

98
        self.to_json_file(output_config_file)
Patrick von Platen's avatar
Patrick von Platen committed
99
        logger.info(f"ConfigMixinuration saved in {output_config_file}")
100

101
102
    @classmethod
    def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        r"""
        Instantiate a Python class from a pre-defined JSON-file.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
                      organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g.,
                      `./my_model_directory/`.

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
132
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
137
138
139
140
141
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
142
143
144
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
Patrick von Platen's avatar
Patrick von Platen committed
145
146
147

        <Tip>

148
149
         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
         models](https://huggingface.co/docs/hub/models-gated#gated-models).
Patrick von Platen's avatar
Patrick von Platen committed
150
151
152
153
154
155
156
157
158
159
160

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.

        </Tip>

        """
Patrick von Platen's avatar
Patrick von Platen committed
161
        config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs)
162
163
        init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)

164
165
166
167
        # Allow dtype to be specified on initialization
        if "dtype" in unused_kwargs:
            init_dict["dtype"] = unused_kwargs.pop("dtype")

168
        # Return model and optionally state and/or unused_kwargs
169
        model = cls(**init_dict)
170
171
172
173
174
175
        return_tuple = (model,)

        # Flax schedulers have a state, so return it.
        if cls.__name__.startswith("Flax") and hasattr(model, "create_state") and getattr(model, "has_state", False):
            state = model.create_state()
            return_tuple += (state,)
176
177

        if return_unused_kwargs:
178
            return return_tuple + (unused_kwargs,)
179
        else:
180
            return return_tuple if len(return_tuple) > 1 else model
181

182
    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
183
184
    def get_config_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
185
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
186
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
187
188
189
190
191
192
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
193
        _ = kwargs.pop("mirror", None)
Patrick von Platen's avatar
Patrick von Platen committed
194
        subfolder = kwargs.pop("subfolder", None)
195
196
197
198
199

        user_agent = {"file_type": "config"}

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)

200
201
202
203
204
205
        if cls.config_name is None:
            raise ValueError(
                "`self.config_name` is not defined. Note that one should not load a config from "
                "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
            )

206
207
208
209
210
211
        if os.path.isfile(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        elif os.path.isdir(pretrained_model_name_or_path):
            if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
                # Load from a PyTorch checkpoint
                config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
Patrick von Platen's avatar
Patrick von Platen committed
212
213
214
215
            elif subfolder is not None and os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
            ):
                config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
216
            else:
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
                raise EnvironmentError(
                    f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
                )
        else:
            try:
                # Load from URL or cache if already cached
                config_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=cls.config_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    user_agent=user_agent,
Patrick von Platen's avatar
Patrick von Platen committed
233
                    subfolder=subfolder,
234
                    revision=revision,
235
236
                )

237
238
            except RepositoryNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
239
240
241
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
                    " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
                    " token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
242
                    " login`."
243
244
245
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
246
247
248
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
                    " this model name. Check the model page at"
                    f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
249
250
251
252
253
254
255
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
                )
            except HTTPError as err:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
256
257
                    "There was a specific connection error when trying to load"
                    f" {pretrained_model_name_or_path}:\n{err}"
258
259
260
                )
            except ValueError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
261
262
263
264
265
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
                    " run the library in offline mode at"
                    " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
266
267
268
269
270
271
272
273
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a {cls.config_name} file"
                )
274

275
276
277
278
        try:
            # Load config dict
            config_dict = cls._dict_from_json_file(config_file)
        except (json.JSONDecodeError, UnicodeDecodeError):
Patrick von Platen's avatar
Patrick von Platen committed
279
            raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
280

patil-suraj's avatar
patil-suraj committed
281
        return config_dict
282

patil-suraj's avatar
patil-suraj committed
283
284
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
285
286
        expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
        expected_keys.remove("self")
Patrick von Platen's avatar
hotfix  
Patrick von Platen committed
287
288
289
        # remove general kwargs if present in dict
        if "kwargs" in expected_keys:
            expected_keys.remove("kwargs")
Yuta Hayashibe's avatar
Yuta Hayashibe committed
290
        # remove flax internal keys
291
292
293
294
        if hasattr(cls, "_flax_internal_args"):
            for arg in cls._flax_internal_args:
                expected_keys.remove(arg)

Patrick von Platen's avatar
Patrick von Platen committed
295
296
297
        # remove keys to be ignored
        if len(cls.ignore_for_config) > 0:
            expected_keys = expected_keys - set(cls.ignore_for_config)
patil-suraj's avatar
patil-suraj committed
298
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
299
300
301
        for key in expected_keys:
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
302
303
304
305
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
306

307
308
309
310
311
312
313
314
315
316
        config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}

        if len(config_dict) > 0:
            logger.warning(
                f"The config attributes {config_dict} were passed to {cls.__name__}, "
                "but are not expected and will be ignored. Please verify your "
                f"{cls.config_name} configuration file."
            )

        unused_kwargs = {**config_dict, **kwargs}
anton-l's avatar
Style  
anton-l committed
317

patil-suraj's avatar
patil-suraj committed
318
        passed_keys = set(init_dict.keys())
319
        if len(expected_keys - passed_keys) > 0:
320
            logger.info(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
321
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
322
            )
323

patil-suraj's avatar
patil-suraj committed
324
        return init_dict, unused_kwargs
Patrick von Platen's avatar
Patrick von Platen committed
325

326
327
328
329
330
331
    @classmethod
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

anton-l's avatar
anton-l committed
332
    def __repr__(self):
333
        return f"{self.__class__.__name__} {self.to_json_string()}"
334

335
336
    @property
    def config(self) -> Dict[str, Any]:
Patrick von Platen's avatar
Patrick von Platen committed
337
        return self._internal_dict
338

339
    def to_json_string(self) -> str:
340
341
342
343
344
345
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this configuration instance in JSON format.
        """
346
        config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
347
348
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

349
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
350
351
352
353
354
355
356
357
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
358
            writer.write(self.to_json_string())
Patrick von Platen's avatar
Patrick von Platen committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390


class FrozenDict(OrderedDict):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        for key, value in self.items():
            setattr(self, key, value)

        self.__frozen = True

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __setattr__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setattr__(name, value)

    def __setitem__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setitem__(name, value)
391
392
393


def register_to_config(init):
Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
397
    r"""
    Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
    automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
    shouldn't be registered in the config, use the `ignore_for_config` class variable
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

    Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
    """

    @functools.wraps(init)
    def inner_init(self, *args, **kwargs):
        # Ignore private kwargs in the init.
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
        init(self, *args, **init_kwargs)
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        ignore = getattr(self, "ignore_for_config", [])
        # Get positional arguments aligned with kwargs
        new_kwargs = {}
        signature = inspect.signature(init)
        parameters = {
            name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
        }
        for arg, name in zip(args, parameters.keys()):
            new_kwargs[name] = arg

        # Then add all kwargs
        new_kwargs.update(
            {
                k: init_kwargs.get(k, default)
                for k, default in parameters.items()
                if k not in ignore and k not in new_kwargs
            }
        )
        getattr(self, "register_to_config")(**new_kwargs)

    return inner_init
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463


def flax_register_to_config(cls):
    original_init = cls.__init__

    @functools.wraps(original_init)
    def init(self, *args, **kwargs):
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        # Ignore private kwargs in the init. Retrieve all passed attributes
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}

        # Retrieve default values
        fields = dataclasses.fields(self)
        default_kwargs = {}
        for field in fields:
            # ignore flax specific attributes
            if field.name in self._flax_internal_args:
                continue
            if type(field.default) == dataclasses._MISSING_TYPE:
                default_kwargs[field.name] = None
            else:
                default_kwargs[field.name] = getattr(self, field.name)

        # Make sure init_kwargs override default kwargs
        new_kwargs = {**default_kwargs, **init_kwargs}
464
465
466
        # dtype should be part of `init_kwargs`, but not `new_kwargs`
        if "dtype" in new_kwargs:
            new_kwargs.pop("dtype")
467
468
469
470
471
472
473
474
475
476
477

        # Get positional arguments aligned with kwargs
        for i, arg in enumerate(args):
            name = fields[i].name
            new_kwargs[name] = arg

        getattr(self, "register_to_config")(**new_kwargs)
        original_init(self, *args, **kwargs)

    cls.__init__ = init
    return cls