scheduling_euler_ancestral_discrete.py 20.5 KB
Newer Older
1
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
hlky's avatar
hlky committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
hlky's avatar
hlky committed
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
23
24
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
25
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
26
27
28
29
30
31
32
33
34


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
    """
35
    Output class for the scheduler's `step` function output.
hlky's avatar
hlky committed
36
37

    Args:
38
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
hlky's avatar
hlky committed
40
            denoising loop.
41
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
hlky's avatar
hlky committed
43
44
45
            `pred_original_sample` can be used to preview progress or for guidance.
    """

46
47
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
hlky's avatar
hlky committed
48
49


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
56
57
58
59
60
61
62
63
64
65
66
67
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
68
69
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
70
71
72
73

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
74
    if alpha_transform_type == "cosine":
75

YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
84
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
85
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86
87
88
89
90

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
91
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
93
94
    return torch.tensor(betas, dtype=torch.float32)


95
96
97
98
99
100
101
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
102
        betas (`torch.Tensor`):
103
104
105
            the betas that the scheduler is being initialized with.

    Returns:
106
        `torch.Tensor`: rescaled betas with zero terminal SNR
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


hlky's avatar
hlky committed
132
133
class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
134
    Ancestral sampling with Euler method steps.
hlky's avatar
hlky committed
135

136
137
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
hlky's avatar
hlky committed
138
139

    Args:
140
141
142
143
144
145
146
147
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
hlky's avatar
hlky committed
148
            `linear` or `scaled_linear`.
149
150
151
152
153
154
155
156
157
158
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
159
            An offset added to the inference steps, as required by some model families.
160
161
162
163
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
hlky's avatar
hlky committed
164
165
    """

Kashif Rasul's avatar
Kashif Rasul committed
166
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
167
    order = 1
168

hlky's avatar
hlky committed
169
170
171
172
173
174
175
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
176
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
177
        prediction_type: str = "epsilon",
178
179
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
180
        rescale_betas_zero_snr: bool = False,
hlky's avatar
hlky committed
181
182
    ):
        if trained_betas is not None:
183
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
184
185
186
187
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
188
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
189
190
191
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
hlky's avatar
hlky committed
192
193
194
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

195
196
197
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

hlky's avatar
hlky committed
198
199
200
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

201
202
203
204
205
        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

hlky's avatar
hlky committed
206
207
208
209
210
211
212
213
214
215
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.is_scale_input_called = False

YiYi Xu's avatar
YiYi Xu committed
216
        self._step_index = None
217
        self._begin_index = None
218
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
219

220
221
222
223
224
225
226
227
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
228
229
230
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
231
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
232
233
234
        """
        return self._step_index

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

253
    def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
hlky's avatar
hlky committed
254
        """
255
256
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
hlky's avatar
hlky committed
257
258

        Args:
259
            sample (`torch.Tensor`):
260
261
262
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
hlky's avatar
hlky committed
263
264

        Returns:
265
            `torch.Tensor`:
266
                A scaled input sample.
hlky's avatar
hlky committed
267
        """
YiYi Xu's avatar
YiYi Xu committed
268
269
270
271
272

        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
273
274
275
276
277
278
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
279
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
hlky's avatar
hlky committed
280
281
282

        Args:
            num_inference_steps (`int`):
283
284
285
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
hlky's avatar
hlky committed
286
287
288
        """
        self.num_inference_steps = num_inference_steps

289
290
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
YiYi Xu's avatar
YiYi Xu committed
291
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
292
293
294
295
296
297
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
298
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
299
300
301
302
303
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
304
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
305
306
307
308
309
310
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

hlky's avatar
hlky committed
311
312
313
314
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
YiYi Xu's avatar
YiYi Xu committed
315
316
317

        self.timesteps = torch.from_numpy(timesteps).to(device=device)
        self._step_index = None
318
        self._begin_index = None
319
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
320

321
322
323
324
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
YiYi Xu's avatar
YiYi Xu committed
325

326
        indices = (schedule_timesteps == timestep).nonzero()
YiYi Xu's avatar
YiYi Xu committed
327
328
329
330
331

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
332
333
334
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()
YiYi Xu's avatar
YiYi Xu committed
335

336
337
338
339
340
341
342
343
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
hlky's avatar
hlky committed
344
345
346

    def step(
        self,
347
348
349
        model_output: torch.Tensor,
        timestep: Union[float, torch.Tensor],
        sample: torch.Tensor,
hlky's avatar
hlky committed
350
351
352
353
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
        """
354
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
hlky's avatar
hlky committed
355
356
357
        process from the learned model outputs (most often the predicted noise).

        Args:
358
            model_output (`torch.Tensor`):
359
360
361
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
362
            sample (`torch.Tensor`):
363
364
365
366
367
368
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
hlky's avatar
hlky committed
369
370

        Returns:
371
372
373
374
            [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`,
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.
hlky's avatar
hlky committed
375
376
377

        """

378
        if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
hlky's avatar
hlky committed
379
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
380
381
382
383
384
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
385
386
387
            )

        if not self.is_scale_input_called:
388
            logger.warning(
hlky's avatar
hlky committed
389
390
391
392
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
393
394
        if self.step_index is None:
            self._init_step_index(timestep)
hlky's avatar
hlky committed
395

YiYi Xu's avatar
YiYi Xu committed
396
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
397

398
399
400
        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

hlky's avatar
hlky committed
401
        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
402
403
404
405
406
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
407
408
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
409
410
411
412
413
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

YiYi Xu's avatar
YiYi Xu committed
414
415
        sigma_from = self.sigmas[self.step_index]
        sigma_to = self.sigmas[self.step_index + 1]
hlky's avatar
hlky committed
416
417
418
419
420
421
422
423
424
425
        sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
        sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma

        dt = sigma_down - sigma

        prev_sample = sample + derivative * dt

Patrick von Platen's avatar
Patrick von Platen committed
426
        device = model_output.device
427
        noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
428

hlky's avatar
hlky committed
429
430
        prev_sample = prev_sample + noise * sigma_up

431
432
433
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

YiYi Xu's avatar
YiYi Xu committed
434
435
436
        # upon completion increase step index by one
        self._step_index += 1

hlky's avatar
hlky committed
437
438
439
440
441
442
443
        if not return_dict:
            return (prev_sample,)

        return EulerAncestralDiscreteSchedulerOutput(
            prev_sample=prev_sample, pred_original_sample=pred_original_sample
        )

444
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
hlky's avatar
hlky committed
445
446
    def add_noise(
        self,
447
448
449
450
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
hlky's avatar
hlky committed
451
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
452
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
hlky's avatar
hlky committed
453
454
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
455
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
hlky's avatar
hlky committed
456
457
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
458
            schedule_timesteps = self.timesteps.to(original_samples.device)
hlky's avatar
hlky committed
459
460
            timesteps = timesteps.to(original_samples.device)

461
462
463
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
464
465
466
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
467
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
468
            # add noise is called before first denoising step to create initial latent(img2img)
469
            step_indices = [self.begin_index] * timesteps.shape[0]
hlky's avatar
hlky committed
470

471
        sigma = sigmas[step_indices].flatten()
hlky's avatar
hlky committed
472
473
474
475
476
477
478
479
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps