vae.py 34.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Optional, Tuple
Partho's avatar
Partho committed
16

patil-suraj's avatar
patil-suraj committed
17
18
19
20
import numpy as np
import torch
import torch.nn as nn

Dhruv Nair's avatar
Dhruv Nair committed
21
22
from ..utils import BaseOutput, is_torch_version
from ..utils.torch_utils import randn_tensor
23
from .activations import get_activation
YiYi Xu's avatar
YiYi Xu committed
24
from .attention_processor import SpatialNorm
25
from .unet_2d_blocks import AutoencoderTinyBlock, UNetMidBlock2D, get_down_block, get_up_block
patil-suraj's avatar
patil-suraj committed
26
27


28
29
@dataclass
class DecoderOutput(BaseOutput):
30
    r"""
31
32
33
34
    Output of decoding method.

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
35
            The decoded output sample from the last layer of the model.
36
37
38
39
40
    """

    sample: torch.FloatTensor


patil-suraj's avatar
patil-suraj committed
41
class Encoder(nn.Module):
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    r"""
    The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
            options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        double_z (`bool`, *optional*, defaults to `True`):
            Whether to double the number of output channels for the last block.
    """

patil-suraj's avatar
patil-suraj committed
65
66
    def __init__(
        self,
67
68
69
70
71
72
73
74
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        double_z: bool = True,
patil-suraj's avatar
patil-suraj committed
75
76
    ):
        super().__init__()
77
78
        self.layers_per_block = layers_per_block

Kashif Rasul's avatar
Kashif Rasul committed
79
        self.conv_in = nn.Conv2d(
80
81
82
83
84
85
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
        )
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
104
                downsample_padding=0,
105
                resnet_act_fn=act_fn,
106
                resnet_groups=norm_num_groups,
107
                attention_head_dim=output_channel,
108
109
110
111
112
113
114
115
116
117
118
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
119
            attention_head_dim=block_out_channels[-1],
120
            resnet_groups=norm_num_groups,
121
            temb_channels=None,
patil-suraj's avatar
patil-suraj committed
122
123
        )

124
        # out
125
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
126
127
128
129
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
130

131
132
        self.gradient_checkpointing = False

133
    def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
134
        r"""The forward method of the `Encoder` class."""
135

136
137
        sample = self.conv_in(sample)

138
139
140
141
142
143
144
145
146
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # down
147
148
149
150
151
152
153
154
155
156
157
158
159
160
            if is_torch_version(">=", "1.11.0"):
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(down_block), sample, use_reentrant=False
                    )
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, use_reentrant=False
                )
            else:
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
                # middle
                sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
161
162
163
164
165

        else:
            # down
            for down_block in self.down_blocks:
                sample = down_block(sample)
patil-suraj's avatar
patil-suraj committed
166

167
168
            # middle
            sample = self.mid_block(sample)
169
170
171
172
173
174
175

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
176
177
178


class Decoder(nn.Module):
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    r"""
    The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """

patil-suraj's avatar
patil-suraj committed
201
202
    def __init__(
        self,
203
204
205
206
207
208
209
210
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
patil-suraj's avatar
patil-suraj committed
211
212
    ):
        super().__init__()
213
214
        self.layers_per_block = layers_per_block

215
216
217
218
219
220
221
        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )
222
223
224
225

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

YiYi Xu's avatar
YiYi Xu committed
226
227
        temb_channels = in_channels if norm_type == "spatial" else None

228
229
230
231
232
233
        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
YiYi Xu's avatar
YiYi Xu committed
234
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
235
            attention_head_dim=block_out_channels[-1],
236
            resnet_groups=norm_num_groups,
YiYi Xu's avatar
YiYi Xu committed
237
            temb_channels=temb_channels,
patil-suraj's avatar
patil-suraj committed
238
239
        )

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
258
                resnet_groups=norm_num_groups,
259
                attention_head_dim=output_channel,
YiYi Xu's avatar
YiYi Xu committed
260
261
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
262
263
264
265
266
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
YiYi Xu's avatar
YiYi Xu committed
267
268
269
270
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
271
272
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
273

274
275
        self.gradient_checkpointing = False

276
277
278
    def forward(
        self, sample: torch.FloatTensor, latent_embeds: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
279
        r"""The forward method of the `Decoder` class."""
280

281
        sample = self.conv_in(sample)
patil-suraj's avatar
patil-suraj committed
282

283
        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
284
        if self.training and self.gradient_checkpointing:
patil-suraj's avatar
patil-suraj committed
285

286
287
288
289
290
291
            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

292
293
294
            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
YiYi Xu's avatar
YiYi Xu committed
295
                    create_custom_forward(self.mid_block), sample, latent_embeds, use_reentrant=False
296
297
298
299
300
301
                )
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
YiYi Xu's avatar
YiYi Xu committed
302
                        create_custom_forward(up_block), sample, latent_embeds, use_reentrant=False
303
304
305
                    )
            else:
                # middle
YiYi Xu's avatar
YiYi Xu committed
306
307
308
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
309
310
311
312
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
313
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
314
315
        else:
            # middle
YiYi Xu's avatar
YiYi Xu committed
316
            sample = self.mid_block(sample, latent_embeds)
317
            sample = sample.to(upscale_dtype)
318
319
320

            # up
            for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
321
                sample = up_block(sample, latent_embeds)
patil-suraj's avatar
patil-suraj committed
322

323
        # post-process
YiYi Xu's avatar
YiYi Xu committed
324
325
326
327
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
328
329
330
331
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
332
333


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
334
class UpSample(nn.Module):
335
336
337
338
339
340
341
342
343
344
    r"""
    The `UpSample` layer of a variational autoencoder that upsamples its input.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
    """

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
345
346
347
348
349
350
351
352
353
354
355
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
    ) -> None:
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)

    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
356
        r"""The forward method of the `UpSample` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        x = torch.relu(x)
        x = self.deconv(x)
        return x


class MaskConditionEncoder(nn.Module):
    """
    used in AsymmetricAutoencoderKL
    """

    def __init__(
        self,
        in_ch: int,
        out_ch: int = 192,
        res_ch: int = 768,
        stride: int = 16,
    ) -> None:
        super().__init__()

        channels = []
        while stride > 1:
            stride = stride // 2
            in_ch_ = out_ch * 2
            if out_ch > res_ch:
                out_ch = res_ch
            if stride == 1:
                in_ch_ = res_ch
            channels.append((in_ch_, out_ch))
            out_ch *= 2

        out_channels = []
        for _in_ch, _out_ch in channels:
            out_channels.append(_out_ch)
        out_channels.append(channels[-1][0])

        layers = []
        in_ch_ = in_ch
        for l in range(len(out_channels)):
            out_ch_ = out_channels[l]
            if l == 0 or l == 1:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
            else:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
            in_ch_ = out_ch_

        self.layers = nn.Sequential(*layers)

    def forward(self, x: torch.FloatTensor, mask=None) -> torch.FloatTensor:
405
        r"""The forward method of the `MaskConditionEncoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
406
407
408
409
410
411
412
413
414
415
        out = {}
        for l in range(len(self.layers)):
            layer = self.layers[l]
            x = layer(x)
            out[str(tuple(x.shape))] = x
            x = torch.relu(x)
        return out


class MaskConditionDecoder(nn.Module):
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
    decoder with a conditioner on the mask and masked image.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
437
438
439

    def __init__(
        self,
440
441
442
443
444
445
446
447
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # condition encoder
        self.condition_encoder = MaskConditionEncoder(
            in_ch=out_channels,
            out_ch=block_out_channels[0],
            res_ch=block_out_channels[-1],
        )

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

        self.gradient_checkpointing = False

520
521
522
523
524
525
526
527
    def forward(
        self,
        z: torch.FloatTensor,
        image: Optional[torch.FloatTensor] = None,
        mask: Optional[torch.FloatTensor] = None,
        latent_embeds: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        r"""The forward method of the `MaskConditionDecoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        sample = z
        sample = self.conv_in(sample)

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds, use_reentrant=False
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(self.condition_encoder), masked_image, mask, use_reentrant=False
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(up_block), sample, latent_embeds, use_reentrant=False
                    )
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
            else:
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(self.condition_encoder), masked_image, mask
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
        else:
            # middle
            sample = self.mid_block(sample, latent_embeds)
            sample = sample.to(upscale_dtype)

            # condition encoder
            if image is not None and mask is not None:
                masked_image = (1 - mask) * image
                im_x = self.condition_encoder(masked_image, mask)

            # up
            for up_block in self.up_blocks:
                if image is not None and mask is not None:
                    sample_ = im_x[str(tuple(sample.shape))]
                    mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                    sample = sample * mask_ + sample_ * (1 - mask_)
                sample = up_block(sample, latent_embeds)
            if image is not None and mask is not None:
                sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)

        # post-process
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


patil-suraj's avatar
patil-suraj committed
619
620
621
622
623
624
625
626
627
class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
Will Berman's avatar
Will Berman committed
628
    def __init__(
629
630
631
632
633
634
635
636
        self,
        n_e: int,
        vq_embed_dim: int,
        beta: float,
        remap=None,
        unknown_index: str = "random",
        sane_index_shape: bool = False,
        legacy: bool = True,
Will Berman's avatar
Will Berman committed
637
    ):
patil-suraj's avatar
patil-suraj committed
638
639
        super().__init__()
        self.n_e = n_e
Will Berman's avatar
Will Berman committed
640
        self.vq_embed_dim = vq_embed_dim
patil-suraj's avatar
patil-suraj committed
641
642
643
        self.beta = beta
        self.legacy = legacy

Will Berman's avatar
Will Berman committed
644
        self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
645
646
647
648
649
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
650
            self.used: torch.Tensor
patil-suraj's avatar
patil-suraj committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

665
    def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
666
667
668
669
670
671
672
673
674
675
676
677
678
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

679
    def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
680
681
682
683
684
685
686
687
688
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

689
    def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, Tuple]:
patil-suraj's avatar
patil-suraj committed
690
691
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
Will Berman's avatar
Will Berman committed
692
        z_flattened = z.view(-1, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
693

694
695
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
patil-suraj's avatar
patil-suraj committed
696
697
698
699
700
701
702
703
704
705
706
707

        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
708
        z_q: torch.FloatTensor = z + (z_q - z).detach()
patil-suraj's avatar
patil-suraj committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

723
    def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.FloatTensor:
patil-suraj's avatar
patil-suraj committed
724
725
726
727
728
729
730
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
731
        z_q: torch.FloatTensor = self.embedding(indices)
patil-suraj's avatar
patil-suraj committed
732
733
734
735
736
737
738
739
740
741

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
742
    def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
patil-suraj's avatar
patil-suraj committed
743
744
745
746
747
748
749
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
750
751
752
            self.var = self.std = torch.zeros_like(
                self.mean, device=self.parameters.device, dtype=self.parameters.dtype
            )
patil-suraj's avatar
patil-suraj committed
753

Partho's avatar
Partho committed
754
    def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
755
        # make sure sample is on the same device as the parameters and has same dtype
756
757
758
        sample = randn_tensor(
            self.mean.shape, generator=generator, device=self.parameters.device, dtype=self.parameters.dtype
        )
759
        x = self.mean + self.std * sample
patil-suraj's avatar
patil-suraj committed
760
761
        return x

762
    def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
                return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3])
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

778
    def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
779
780
781
782
783
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)

784
    def mode(self) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
785
        return self.mean
786
787
788


class EncoderTiny(nn.Module):
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
    r"""
    The `EncoderTiny` layer is a simpler version of the `Encoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

806
807
808
809
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
810
811
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
        act_fn: str,
    ):
        super().__init__()

        layers = []
        for i, num_block in enumerate(num_blocks):
            num_channels = block_out_channels[i]

            if i == 0:
                layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
            else:
                layers.append(nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1, stride=2, bias=False))

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

        layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

833
834
    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        r"""The forward method of the `EncoderTiny` class."""
835
836
837
838
839
840
841
842
843
844
845
846
847
848
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
849
850
            # scale image from [-1, 1] to [0, 1] to match TAESD convention
            x = self.layers(x.add(1).div(2))
851
852
853
854
855

        return x


class DecoderTiny(nn.Module):
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
    r"""
    The `DecoderTiny` layer is a simpler version of the `Decoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        upsampling_scaling_factor (`int`):
            The scaling factor to use for upsampling.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

875
876
877
878
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
879
880
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
        upsampling_scaling_factor: int,
        act_fn: str,
    ):
        super().__init__()

        layers = [
            nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
            get_activation(act_fn),
        ]

        for i, num_block in enumerate(num_blocks):
            is_final_block = i == (len(num_blocks) - 1)
            num_channels = block_out_channels[i]

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

            if not is_final_block:
                layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor))

            conv_out_channel = num_channels if not is_final_block else out_channels
            layers.append(nn.Conv2d(num_channels, conv_out_channel, kernel_size=3, padding=1, bias=is_final_block))

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

907
908
    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        r"""The forward method of the `DecoderTiny` class."""
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
        # Clamp.
        x = torch.tanh(x / 3) * 3

        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
            x = self.layers(x)

928
929
        # scale image from [0, 1] to [-1, 1] to match diffusers convention
        return x.mul(2).sub(1)