scheduling_ddim.py 5.87 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
19
import math

Patrick von Platen's avatar
Patrick von Platen committed
20
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
21
22

from ..configuration_utils import ConfigMixin
23
24
25
26
27
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
28
29
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
30

Patrick von Platen's avatar
Patrick von Platen committed
31
32
33
    :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
    from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that part of the diffusion process.
34
35
36
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
37

38
39
40
41
42
43
44
45
46
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
47
48


Patrick von Platen's avatar
Patrick von Platen committed
49
class DDIMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
55
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
patil-suraj's avatar
patil-suraj committed
56
57
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
Patrick von Platen committed
58
        clip_sample=True,
Patrick von Platen's avatar
Patrick von Platen committed
59
        tensor_format="np",
Patrick von Platen's avatar
Patrick von Platen committed
60
61
    ):
        super().__init__()
62
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
67
68
69
            trained_betas=trained_betas,
            timestep_values=timestep_values,
            clip_sample=clip_sample,
Patrick von Platen's avatar
Patrick von Platen committed
70
71
        )

72
        if beta_schedule == "linear":
73
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
74
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
75
            # Glide cosine schedule
76
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
84
85
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
86
    def get_variance(self, t, num_inference_steps):
87
88
        orig_t = self.config.timesteps // num_inference_steps * t
        orig_prev_t = self.config.timesteps // num_inference_steps * (t - 1) if t > 0 else -1
Patrick von Platen's avatar
Patrick von Platen committed
89

90
91
        alpha_prod_t = self.alphas_cumprod[orig_t]
        alpha_prod_t_prev = self.alphas_cumprod[orig_prev_t] if orig_prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
95
96
97
98
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

99
    def step(self, residual, sample, t, num_inference_steps, eta, use_clipped_residual=False):
Patrick von Platen's avatar
Patrick von Platen committed
100
101
102
103
104
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
105
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
106
107
        # - std_dev_t -> sigma_t
        # - eta -> η
108
109
        # - pred_sample_direction -> "direction pointingc to x_t"
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
110
111

        # 1. get actual t and t-1
112
113
        orig_t = self.config.timesteps // num_inference_steps * t
        orig_prev_t = self.config.timesteps // num_inference_steps * (t - 1) if t > 0 else -1
Patrick von Platen's avatar
Patrick von Platen committed
114
115

        # 2. compute alphas, betas
116
117
        alpha_prod_t = self.alphas_cumprod[orig_t]
        alpha_prod_t_prev = self.alphas_cumprod[orig_prev_t] if orig_prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
118
119
        beta_prod_t = 1 - alpha_prod_t

120
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
121
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
122
        pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
123
124

        # 4. Clip "predicted x_0"
125
        if self.config.clip_sample:
126
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self.get_variance(t, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
131
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
132

anton-l's avatar
anton-l committed
133
        if use_clipped_residual:
Patrick von Platen's avatar
Patrick von Platen committed
134
            # the residual is always re-derived from the clipped x_0 in Glide
135
            residual = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
136

Patrick von Platen's avatar
Patrick von Platen committed
137
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
138
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * residual
Patrick von Platen's avatar
Patrick von Platen committed
139
140

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
141
        pred_prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
Patrick von Platen's avatar
Patrick von Platen committed
142

143
        return pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
144
145

    def __len__(self):
146
        return self.config.timesteps