"vscode:/vscode.git/clone" did not exist on "7eb47b0f3d0cd69ff3e0dd140cb377e15d6b148a"
scheduling_ddim.py 6.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
17
18

from ..configuration_utils import ConfigMixin
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
43
44


Patrick von Platen's avatar
Patrick von Platen committed
45
class DDIMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
49
50
51
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
patil-suraj's avatar
patil-suraj committed
52
53
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
Patrick von Platen committed
54
        clip_sample=True,
Patrick von Platen's avatar
Patrick von Platen committed
55
        tensor_format="np",
Patrick von Platen's avatar
Patrick von Platen committed
56
57
    ):
        super().__init__()
58
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
62
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
63
64
65
            trained_betas=trained_betas,
            timestep_values=timestep_values,
            clip_sample=clip_sample,
Patrick von Platen's avatar
Patrick von Platen committed
66
67
        )

68
        if beta_schedule == "linear":
69
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
70
71
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
72
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
73
74
75
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
76
77
78
79
80
81
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

82
83
    def get_timestep_values(self):
        return self.config.timestep_values
anton-l's avatar
anton-l committed
84

Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
89
90
91
92
    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
Patrick von Platen's avatar
Patrick von Platen committed
93
            return self.one
Patrick von Platen's avatar
Patrick von Platen committed
94
95
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
96
97
98
    def get_orig_t(self, t, num_inference_steps):
        if t < 0:
            return -1
99
        return self.config.timesteps // num_inference_steps * t
Patrick von Platen's avatar
Patrick von Platen committed
100

Patrick von Platen's avatar
Patrick von Platen committed
101
    def get_variance(self, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
102
103
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
104
105
106
107
108
109
110
111
112
113

        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

114
    def step(self, residual, sample, t, num_inference_steps, eta, use_clipped_residual=False):
Patrick von Platen's avatar
Patrick von Platen committed
115
116
117
118
119
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
120
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
121
122
        # - std_dev_t -> sigma_t
        # - eta -> η
123
124
        # - pred_sample_direction -> "direction pointingc to x_t"
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
125
126

        # 1. get actual t and t-1
Patrick von Platen's avatar
Patrick von Platen committed
127
128
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
129
130
131
132
133
134

        # 2. compute alphas, betas
        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t

135
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
136
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
137
        pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
138
139

        # 4. Clip "predicted x_0"
140
        if self.config.clip_sample:
141
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
142
143
144
145

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self.get_variance(t, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
146
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
147

anton-l's avatar
anton-l committed
148
149
        if use_clipped_residual:
            # the residual is always re-derived from the clipped x_0 in GLIDE
150
            residual = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
151

Patrick von Platen's avatar
Patrick von Platen committed
152
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
153
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * residual
Patrick von Platen's avatar
Patrick von Platen committed
154
155

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
156
        pred_prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
Patrick von Platen's avatar
Patrick von Platen committed
157

158
        return pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
159
160

    def __len__(self):
161
        return self.config.timesteps