"vscode:/vscode.git/clone" did not exist on "a99801e0750f41553fedd02e36f58d835c4d4bd6"
scheduling_deis_multistep.py 44.7 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 FLAIR Lab and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Quentin Gallouédec's avatar
Quentin Gallouédec committed
15
# DISCLAIMER: check https://huggingface.co/papers/2204.13902 and https://github.com/qsh-zh/deis for more info
16
17
18
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

import math
19
from typing import List, Literal, Optional, Tuple, Union
20
21
22
23
24

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate, is_scipy_available
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
34
def betas_for_alpha_bar(
35
36
37
38
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
39
40
41
42
43
44
45
46
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
47
48
49
50
51
52
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
53
54

    Returns:
55
56
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
57
    """
YiYi Xu's avatar
YiYi Xu committed
58
    if alpha_transform_type == "cosine":
59

YiYi Xu's avatar
YiYi Xu committed
60
61
62
63
64
65
66
67
68
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
69
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
70
71
72
73
74

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
75
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
76
77
78
79
80
    return torch.tensor(betas, dtype=torch.float32)


class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
81
    `DEISMultistepScheduler` is a fast high order solver for diffusion ordinary differential equations (ODEs).
82

83
84
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
85
86

    Args:
87
        num_train_timesteps (`int`, defaults to `1000`):
88
            The number of diffusion steps to train the model.
89
        beta_start (`float`, defaults to `0.0001`):
90
            The starting `beta` value of inference.
91
        beta_end (`float`, defaults to `0.02`):
92
            The final `beta` value.
93
        beta_schedule (`"linear"`, `"scaled_linear"`, or `"squaredcos_cap_v2"`, defaults to `"linear"`):
94
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
95
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
96
        trained_betas (`np.ndarray` or `List[float]`, *optional*):
97
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
98
        solver_order (`int`, defaults to `2`):
99
100
            The DEIS order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
101
        prediction_type (`"epsilon"`, `"sample"`, `"v_prediction"`, or `"flow_prediction"`, defaults to `"epsilon"`):
102
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
103
104
            `sample` (directly predicts the noisy sample`), `v_prediction` (see section 2.4 of [Imagen
            Video](https://huggingface.co/papers/2210.02303) paper), or `flow_prediction`.
105
106
107
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
108
        dynamic_thresholding_ratio (`float`, defaults to `0.995`):
109
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
110
        sample_max_value (`float`, defaults to `1.0`):
111
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
112
        algorithm_type (`"deis"`, defaults to `"deis"`):
113
            The algorithm type for the solver.
114
115
        solver_type (`"logrho"`, defaults to `"logrho"`):
            Solver type for DEIS.
116
117
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps.
118
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
119
120
             Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
             the sigmas are determined according to a sequence of noise levels {σi}.
121
122
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
123
124
125
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
126
127
128
129
130
        use_flow_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
        flow_shift (`float`, *optional*, defaults to `1.0`):
            The flow shift parameter for flow-based models.
        timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"linspace"`):
131
132
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
133
        steps_offset (`int`, defaults to `0`):
134
            An offset added to the inference steps, as required by some model families.
135
136
137
138
        use_dynamic_shifting (`bool`, defaults to `False`):
            Whether to use dynamic shifting for the noise schedule.
        time_shift_type (`"exponential"`, defaults to `"exponential"`):
            The type of time shifting to apply.
139
140
    """

Kashif Rasul's avatar
Kashif Rasul committed
141
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
142
143
144
145
146
147
148
149
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
150
151
        beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
152
        solver_order: int = 2,
153
        prediction_type: Literal["epsilon", "sample", "v_prediction", "flow_prediction"] = "epsilon",
154
155
156
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
157
158
        algorithm_type: Literal["deis"] = "deis",
        solver_type: Literal["logrho"] = "logrho",
159
        lower_order_final: bool = True,
160
        use_karras_sigmas: Optional[bool] = False,
161
        use_exponential_sigmas: Optional[bool] = False,
162
        use_beta_sigmas: Optional[bool] = False,
163
164
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
165
        timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
166
        steps_offset: int = 0,
167
        use_dynamic_shifting: bool = False,
168
169
        time_shift_type: Literal["exponential"] = "exponential",
    ) -> None:
170
171
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
172
173
174
175
176
177
178
179
180
181
        if (
            sum(
                [
                    self.config.use_beta_sigmas,
                    self.config.use_exponential_sigmas,
                    self.config.use_karras_sigmas,
                ]
            )
            > 1
        ):
182
183
184
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
185
186
187
188
189
190
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
191
192
193
194
195
196
197
198
199
            self.betas = (
                torch.linspace(
                    beta_start**0.5,
                    beta_end**0.5,
                    num_train_timesteps,
                    dtype=torch.float32,
                )
                ** 2
            )
200
201
202
203
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
204
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
205
206
207
208
209
210
211

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
212
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
213
214
215
216
217
218
219

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DEIS
        if algorithm_type not in ["deis"]:
            if algorithm_type in ["dpmsolver", "dpmsolver++"]:
220
                self.register_to_config(algorithm_type="deis")
221
            else:
222
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
223
224

        if solver_type not in ["logrho"]:
225
            if solver_type in ["midpoint", "heun", "bh1", "bh2"]:
226
                self.register_to_config(solver_type="logrho")
227
            else:
228
                raise NotImplementedError(f"solver type {solver_type} is not implemented for {self.__class__}")
229
230
231
232
233
234
235

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
236
        self._step_index = None
237
        self._begin_index = None
238
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
239
240

    @property
241
    def step_index(self) -> Optional[int]:
242
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
243
        The index counter for current timestep. It will increase 1 after each scheduler step.
244
245
        """
        return self._step_index
246

247
    @property
248
    def begin_index(self) -> Optional[int]:
249
250
251
252
253
254
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
255
    def set_begin_index(self, begin_index: int = 0) -> None:
256
257
258
259
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
260
            begin_index (`int`, defaults to `0`):
261
262
263
264
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

265
    def set_timesteps(
266
267
268
269
270
        self,
        num_inference_steps: int,
        device: Union[str, torch.device] = None,
        mu: Optional[float] = None,
    ) -> None:
271
        """
272
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
273
274
275

        Args:
            num_inference_steps (`int`):
276
277
278
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
279
280
281
            mu (`float`, *optional*):
                The mu parameter for dynamic shifting. Only used when `use_dynamic_shifting=True` and
                `time_shift_type="exponential"`.
282
        """
283
284
285
        if mu is not None:
            assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
            self.config.flow_shift = np.exp(mu)
Quentin Gallouédec's avatar
Quentin Gallouédec committed
286
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
310

311
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
312
        log_sigmas = np.log(sigmas)
313
        if self.config.use_karras_sigmas:
314
            sigmas = np.flip(sigmas).copy()
315
316
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
317
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
318
        elif self.config.use_exponential_sigmas:
319
320
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
321
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
322
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
323
        elif self.config.use_beta_sigmas:
324
325
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
326
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
327
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
328
329
330
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
331
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
332
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
333
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
334
335
336
337
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
338

339
340
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
341
342
343

        self.num_inference_steps = len(timesteps)

344
345
346
347
348
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

349
350
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
351
        self._begin_index = None
352
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
353

354
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
355
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
356
        """
357
358
        Apply dynamic thresholding to the predicted sample.

359
360
361
362
363
364
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
365
        https://huggingface.co/papers/2205.11487
366
367
368
369
370
371
372
373

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
374
375
        """
        dtype = sample.dtype
376
        batch_size, channels, *remaining_dims = sample.shape
377
378
379
380
381

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
382
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
383
384
385
386
387
388
389
390
391
392

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

393
        sample = sample.reshape(batch_size, channels, *remaining_dims)
394
395
396
        sample = sample.to(dtype)

        return sample
397

398
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
399
    def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
400
401
402
403
404
405
406
407
408
409
410
411
412
        """
        Convert sigma values to corresponding timestep values through interpolation.

        Args:
            sigma (`np.ndarray`):
                The sigma value(s) to convert to timestep(s).
            log_sigmas (`np.ndarray`):
                The logarithm of the sigma schedule used for interpolation.

        Returns:
            `np.ndarray`:
                The interpolated timestep value(s) corresponding to the input sigma(s).
        """
413
        # get log sigma
414
        log_sigma = np.log(np.maximum(sigma, 1e-10))
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
436
    def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
437
438
439
440
441
442
443
444
445
446
447
        """
        Convert sigma values to alpha_t and sigma_t values.

        Args:
            sigma (`torch.Tensor`):
                The sigma value(s) to convert.

        Returns:
            `Tuple[torch.Tensor, torch.Tensor]`:
                A tuple containing (alpha_t, sigma_t) values.
        """
448
449
450
451
452
453
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
454
455
456
457

        return alpha_t, sigma_t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
458
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        """
        Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
        Models](https://huggingface.co/papers/2206.00364).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following the Karras noise schedule.
        """
473

Suraj Patil's avatar
Suraj Patil committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
488
489
490
491
492
493
494
495

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

496
497
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
498
499
500
501
502
503
504
505
506
507
508
509
510
        """
        Construct an exponential noise schedule.

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following an exponential schedule.
        """
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

527
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
528
529
        return sigmas

530
531
532
533
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        """
        Construct a beta noise schedule as proposed in [Beta Sampling is All You
        Need](https://huggingface.co/papers/2407.12173).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.
            alpha (`float`, *optional*, defaults to `0.6`):
                The alpha parameter for the beta distribution.
            beta (`float`, *optional*, defaults to `0.6`):
                The beta parameter for the beta distribution.

        Returns:
            `torch.Tensor`:
                The converted sigma values following a beta distribution schedule.
        """
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

568
        sigmas = np.array(
569
570
571
572
573
574
575
576
577
578
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

579
    def convert_model_output(
580
        self,
581
        model_output: torch.Tensor,
582
        *args,
583
        sample: torch.Tensor = None,
584
        **kwargs,
585
    ) -> torch.Tensor:
586
        """
587
        Convert the model output to the corresponding type the DEIS algorithm needs.
588
589

        Args:
590
            model_output (`torch.Tensor`):
591
592
593
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
594
            sample (`torch.Tensor`):
595
                A current instance of a sample created by the diffusion process.
596
597

        Returns:
598
            `torch.Tensor`:
599
                The converted model output.
600
        """
601
602
603
604
605
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
606
                raise ValueError("missing `sample` as a required keyword argument")
607
608
609
610
611
612
613
614
615
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
616
617
618
619
620
621
        if self.config.prediction_type == "epsilon":
            x0_pred = (sample - sigma_t * model_output) / alpha_t
        elif self.config.prediction_type == "sample":
            x0_pred = model_output
        elif self.config.prediction_type == "v_prediction":
            x0_pred = alpha_t * sample - sigma_t * model_output
622
623
624
        elif self.config.prediction_type == "flow_prediction":
            sigma_t = self.sigmas[self.step_index]
            x0_pred = sample - sigma_t * model_output
625
626
        else:
            raise ValueError(
627
628
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                "`v_prediction`, or `flow_prediction` for the DEISMultistepScheduler."
629
630
631
            )

        if self.config.thresholding:
632
            x0_pred = self._threshold_sample(x0_pred)
633
634
635
636
637
638
639
640

        if self.config.algorithm_type == "deis":
            return (sample - alpha_t * x0_pred) / sigma_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def deis_first_order_update(
        self,
641
        model_output: torch.Tensor,
642
        *args,
643
        sample: torch.Tensor = None,
644
        **kwargs,
645
    ) -> torch.Tensor:
646
647
648
649
        """
        One step for the first-order DEIS (equivalent to DDIM).

        Args:
650
            model_output (`torch.Tensor`):
651
652
653
654
655
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
656
            sample (`torch.Tensor`):
657
                A current instance of a sample created by the diffusion process.
658
659

        Returns:
660
            `torch.Tensor`:
661
                The sample tensor at the previous timestep.
662
        """
663
664
665
666
667
668
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
669
                raise ValueError("missing `sample` as a required keyword argument")
670
671
672
673
674
675
676
677
678
679
680
681
682
683
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

684
685
686
687
        sigma_t, sigma_s = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
        )
688
689
690
691
692
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

693
694
695
696
697
698
699
700
701
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "deis":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
        else:
            raise NotImplementedError("only support log-rho multistep deis now")
        return x_t

    def multistep_deis_second_order_update(
        self,
702
        model_output_list: List[torch.Tensor],
703
        *args,
704
        sample: torch.Tensor = None,
705
        **kwargs,
706
    ) -> torch.Tensor:
707
708
709
710
        """
        One step for the second-order multistep DEIS.

        Args:
711
            model_output_list (`List[torch.Tensor]`):
712
                The direct outputs from learned diffusion model at current and latter timesteps.
713
            sample (`torch.Tensor`):
714
                A current instance of a sample created by the diffusion process.
715
716

        Returns:
717
            `torch.Tensor`:
718
                The sample tensor at the previous timestep.
719
        """
720
721
722
723
724
725
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
726
                raise ValueError("missing `sample` as a required keyword argument")
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

751
752
        m0, m1 = model_output_list[-1], model_output_list[-2]

753
754
755
756
757
        rho_t, rho_s0, rho_s1 = (
            sigma_t / alpha_t,
            sigma_s0 / alpha_s0,
            sigma_s1 / alpha_s1,
        )
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c):
                # Integrate[(log(t) - log(c)) / (log(b) - log(c)), {t}]
                return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c))

            coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1)
            coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1)
            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def multistep_deis_third_order_update(
        self,
775
        model_output_list: List[torch.Tensor],
776
        *args,
777
        sample: torch.Tensor = None,
778
        **kwargs,
779
    ) -> torch.Tensor:
780
781
782
783
        """
        One step for the third-order multistep DEIS.

        Args:
784
            model_output_list (`List[torch.Tensor]`):
785
                The direct outputs from learned diffusion model at current and latter timesteps.
786
            sample (`torch.Tensor`):
787
                A current instance of a sample created by diffusion process.
788
789

        Returns:
790
            `torch.Tensor`:
791
                The sample tensor at the previous timestep.
792
        """
793
794
795
796
797
798
799

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
800
                raise ValueError("missing `sample` as a required keyword argument")
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

827
        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
828

829
830
831
832
        rho_t, rho_s0, rho_s1, rho_s2 = (
            sigma_t / alpha_t,
            sigma_s0 / alpha_s0,
            sigma_s1 / alpha_s1,
833
            sigma_s2 / alpha_s2,
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
        )

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c, d):
                # Integrate[(log(t) - log(c))(log(t) - log(d)) / (log(b) - log(c))(log(b) - log(d)), {t}]
                numerator = t * (
                    np.log(c) * (np.log(d) - np.log(t) + 1)
                    - np.log(d) * np.log(t)
                    + np.log(d)
                    + np.log(t) ** 2
                    - 2 * np.log(t)
                    + 2
                )
                denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d))
                return numerator / denominator

            coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2)
            coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0)
            coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2)

            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

861
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
    def index_for_timestep(
        self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
    ) -> int:
        """
        Find the index for a given timestep in the schedule.

        Args:
            timestep (`int` or `torch.Tensor`):
                The timestep for which to find the index.
            schedule_timesteps (`torch.Tensor`, *optional*):
                The timestep schedule to search in. If `None`, uses `self.timesteps`.

        Returns:
            `int`:
                The index of the timestep in the schedule.
        """
878
879
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
880

881
        index_candidates = (schedule_timesteps == timestep).nonzero()
882
883
884
885
886
887
888
889
890
891
892
893

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

894
895
896
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
897
    def _init_step_index(self, timestep: Union[int, torch.Tensor]) -> None:
898
899
        """
        Initialize the step_index counter for the scheduler.
900
901
902
903

        Args:
            timestep (`int` or `torch.Tensor`):
                The current timestep for which to initialize the step index.
904
905
906
907
908
909
910
911
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
912

913
914
    def step(
        self,
915
        model_output: torch.Tensor,
916
        timestep: Union[int, torch.Tensor],
917
        sample: torch.Tensor,
918
919
920
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
921
922
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DEIS.
923
924

        Args:
925
            model_output (`torch.Tensor`):
926
                The direct output from learned diffusion model.
927
            timestep (`int` or `torch.Tensor`):
928
                The current discrete timestep in the diffusion chain.
929
            sample (`torch.Tensor`):
930
                A current instance of a sample created by the diffusion process.
931
            return_dict (`bool`, defaults to `True`):
932
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
933
934

        Returns:
935
936
937
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
938
939
940
941
942
943
        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

944
945
946
        if self.step_index is None:
            self._init_step_index(timestep)

947
        lower_order_final = (
948
            (self.step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15
949
950
        )
        lower_order_second = (
951
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
952
953
        )

954
        model_output = self.convert_model_output(model_output, sample=sample)
955
956
957
958
959
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
960
            prev_sample = self.deis_first_order_update(model_output, sample=sample)
961
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
962
            prev_sample = self.multistep_deis_second_order_update(self.model_outputs, sample=sample)
963
        else:
964
            prev_sample = self.multistep_deis_third_order_update(self.model_outputs, sample=sample)
965
966
967
968

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

969
970
971
        # upon completion increase step index by one
        self._step_index += 1

972
973
974
975
976
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

977
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
978
979
980
981
982
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
983
            sample (`torch.Tensor`):
984
                The input sample.
985
986

        Returns:
987
            `torch.Tensor`:
988
                A scaled input sample.
989
990
991
        """
        return sample

992
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
993
994
    def add_noise(
        self,
995
996
        original_samples: torch.Tensor,
        noise: torch.Tensor,
997
        timesteps: torch.IntTensor,
998
    ) -> torch.Tensor:
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        """
        Add noise to the original samples according to the noise schedule at the specified timesteps.

        Args:
            original_samples (`torch.Tensor`):
                The original samples without noise.
            noise (`torch.Tensor`):
                The noise to add to the samples.
            timesteps (`torch.IntTensor`):
                The timesteps at which to add noise to the samples.

        Returns:
            `torch.Tensor`:
                The noisy samples.
        """
1014
1015
1016
1017
1018
1019
1020
1021
1022
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1023

1024
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1025
1026
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1027
1028
1029
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1030
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1031
            # add noise is called before first denoising step to create initial latent(img2img)
1032
            step_indices = [self.begin_index] * timesteps.shape[0]
1033

1034
1035
1036
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1037

1038
1039
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1040
1041
        return noisy_samples

1042
    def __len__(self) -> int:
1043
        return self.config.num_train_timesteps