modeling_utils.py 46.6 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
18
import itertools
19
import os
20
import re
21
from functools import partial
22
from typing import Any, Callable, List, Optional, Tuple, Union
23

24
import safetensors
25
import torch
26
from huggingface_hub import create_repo
27
from torch import Tensor, device, nn
28

29
30
from .. import __version__
from ..utils import (
31
32
    CONFIG_NAME,
    DIFFUSERS_CACHE,
33
    FLAX_WEIGHTS_NAME,
34
    HF_HUB_OFFLINE,
35
    SAFETENSORS_WEIGHTS_NAME,
36
    WEIGHTS_NAME,
37
38
    _add_variant,
    _get_model_file,
39
    deprecate,
40
41
42
43
    is_accelerate_available,
    is_torch_version,
    logging,
)
44
from ..utils.hub_utils import PushToHubMixin
45
46
47
48
49


logger = logging.get_logger(__name__)


50
51
52
53
54
55
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


56
57
58
59
60
61
if is_accelerate_available():
    import accelerate
    from accelerate.utils import set_module_tensor_to_device
    from accelerate.utils.versions import is_torch_version


62
63
def get_parameter_device(parameter: torch.nn.Module):
    try:
Patrick von Platen's avatar
Patrick von Platen committed
64
65
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


def get_parameter_dtype(parameter: torch.nn.Module):
    try:
80
81
82
83
84
85
86
87
        params = tuple(parameter.parameters())
        if len(params) > 0:
            return params[0].dtype

        buffers = tuple(parameter.buffers())
        if len(buffers) > 0:
            return buffers[0].dtype

88
89
90
91
92
93
94
95
96
97
98
99
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


100
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
101
    """
102
    Reads a checkpoint file, returning properly formatted errors if they arise.
103
104
    """
    try:
105
        if os.path.basename(checkpoint_file) == _add_variant(WEIGHTS_NAME, variant):
106
107
108
            return torch.load(checkpoint_file, map_location="cpu")
        else:
            return safetensors.torch.load_file(checkpoint_file, device="cpu")
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
125
                f"Unable to load weights from checkpoint file for '{checkpoint_file}' "
126
127
128
129
130
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def load_model_dict_into_meta(model, state_dict, device=None, dtype=None, model_name_or_path=None):
    device = device or torch.device("cpu")
    dtype = dtype or torch.float32

    unexpected_keys = []
    empty_state_dict = model.state_dict()
    for param_name, param in state_dict.items():
        if param_name not in empty_state_dict:
            unexpected_keys.append(param_name)
            continue

        if empty_state_dict[param_name].shape != param.shape:
            model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
            raise ValueError(
                f"Cannot load {model_name_or_path_str}because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
            )

        accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())
        if accepts_dtype:
            set_module_tensor_to_device(model, param_name, device, value=param, dtype=dtype)
        else:
            set_module_tensor_to_device(model, param_name, device, value=param)
    return unexpected_keys


156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def _load_state_dict_into_model(model_to_load, state_dict):
    # Convert old format to new format if needed from a PyTorch state_dict
    # copy state_dict so _load_from_state_dict can modify it
    state_dict = state_dict.copy()
    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
    def load(module: torch.nn.Module, prefix=""):
        args = (state_dict, prefix, {}, True, [], [], error_msgs)
        module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load)

    return error_msgs


177
class ModelMixin(torch.nn.Module, PushToHubMixin):
178
179
180
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
181
182
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
183

Steven Liu's avatar
Steven Liu committed
184
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
185
    """
186
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
187
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
188
    _supports_gradient_checkpointing = False
189
    _keys_to_ignore_on_load_unexpected = None
190

191
    def __init__(self):
192
193
        super().__init__()

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

212
213
214
215
216
217
218
219
220
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

    def enable_gradient_checkpointing(self):
        """
Steven Liu's avatar
Steven Liu committed
221
222
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
223
224
225
226
227
228
229
        """
        if not self._supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

    def disable_gradient_checkpointing(self):
        """
Steven Liu's avatar
Steven Liu committed
230
231
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
232
233
234
235
        """
        if self._supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

236
237
238
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
239
240
241
242
243
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
244
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
245
246
247
248
249
250
251
252

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

253
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
254
        r"""
Steven Liu's avatar
Steven Liu committed
255
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
256

Steven Liu's avatar
Steven Liu committed
257
258
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
259

Steven Liu's avatar
Steven Liu committed
260
261
262
263
264
265
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
286
        """
287
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
288
289
290

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
291
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
292
293
294
        """
        self.set_use_memory_efficient_attention_xformers(False)

295
296
297
298
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
299
        save_function: Callable = None,
300
        safe_serialization: bool = True,
301
        variant: Optional[str] = None,
302
303
        push_to_hub: bool = False,
        **kwargs,
304
305
    ):
        """
Steven Liu's avatar
Steven Liu committed
306
307
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
308
309
310

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
311
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
312
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
313
314
315
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
316
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
317
318
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
319
                `DIFFUSERS_SAVE_MODE`.
320
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
321
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
322
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
323
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
324
325
326
327
328
329
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
330
331
332
333
334
335
336
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

337
338
339
340
341
342
343
344
345
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
346
347
348
349
350
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
351
            model_to_save.save_config(save_directory)
352
353
354
355

        # Save the model
        state_dict = model_to_save.state_dict()

356
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
357
        weights_name = _add_variant(weights_name, variant)
358

359
        # Save the model
360
361
362
363
364
365
        if safe_serialization:
            safetensors.torch.save_file(
                state_dict, os.path.join(save_directory, weights_name), metadata={"format": "pt"}
            )
        else:
            torch.save(state_dict, os.path.join(save_directory, weights_name))
366

367
        logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
368

369
370
371
372
373
374
375
376
377
        if push_to_hub:
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

378
    @classmethod
379
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
380
        r"""
Steven Liu's avatar
Steven Liu committed
381
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
382

Steven Liu's avatar
Steven Liu committed
383
384
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
385
386
387
388
389

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
390
391
392
393
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
394
395

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
396
397
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
398
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
399
400
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
401
402
403
404
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
405
406
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
407
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
408
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
409
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
410
            output_loading_info (`bool`, *optional*, defaults to `False`):
411
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
412
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
413
414
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
415
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
416
417
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
418
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
419
420
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
421
422
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
423
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
424
                The subfolder location of a model file within a larger model repository on the Hub or locally.
425
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
426
427
428
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
429
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
430
431
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
432
433
                same device.

Steven Liu's avatar
Steven Liu committed
434
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
435
436
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
437
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
438
439
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
440
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
441
                The path to offload weights if `device_map` contains the value `"disk"`.
442
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
443
444
445
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
446
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
447
448
449
450
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
451
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
452
453
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
454
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
455
456
457
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
458
459
460

        <Tip>

Steven Liu's avatar
Steven Liu committed
461
462
463
464
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
465
466
467

        </Tip>

Steven Liu's avatar
Steven Liu committed
468
        Example:
469

Steven Liu's avatar
Steven Liu committed
470
471
        ```py
        from diffusers import UNet2DConditionModel
472

Steven Liu's avatar
Steven Liu committed
473
474
475
476
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
477

Steven Liu's avatar
Steven Liu committed
478
479
480
481
482
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
483
        """
484
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
485
486
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
487
        from_flax = kwargs.pop("from_flax", False)
488
489
490
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
491
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
492
493
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
494
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
495
        subfolder = kwargs.pop("subfolder", None)
496
        device_map = kwargs.pop("device_map", None)
497
498
499
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
500
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
501
        variant = kwargs.pop("variant", None)
502
503
504
505
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
506
            use_safetensors = True
507
            allow_pickle = True
508

509
510
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
511
            logger.warning(
512
513
514
515
516
517
518
519
520
521
522
523
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

524
525
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
526
527
528
529
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
530

531
532
533
534
535
536
537
538
539
540
541
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
542

543
544
545
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

546
547
548
549
550
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
551

552
553
554
555
556
557
558
559
560
561
562
563
564
565
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
            use_auth_token=use_auth_token,
            revision=revision,
            subfolder=subfolder,
            device_map=device_map,
566
567
568
            max_memory=max_memory,
            offload_folder=offload_folder,
            offload_state_dict=offload_state_dict,
569
570
571
572
573
            user_agent=user_agent,
            **kwargs,
        )

        # load model
574
        model_file = None
575
        if from_flax:
576
            model_file = _get_model_file(
577
                pretrained_model_name_or_path,
578
                weights_name=FLAX_WEIGHTS_NAME,
579
580
581
582
583
584
585
586
587
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
588
                commit_hash=commit_hash,
589
590
            )
            model = cls.from_config(config, **unused_kwargs)
591

592
593
594
595
596
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
597
            if use_safetensors:
598
                try:
599
                    model_file = _get_model_file(
600
                        pretrained_model_name_or_path,
601
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
602
603
604
605
606
607
608
609
610
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
611
                        commit_hash=commit_hash,
612
                    )
613
614
615
                except IOError as e:
                    if not allow_pickle:
                        raise e
616
617
                    pass
            if model_file is None:
618
                model_file = _get_model_file(
619
                    pretrained_model_name_or_path,
620
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
621
622
623
624
625
626
627
628
629
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
630
                    commit_hash=commit_hash,
631
632
633
634
635
636
637
638
639
640
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

                # if device_map is None, load the state dict and move the params from meta device to the cpu
                if device_map is None:
                    param_device = "cpu"
641
                    state_dict = load_state_dict(model_file, variant=variant)
642
                    model._convert_deprecated_attention_blocks(state_dict)
643
                    # move the params from meta device to cpu
644
645
646
647
648
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
649
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
650
651
                            " those weights or else make sure your checkpoint file is correct."
                        )
652

653
654
655
656
657
658
659
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
                    )
660
661
662
663
664
665
666
667
668
669

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
                        logger.warn(
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

670
671
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
672
                    # by default the device_map is None and the weights are loaded on the CPU
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
                            model_file,
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
                            logger.warn(
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
                                model_file,
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
714
715
716
717
718
719
720
721

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
722
                model = cls.from_config(config, **unused_kwargs)
723

724
                state_dict = load_state_dict(model_file, variant=variant)
725
                model._convert_deprecated_attention_blocks(state_dict)
726

727
728
729
730
731
732
733
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
734

735
736
737
738
739
740
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
741
742
743
744
745
746
747
748
749
750
751
752
753

        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
        elif torch_dtype is not None:
            model = model.to(torch_dtype)

        model.register_to_config(_name_or_path=pretrained_model_name_or_path)

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
            return model, loading_info

        return model

    @classmethod
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
769
        loaded_keys = list(state_dict.keys())
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

    @property
    def device(self) -> device:
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
879
        Get number of (trainable or non-embedding) parameters in the module.
880
881
882

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
883
                Whether or not to return only the number of trainable parameters.
884
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
885
                Whether or not to return only the number of non-embedding parameters.
886
887
888

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
889
890
891
892
893
894
895
896
897
898
899

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
900
901
902
903
904
905
906
907
908
909
910
911
912
913
        """

        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight"
                for name, module_type in self.named_modules()
                if isinstance(module_type, torch.nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

    def _convert_deprecated_attention_blocks(self, state_dict):
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

    def _temp_convert_self_to_deprecated_attention_blocks(self):
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

    def _undo_temp_convert_self_to_deprecated_attention_blocks(self):
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn