scheduling_lms_discrete.py 18.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
import warnings
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
18
19
20
21
22
23

import numpy as np
import torch
from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
25
from ..utils import BaseOutput
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
26
27
28


@dataclass
29
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
31
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
32
    Output class for the scheduler's `step` function output.
33
34
35

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
36
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
37
38
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
40
41
42
43
44
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46


47
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
48
49
50
51
52
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
53
54
55
56
57
58
59
60
61
62
63
64
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
65
66
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
67
68
69
70

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
71
    if alpha_transform_type == "cosine":
72

YiYi Xu's avatar
YiYi Xu committed
73
74
75
76
77
78
79
80
81
82
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
83
84
85
86
87

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
88
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
89
90
91
    return torch.tensor(betas, dtype=torch.float32)


92
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
93
    """
94
    A linear multistep scheduler for discrete beta schedules.
95

96
97
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
98

99
    Args:
100
101
102
103
104
105
106
107
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
108
            `linear` or `scaled_linear`.
109
110
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
111
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
112
113
114
115
116
117
118
119
120
121
122
123
124
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
125
126
    """

Kashif Rasul's avatar
Kashif Rasul committed
127
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
128
    order = 1
129

130
131
132
    @register_to_config
    def __init__(
        self,
133
134
135
136
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
137
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
138
        use_karras_sigmas: Optional[bool] = False,
139
        prediction_type: str = "epsilon",
140
141
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
142
    ):
143
        if trained_betas is not None:
144
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
145
        elif beta_schedule == "linear":
146
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
147
148
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
149
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
150
151
152
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
153
154
155
156
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
157
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
158

159
160
161
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
162
163
164

        # setable values
        self.num_inference_steps = None
165
166
        self.use_karras_sigmas = use_karras_sigmas
        self.set_timesteps(num_train_timesteps, None)
167
        self.derivatives = []
168
169
        self.is_scale_input_called = False

YiYi Xu's avatar
YiYi Xu committed
170
171
        self._step_index = None

172
173
174
175
176
177
178
179
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
180
181
182
183
184
185
186
    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index

187
188
189
190
    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
191
192
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
193
194

        Args:
195
196
197
198
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`float` or `torch.FloatTensor`):
                The current timestep in the diffusion chain.
199
200

        Returns:
201
202
            `torch.FloatTensor`:
                A scaled input sample.
203
        """
YiYi Xu's avatar
YiYi Xu committed
204
205
206
207
208

        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
209
210
211
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
212
213
214

    def get_lms_coefficient(self, order, t, current_order):
        """
215
        Compute the linear multistep coefficient.
216
217

        Args:
218
219
220
            order ():
            t ():
            current_order ():
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

235
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
236
        """
237
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
238
239
240

        Args:
            num_inference_steps (`int`):
241
242
243
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
244
        """
245
246
        self.num_inference_steps = num_inference_steps

247
248
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
YiYi Xu's avatar
YiYi Xu committed
249
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
250
251
252
253
254
255
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
256
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
257
258
259
260
261
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
262
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
263
264
265
266
267
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
268

269
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
270
        log_sigmas = np.log(sigmas)
271
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
272
273
274
275
276

        if self.use_karras_sigmas:
            sigmas = self._convert_to_karras(in_sigmas=sigmas)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

277
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
278

279
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
YiYi Xu's avatar
YiYi Xu committed
280
281
        self.timesteps = torch.from_numpy(timesteps).to(device=device)
        self._step_index = None
282
283
284

        self.derivatives = []

YiYi Xu's avatar
YiYi Xu committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        if len(index_candidates) > 1:
            step_index = index_candidates[1]
        else:
            step_index = index_candidates[0]

        self._step_index = step_index.item()

303
304
305
    # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
306
        log_sigma = np.log(np.maximum(sigma, 1e-10))
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # copied from diffusers.schedulers.scheduling_euler_discrete._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, self.num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

341
342
    def step(
        self,
343
        model_output: torch.FloatTensor,
344
        timestep: Union[float, torch.FloatTensor],
345
        sample: torch.FloatTensor,
346
        order: int = 4,
347
        return_dict: bool = True,
348
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
349
        """
350
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
351
352
353
        process from the learned model outputs (most often the predicted noise).

        Args:
354
355
356
357
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float` or `torch.FloatTensor`):
                The current discrete timestep in the diffusion chain.
358
            sample (`torch.FloatTensor`):
359
360
361
362
363
                A current instance of a sample created by the diffusion process.
            order (`int`, defaults to 4):
                The order of the linear multistep method.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
364
365

        Returns:
366
367
368
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
369
370

        """
371
372
373
374
375
376
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
377
378
379
380
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
381
382

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
383
384
385
386
387
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
388
389
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
390
391
392
393
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
394
395
396
397
398
399
400
401

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
YiYi Xu's avatar
YiYi Xu committed
402
403
        order = min(self.step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, self.step_index, curr_order) for curr_order in range(order)]
404
405
406
407
408
409

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

YiYi Xu's avatar
YiYi Xu committed
410
411
412
        # upon completion increase step index by one
        self._step_index += 1

413
414
415
        if not return_dict:
            return (prev_sample,)

416
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
417

418
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
419
420
    def add_noise(
        self,
421
422
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
423
        timesteps: torch.FloatTensor,
424
    ) -> torch.FloatTensor:
425
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
426
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
427
428
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
429
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
430
431
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
432
            schedule_timesteps = self.timesteps.to(original_samples.device)
433
            timesteps = timesteps.to(original_samples.device)
434

Anton Lozhkov's avatar
Anton Lozhkov committed
435
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
436

437
        sigma = sigmas[step_indices].flatten()
438
439
440
441
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
442
443
444
445
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps