embeddings.py 94.5 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
import numpy as np
import torch
19
import torch.nn.functional as F
20
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
21

22
from ..utils import deprecate
23
from .activations import FP32SiLU, get_activation
24
from .attention_processor import Attention
25

26

27
def get_timestep_embedding(
Kashif Rasul's avatar
Kashif Rasul committed
28
29
30
31
32
33
    timesteps: torch.Tensor,
    embedding_dim: int,
    flip_sin_to_cos: bool = False,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
34
):
Patrick von Platen's avatar
Patrick von Platen committed
35
    """
Patrick von Platen's avatar
Patrick von Platen committed
36
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    Args
        timesteps (torch.Tensor):
            a 1-D Tensor of N indices, one per batch element. These may be fractional.
        embedding_dim (int):
            the dimension of the output.
        flip_sin_to_cos (bool):
            Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
        downscale_freq_shift (float):
            Controls the delta between frequencies between dimensions
        scale (float):
            Scaling factor applied to the embeddings.
        max_period (int):
            Controls the maximum frequency of the embeddings
    Returns
        torch.Tensor: an [N x dim] Tensor of positional embeddings.
Patrick von Platen's avatar
Patrick von Platen committed
53
    """
54
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
Patrick von Platen's avatar
Patrick von Platen committed
55
56

    half_dim = embedding_dim // 2
57
58
59
    exponent = -math.log(max_period) * torch.arange(
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
    )
60
    exponent = exponent / (half_dim - downscale_freq_shift)
61

62
    emb = torch.exp(exponent)
63
64
    emb = timesteps[:, None].float() * emb[None, :]

65
66
67
    # scale embeddings
    emb = scale * emb

68
    # concat sine and cosine embeddings
69
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
70

71
    # flip sine and cosine embeddings
72
73
74
75
76
    if flip_sin_to_cos:
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
80
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


81
82
83
84
85
86
def get_3d_sincos_pos_embed(
    embed_dim: int,
    spatial_size: Union[int, Tuple[int, int]],
    temporal_size: int,
    spatial_interpolation_scale: float = 1.0,
    temporal_interpolation_scale: float = 1.0,
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    device: Optional[torch.device] = None,
    output_type: str = "np",
) -> torch.Tensor:
    r"""
    Creates 3D sinusoidal positional embeddings.

    Args:
        embed_dim (`int`):
            The embedding dimension of inputs. It must be divisible by 16.
        spatial_size (`int` or `Tuple[int, int]`):
            The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both
            spatial dimensions (height and width).
        temporal_size (`int`):
            The temporal dimension of postional embeddings (number of frames).
        spatial_interpolation_scale (`float`, defaults to 1.0):
            Scale factor for spatial grid interpolation.
        temporal_interpolation_scale (`float`, defaults to 1.0):
            Scale factor for temporal grid interpolation.

    Returns:
        `torch.Tensor`:
            The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1],
            embed_dim]`.
    """
    if output_type == "np":
        return _get_3d_sincos_pos_embed_np(
            embed_dim=embed_dim,
            spatial_size=spatial_size,
            temporal_size=temporal_size,
            spatial_interpolation_scale=spatial_interpolation_scale,
            temporal_interpolation_scale=temporal_interpolation_scale,
        )
    if embed_dim % 4 != 0:
        raise ValueError("`embed_dim` must be divisible by 4")
    if isinstance(spatial_size, int):
        spatial_size = (spatial_size, spatial_size)

    embed_dim_spatial = 3 * embed_dim // 4
    embed_dim_temporal = embed_dim // 4

    # 1. Spatial
    grid_h = torch.arange(spatial_size[1], device=device, dtype=torch.float32) / spatial_interpolation_scale
    grid_w = torch.arange(spatial_size[0], device=device, dtype=torch.float32) / spatial_interpolation_scale
    grid = torch.meshgrid(grid_w, grid_h, indexing="xy")  # here w goes first
    grid = torch.stack(grid, dim=0)

    grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]])
    pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid, output_type="pt")

    # 2. Temporal
    grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32) / temporal_interpolation_scale
    pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t, output_type="pt")

    # 3. Concat
    pos_embed_spatial = pos_embed_spatial[None, :, :]
    pos_embed_spatial = pos_embed_spatial.repeat_interleave(temporal_size, dim=0)  # [T, H*W, D // 4 * 3]

    pos_embed_temporal = pos_embed_temporal[:, None, :]
    pos_embed_temporal = pos_embed_temporal.repeat_interleave(
        spatial_size[0] * spatial_size[1], dim=1
    )  # [T, H*W, D // 4]

    pos_embed = torch.concat([pos_embed_temporal, pos_embed_spatial], dim=-1)  # [T, H*W, D]
    return pos_embed


def _get_3d_sincos_pos_embed_np(
    embed_dim: int,
    spatial_size: Union[int, Tuple[int, int]],
    temporal_size: int,
    spatial_interpolation_scale: float = 1.0,
    temporal_interpolation_scale: float = 1.0,
159
160
) -> np.ndarray:
    r"""
161
162
    Creates 3D sinusoidal positional embeddings.

163
164
    Args:
        embed_dim (`int`):
165
            The embedding dimension of inputs. It must be divisible by 16.
166
        spatial_size (`int` or `Tuple[int, int]`):
167
168
            The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both
            spatial dimensions (height and width).
169
        temporal_size (`int`):
170
            The temporal dimension of postional embeddings (number of frames).
171
        spatial_interpolation_scale (`float`, defaults to 1.0):
172
            Scale factor for spatial grid interpolation.
173
        temporal_interpolation_scale (`float`, defaults to 1.0):
174
175
176
177
178
179
            Scale factor for temporal grid interpolation.

    Returns:
        `np.ndarray`:
            The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1],
            embed_dim]`.
180
    """
181
182
183
184
185
186
    deprecation_message = (
        "`get_3d_sincos_pos_embed` uses `torch` and supports `device`."
        " `from_numpy` is no longer required."
        "  Pass `output_type='pt' to use the new version now."
    )
    deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    if embed_dim % 4 != 0:
        raise ValueError("`embed_dim` must be divisible by 4")
    if isinstance(spatial_size, int):
        spatial_size = (spatial_size, spatial_size)

    embed_dim_spatial = 3 * embed_dim // 4
    embed_dim_temporal = embed_dim // 4

    # 1. Spatial
    grid_h = np.arange(spatial_size[1], dtype=np.float32) / spatial_interpolation_scale
    grid_w = np.arange(spatial_size[0], dtype=np.float32) / spatial_interpolation_scale
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]])
    pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)

    # 2. Temporal
    grid_t = np.arange(temporal_size, dtype=np.float32) / temporal_interpolation_scale
    pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t)

    # 3. Concat
    pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
    pos_embed_spatial = np.repeat(pos_embed_spatial, temporal_size, axis=0)  # [T, H*W, D // 4 * 3]

    pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
    pos_embed_temporal = np.repeat(pos_embed_temporal, spatial_size[0] * spatial_size[1], axis=1)  # [T, H*W, D // 4]

    pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)  # [T, H*W, D]
    return pos_embed


Sayak Paul's avatar
Sayak Paul committed
219
def get_2d_sincos_pos_embed(
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    embed_dim,
    grid_size,
    cls_token=False,
    extra_tokens=0,
    interpolation_scale=1.0,
    base_size=16,
    device: Optional[torch.device] = None,
    output_type: str = "np",
):
    """
    Creates 2D sinusoidal positional embeddings.

    Args:
        embed_dim (`int`):
            The embedding dimension.
        grid_size (`int`):
            The size of the grid height and width.
        cls_token (`bool`, defaults to `False`):
            Whether or not to add a classification token.
        extra_tokens (`int`, defaults to `0`):
            The number of extra tokens to add.
        interpolation_scale (`float`, defaults to `1.0`):
            The scale of the interpolation.

    Returns:
        pos_embed (`torch.Tensor`):
            Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
            embed_dim]` if using cls_token
    """
    if output_type == "np":
        deprecation_message = (
            "`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
            " `from_numpy` is no longer required."
            "  Pass `output_type='pt' to use the new version now."
        )
        deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
        return get_2d_sincos_pos_embed_np(
            embed_dim=embed_dim,
            grid_size=grid_size,
            cls_token=cls_token,
            extra_tokens=extra_tokens,
            interpolation_scale=interpolation_scale,
            base_size=base_size,
        )
    if isinstance(grid_size, int):
        grid_size = (grid_size, grid_size)

    grid_h = (
        torch.arange(grid_size[0], device=device, dtype=torch.float32)
        / (grid_size[0] / base_size)
        / interpolation_scale
    )
    grid_w = (
        torch.arange(grid_size[1], device=device, dtype=torch.float32)
        / (grid_size[1] / base_size)
        / interpolation_scale
    )
    grid = torch.meshgrid(grid_w, grid_h, indexing="xy")  # here w goes first
    grid = torch.stack(grid, dim=0)

    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type=output_type)
    if cls_token and extra_tokens > 0:
        pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type="np"):
    r"""
    This function generates 2D sinusoidal positional embeddings from a grid.

    Args:
        embed_dim (`int`): The embedding dimension.
        grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.

    Returns:
        `torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
    """
    if output_type == "np":
        deprecation_message = (
            "`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
            " `from_numpy` is no longer required."
            "  Pass `output_type='pt' to use the new version now."
        )
        deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
        return get_2d_sincos_pos_embed_from_grid_np(
            embed_dim=embed_dim,
            grid=grid,
        )
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], output_type=output_type)  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], output_type=output_type)  # (H*W, D/2)

    emb = torch.concat([emb_h, emb_w], dim=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, output_type="np"):
    """
    This function generates 1D positional embeddings from a grid.

    Args:
        embed_dim (`int`): The embedding dimension `D`
        pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`

    Returns:
        `torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
    """
    if output_type == "np":
        deprecation_message = (
            "`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
            " `from_numpy` is no longer required."
            "  Pass `output_type='pt' to use the new version now."
        )
        deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
        return get_1d_sincos_pos_embed_from_grid_np(embed_dim=embed_dim, pos=pos)
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = torch.outer(pos, omega)  # (M, D/2), outer product

    emb_sin = torch.sin(out)  # (M, D/2)
    emb_cos = torch.cos(out)  # (M, D/2)

    emb = torch.concat([emb_sin, emb_cos], dim=1)  # (M, D)
    return emb


def get_2d_sincos_pos_embed_np(
Sayak Paul's avatar
Sayak Paul committed
357
358
    embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
Kashif Rasul's avatar
Kashif Rasul committed
359
    """
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    Creates 2D sinusoidal positional embeddings.

    Args:
        embed_dim (`int`):
            The embedding dimension.
        grid_size (`int`):
            The size of the grid height and width.
        cls_token (`bool`, defaults to `False`):
            Whether or not to add a classification token.
        extra_tokens (`int`, defaults to `0`):
            The number of extra tokens to add.
        interpolation_scale (`float`, defaults to `1.0`):
            The scale of the interpolation.

    Returns:
        pos_embed (`np.ndarray`):
            Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
            embed_dim]` if using cls_token
Kashif Rasul's avatar
Kashif Rasul committed
378
    """
Sayak Paul's avatar
Sayak Paul committed
379
380
381
382
383
    if isinstance(grid_size, int):
        grid_size = (grid_size, grid_size)

    grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
    grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
Kashif Rasul's avatar
Kashif Rasul committed
384
385
386
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

Sayak Paul's avatar
Sayak Paul committed
387
    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
388
    pos_embed = get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid)
Kashif Rasul's avatar
Kashif Rasul committed
389
390
391
392
393
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


394
def get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid):
395
396
397
398
399
400
401
402
403
404
    r"""
    This function generates 2D sinusoidal positional embeddings from a grid.

    Args:
        embed_dim (`int`): The embedding dimension.
        grid (`np.ndarray`): Grid of positions with shape `(H * W,)`.

    Returns:
        `np.ndarray`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
    """
Kashif Rasul's avatar
Kashif Rasul committed
405
406
407
408
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    # use half of dimensions to encode grid_h
409
410
    emb_h = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[1])  # (H*W, D/2)
Kashif Rasul's avatar
Kashif Rasul committed
411
412
413
414
415

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


416
def get_1d_sincos_pos_embed_from_grid_np(embed_dim, pos):
Kashif Rasul's avatar
Kashif Rasul committed
417
    """
418
419
420
421
422
423
424
425
    This function generates 1D positional embeddings from a grid.

    Args:
        embed_dim (`int`): The embedding dimension `D`
        pos (`numpy.ndarray`): 1D tensor of positions with shape `(M,)`

    Returns:
        `numpy.ndarray`: Sinusoidal positional embeddings of shape `(M, D)`.
Kashif Rasul's avatar
Kashif Rasul committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    """
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class PatchEmbed(nn.Module):
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    """
    2D Image to Patch Embedding with support for SD3 cropping.

    Args:
        height (`int`, defaults to `224`): The height of the image.
        width (`int`, defaults to `224`): The width of the image.
        patch_size (`int`, defaults to `16`): The size of the patches.
        in_channels (`int`, defaults to `3`): The number of input channels.
        embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
        layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
        flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
        bias (`bool`, defaults to `True`): Whether or not to use bias.
        interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
        pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
        pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
    """
Kashif Rasul's avatar
Kashif Rasul committed
461
462
463
464
465
466
467
468
469
470
471

    def __init__(
        self,
        height=224,
        width=224,
        patch_size=16,
        in_channels=3,
        embed_dim=768,
        layer_norm=False,
        flatten=True,
        bias=True,
Sayak Paul's avatar
Sayak Paul committed
472
        interpolation_scale=1,
473
        pos_embed_type="sincos",
Dhruv Nair's avatar
Dhruv Nair committed
474
        pos_embed_max_size=None,  # For SD3 cropping
Kashif Rasul's avatar
Kashif Rasul committed
475
476
477
478
479
480
    ):
        super().__init__()

        num_patches = (height // patch_size) * (width // patch_size)
        self.flatten = flatten
        self.layer_norm = layer_norm
Dhruv Nair's avatar
Dhruv Nair committed
481
        self.pos_embed_max_size = pos_embed_max_size
Kashif Rasul's avatar
Kashif Rasul committed
482
483
484
485
486
487
488
489
490

        self.proj = nn.Conv2d(
            in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
        )
        if layer_norm:
            self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
        else:
            self.norm = None

Sayak Paul's avatar
Sayak Paul committed
491
492
493
494
        self.patch_size = patch_size
        self.height, self.width = height // patch_size, width // patch_size
        self.base_size = height // patch_size
        self.interpolation_scale = interpolation_scale
Dhruv Nair's avatar
Dhruv Nair committed
495
496
497
498
499
500
501

        # Calculate positional embeddings based on max size or default
        if pos_embed_max_size:
            grid_size = pos_embed_max_size
        else:
            grid_size = int(num_patches**0.5)

502
503
504
505
        if pos_embed_type is None:
            self.pos_embed = None
        elif pos_embed_type == "sincos":
            pos_embed = get_2d_sincos_pos_embed(
506
507
508
509
510
                embed_dim,
                grid_size,
                base_size=self.base_size,
                interpolation_scale=self.interpolation_scale,
                output_type="pt",
511
            )
Dhruv Nair's avatar
Dhruv Nair committed
512
            persistent = True if pos_embed_max_size else False
513
            self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=persistent)
514
515
        else:
            raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
Kashif Rasul's avatar
Kashif Rasul committed
516

Dhruv Nair's avatar
Dhruv Nair committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def cropped_pos_embed(self, height, width):
        """Crops positional embeddings for SD3 compatibility."""
        if self.pos_embed_max_size is None:
            raise ValueError("`pos_embed_max_size` must be set for cropping.")

        height = height // self.patch_size
        width = width // self.patch_size
        if height > self.pos_embed_max_size:
            raise ValueError(
                f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
            )
        if width > self.pos_embed_max_size:
            raise ValueError(
                f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
            )

        top = (self.pos_embed_max_size - height) // 2
        left = (self.pos_embed_max_size - width) // 2
        spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
        spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
        spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
        return spatial_pos_embed

Kashif Rasul's avatar
Kashif Rasul committed
540
    def forward(self, latent):
Dhruv Nair's avatar
Dhruv Nair committed
541
542
543
544
        if self.pos_embed_max_size is not None:
            height, width = latent.shape[-2:]
        else:
            height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
Kashif Rasul's avatar
Kashif Rasul committed
545
546
547
548
549
        latent = self.proj(latent)
        if self.flatten:
            latent = latent.flatten(2).transpose(1, 2)  # BCHW -> BNC
        if self.layer_norm:
            latent = self.norm(latent)
550
551
        if self.pos_embed is None:
            return latent.to(latent.dtype)
Dhruv Nair's avatar
Dhruv Nair committed
552
553
554
        # Interpolate or crop positional embeddings as needed
        if self.pos_embed_max_size:
            pos_embed = self.cropped_pos_embed(height, width)
Sayak Paul's avatar
Sayak Paul committed
555
        else:
Dhruv Nair's avatar
Dhruv Nair committed
556
557
558
559
560
561
            if self.height != height or self.width != width:
                pos_embed = get_2d_sincos_pos_embed(
                    embed_dim=self.pos_embed.shape[-1],
                    grid_size=(height, width),
                    base_size=self.base_size,
                    interpolation_scale=self.interpolation_scale,
562
563
                    device=latent.device,
                    output_type="pt",
Dhruv Nair's avatar
Dhruv Nair committed
564
                )
565
                pos_embed = pos_embed.float().unsqueeze(0)
Dhruv Nair's avatar
Dhruv Nair committed
566
567
            else:
                pos_embed = self.pos_embed
Sayak Paul's avatar
Sayak Paul committed
568
569

        return (latent + pos_embed).to(latent.dtype)
Kashif Rasul's avatar
Kashif Rasul committed
570
571


572
class LuminaPatchEmbed(nn.Module):
573
574
575
576
577
578
579
580
581
    """
    2D Image to Patch Embedding with support for Lumina-T2X

    Args:
        patch_size (`int`, defaults to `2`): The size of the patches.
        in_channels (`int`, defaults to `4`): The number of input channels.
        embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
        bias (`bool`, defaults to `True`): Whether or not to use bias.
    """
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

    def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True):
        super().__init__()
        self.patch_size = patch_size
        self.proj = nn.Linear(
            in_features=patch_size * patch_size * in_channels,
            out_features=embed_dim,
            bias=bias,
        )

    def forward(self, x, freqs_cis):
        """
        Patchifies and embeds the input tensor(s).

        Args:
            x (List[torch.Tensor] | torch.Tensor): The input tensor(s) to be patchified and embedded.

        Returns:
            Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: A tuple containing the patchified
            and embedded tensor(s), the mask indicating the valid patches, the original image size(s), and the
            frequency tensor(s).
        """
        freqs_cis = freqs_cis.to(x[0].device)
        patch_height = patch_width = self.patch_size
        batch_size, channel, height, width = x.size()
        height_tokens, width_tokens = height // patch_height, width // patch_width

        x = x.view(batch_size, channel, height_tokens, patch_height, width_tokens, patch_width).permute(
            0, 2, 4, 1, 3, 5
        )
        x = x.flatten(3)
        x = self.proj(x)
        x = x.flatten(1, 2)

        mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device)

        return (
            x,
            mask,
            [(height, width)] * batch_size,
            freqs_cis[:height_tokens, :width_tokens].flatten(0, 1).unsqueeze(0),
        )


626
627
628
629
class CogVideoXPatchEmbed(nn.Module):
    def __init__(
        self,
        patch_size: int = 2,
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
630
        patch_size_t: Optional[int] = None,
631
632
633
634
        in_channels: int = 16,
        embed_dim: int = 1920,
        text_embed_dim: int = 4096,
        bias: bool = True,
635
636
637
638
639
640
641
642
        sample_width: int = 90,
        sample_height: int = 60,
        sample_frames: int = 49,
        temporal_compression_ratio: int = 4,
        max_text_seq_length: int = 226,
        spatial_interpolation_scale: float = 1.875,
        temporal_interpolation_scale: float = 1.0,
        use_positional_embeddings: bool = True,
643
        use_learned_positional_embeddings: bool = True,
644
645
    ) -> None:
        super().__init__()
646

647
        self.patch_size = patch_size
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
648
        self.patch_size_t = patch_size_t
649
650
651
652
653
654
655
656
657
        self.embed_dim = embed_dim
        self.sample_height = sample_height
        self.sample_width = sample_width
        self.sample_frames = sample_frames
        self.temporal_compression_ratio = temporal_compression_ratio
        self.max_text_seq_length = max_text_seq_length
        self.spatial_interpolation_scale = spatial_interpolation_scale
        self.temporal_interpolation_scale = temporal_interpolation_scale
        self.use_positional_embeddings = use_positional_embeddings
658
        self.use_learned_positional_embeddings = use_learned_positional_embeddings
659

Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
660
661
662
663
664
665
666
667
668
        if patch_size_t is None:
            # CogVideoX 1.0 checkpoints
            self.proj = nn.Conv2d(
                in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
            )
        else:
            # CogVideoX 1.5 checkpoints
            self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim)

669
670
        self.text_proj = nn.Linear(text_embed_dim, embed_dim)

671
672
        if use_positional_embeddings or use_learned_positional_embeddings:
            persistent = use_learned_positional_embeddings
673
            pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames)
674
            self.register_buffer("pos_embedding", pos_embedding, persistent=persistent)
675

676
677
678
    def _get_positional_embeddings(
        self, sample_height: int, sample_width: int, sample_frames: int, device: Optional[torch.device] = None
    ) -> torch.Tensor:
679
680
681
682
683
684
685
686
687
688
689
        post_patch_height = sample_height // self.patch_size
        post_patch_width = sample_width // self.patch_size
        post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1
        num_patches = post_patch_height * post_patch_width * post_time_compression_frames

        pos_embedding = get_3d_sincos_pos_embed(
            self.embed_dim,
            (post_patch_width, post_patch_height),
            post_time_compression_frames,
            self.spatial_interpolation_scale,
            self.temporal_interpolation_scale,
690
691
            device=device,
            output_type="pt",
692
        )
693
        pos_embedding = pos_embedding.flatten(0, 1)
694
695
696
697
698
699
700
        joint_pos_embedding = torch.zeros(
            1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False
        )
        joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding)

        return joint_pos_embedding

701
702
703
704
705
706
707
708
709
710
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
        r"""
        Args:
            text_embeds (`torch.Tensor`):
                Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
            image_embeds (`torch.Tensor`):
                Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
        """
        text_embeds = self.text_proj(text_embeds)

Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        batch_size, num_frames, channels, height, width = image_embeds.shape

        if self.patch_size_t is None:
            image_embeds = image_embeds.reshape(-1, channels, height, width)
            image_embeds = self.proj(image_embeds)
            image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:])
            image_embeds = image_embeds.flatten(3).transpose(2, 3)  # [batch, num_frames, height x width, channels]
            image_embeds = image_embeds.flatten(1, 2)  # [batch, num_frames x height x width, channels]
        else:
            p = self.patch_size
            p_t = self.patch_size_t

            image_embeds = image_embeds.permute(0, 1, 3, 4, 2)
            image_embeds = image_embeds.reshape(
                batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels
            )
            image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3)
            image_embeds = self.proj(image_embeds)
729
730
731
732

        embeds = torch.cat(
            [text_embeds, image_embeds], dim=1
        ).contiguous()  # [batch, seq_length + num_frames x height x width, channels]
733

734
735
736
737
738
739
740
        if self.use_positional_embeddings or self.use_learned_positional_embeddings:
            if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height):
                raise ValueError(
                    "It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'."
                    "If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues."
                )

741
            pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
742

743
744
745
746
747
            if (
                self.sample_height != height
                or self.sample_width != width
                or self.sample_frames != pre_time_compression_frames
            ):
748
749
750
751
                pos_embedding = self._get_positional_embeddings(
                    height, width, pre_time_compression_frames, device=embeds.device
                )
                pos_embedding = pos_embedding.to(dtype=embeds.dtype)
752
753
754
755
756
            else:
                pos_embedding = self.pos_embedding

            embeds = embeds + pos_embedding

757
758
759
        return embeds


Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
class CogView3PlusPatchEmbed(nn.Module):
    def __init__(
        self,
        in_channels: int = 16,
        hidden_size: int = 2560,
        patch_size: int = 2,
        text_hidden_size: int = 4096,
        pos_embed_max_size: int = 128,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.hidden_size = hidden_size
        self.patch_size = patch_size
        self.text_hidden_size = text_hidden_size
        self.pos_embed_max_size = pos_embed_max_size
        # Linear projection for image patches
        self.proj = nn.Linear(in_channels * patch_size**2, hidden_size)

        # Linear projection for text embeddings
        self.text_proj = nn.Linear(text_hidden_size, hidden_size)

781
782
783
        pos_embed = get_2d_sincos_pos_embed(
            hidden_size, pos_embed_max_size, base_size=pos_embed_max_size, output_type="pt"
        )
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
784
        pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size)
785
        self.register_buffer("pos_embed", pos_embed.float(), persistent=False)
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

    def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size, channel, height, width = hidden_states.shape

        if height % self.patch_size != 0 or width % self.patch_size != 0:
            raise ValueError("Height and width must be divisible by patch size")

        height = height // self.patch_size
        width = width // self.patch_size
        hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size)
        hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous()
        hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size)

        # Project the patches
        hidden_states = self.proj(hidden_states)
        encoder_hidden_states = self.text_proj(encoder_hidden_states)
        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        # Calculate text_length
        text_length = encoder_hidden_states.shape[1]

        image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1)
        text_pos_embed = torch.zeros(
            (text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device
        )
        pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...]

        return (hidden_states + pos_embed).to(hidden_states.dtype)


zR's avatar
zR committed
816
def get_3d_rotary_pos_embed(
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
817
818
819
820
821
822
823
824
    embed_dim,
    crops_coords,
    grid_size,
    temporal_size,
    theta: int = 10000,
    use_real: bool = True,
    grid_type: str = "linspace",
    max_size: Optional[Tuple[int, int]] = None,
825
    device: Optional[torch.device] = None,
zR's avatar
zR committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
    """
    RoPE for video tokens with 3D structure.

    Args:
    embed_dim: (`int`):
        The embedding dimension size, corresponding to hidden_size_head.
    crops_coords (`Tuple[int]`):
        The top-left and bottom-right coordinates of the crop.
    grid_size (`Tuple[int]`):
        The grid size of the spatial positional embedding (height, width).
    temporal_size (`int`):
        The size of the temporal dimension.
    theta (`float`):
        Scaling factor for frequency computation.
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
841
842
    grid_type (`str`):
        Whether to use "linspace" or "slice" to compute grids.
zR's avatar
zR committed
843
844
845
846

    Returns:
        `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
    """
847
848
    if use_real is not True:
        raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed")
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
849
850
851
852

    if grid_type == "linspace":
        start, stop = crops_coords
        grid_size_h, grid_size_w = grid_size
853
854
855
856
857
858
859
860
861
862
        grid_h = torch.linspace(
            start[0], stop[0] * (grid_size_h - 1) / grid_size_h, grid_size_h, device=device, dtype=torch.float32
        )
        grid_w = torch.linspace(
            start[1], stop[1] * (grid_size_w - 1) / grid_size_w, grid_size_w, device=device, dtype=torch.float32
        )
        grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32)
        grid_t = torch.linspace(
            0, temporal_size * (temporal_size - 1) / temporal_size, temporal_size, device=device, dtype=torch.float32
        )
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
863
864
865
    elif grid_type == "slice":
        max_h, max_w = max_size
        grid_size_h, grid_size_w = grid_size
866
867
868
        grid_h = torch.arange(max_h, device=device, dtype=torch.float32)
        grid_w = torch.arange(max_w, device=device, dtype=torch.float32)
        grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32)
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
869
870
    else:
        raise ValueError("Invalid value passed for `grid_type`.")
zR's avatar
zR committed
871
872
873
874
875
876
877

    # Compute dimensions for each axis
    dim_t = embed_dim // 4
    dim_h = embed_dim // 8 * 3
    dim_w = embed_dim // 8 * 3

    # Temporal frequencies
878
    freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, theta=theta, use_real=True)
zR's avatar
zR committed
879
    # Spatial frequencies for height and width
880
881
    freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, theta=theta, use_real=True)
    freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, theta=theta, use_real=True)
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905

    # BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor
    def combine_time_height_width(freqs_t, freqs_h, freqs_w):
        freqs_t = freqs_t[:, None, None, :].expand(
            -1, grid_size_h, grid_size_w, -1
        )  # temporal_size, grid_size_h, grid_size_w, dim_t
        freqs_h = freqs_h[None, :, None, :].expand(
            temporal_size, -1, grid_size_w, -1
        )  # temporal_size, grid_size_h, grid_size_2, dim_h
        freqs_w = freqs_w[None, None, :, :].expand(
            temporal_size, grid_size_h, -1, -1
        )  # temporal_size, grid_size_h, grid_size_2, dim_w

        freqs = torch.cat(
            [freqs_t, freqs_h, freqs_w], dim=-1
        )  # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w)
        freqs = freqs.view(
            temporal_size * grid_size_h * grid_size_w, -1
        )  # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w)
        return freqs

    t_cos, t_sin = freqs_t  # both t_cos and t_sin has shape: temporal_size, dim_t
    h_cos, h_sin = freqs_h  # both h_cos and h_sin has shape: grid_size_h, dim_h
    w_cos, w_sin = freqs_w  # both w_cos and w_sin has shape: grid_size_w, dim_w
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
906
907
908
909
910
911

    if grid_type == "slice":
        t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size]
        h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h]
        w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w]

912
913
914
    cos = combine_time_height_width(t_cos, h_cos, w_cos)
    sin = combine_time_height_width(t_sin, h_sin, w_sin)
    return cos, sin
zR's avatar
zR committed
915
916


Aryan's avatar
Aryan committed
917
918
919
920
921
922
923
def get_3d_rotary_pos_embed_allegro(
    embed_dim,
    crops_coords,
    grid_size,
    temporal_size,
    interpolation_scale: Tuple[float, float, float] = (1.0, 1.0, 1.0),
    theta: int = 10000,
924
    device: Optional[torch.device] = None,
Aryan's avatar
Aryan committed
925
926
927
928
929
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
    # TODO(aryan): docs
    start, stop = crops_coords
    grid_size_h, grid_size_w = grid_size
    interpolation_scale_t, interpolation_scale_h, interpolation_scale_w = interpolation_scale
930
931
932
933
934
935
936
937
938
    grid_t = torch.linspace(
        0, temporal_size * (temporal_size - 1) / temporal_size, temporal_size, device=device, dtype=torch.float32
    )
    grid_h = torch.linspace(
        start[0], stop[0] * (grid_size_h - 1) / grid_size_h, grid_size_h, device=device, dtype=torch.float32
    )
    grid_w = torch.linspace(
        start[1], stop[1] * (grid_size_w - 1) / grid_size_w, grid_size_w, device=device, dtype=torch.float32
    )
Aryan's avatar
Aryan committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959

    # Compute dimensions for each axis
    dim_t = embed_dim // 3
    dim_h = embed_dim // 3
    dim_w = embed_dim // 3

    # Temporal frequencies
    freqs_t = get_1d_rotary_pos_embed(
        dim_t, grid_t / interpolation_scale_t, theta=theta, use_real=True, repeat_interleave_real=False
    )
    # Spatial frequencies for height and width
    freqs_h = get_1d_rotary_pos_embed(
        dim_h, grid_h / interpolation_scale_h, theta=theta, use_real=True, repeat_interleave_real=False
    )
    freqs_w = get_1d_rotary_pos_embed(
        dim_w, grid_w / interpolation_scale_w, theta=theta, use_real=True, repeat_interleave_real=False
    )

    return freqs_t, freqs_h, freqs_w, grid_t, grid_h, grid_w


960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
def get_2d_rotary_pos_embed(
    embed_dim, crops_coords, grid_size, use_real=True, device: Optional[torch.device] = None, output_type: str = "np"
):
    """
    RoPE for image tokens with 2d structure.

    Args:
    embed_dim: (`int`):
        The embedding dimension size
    crops_coords (`Tuple[int]`)
        The top-left and bottom-right coordinates of the crop.
    grid_size (`Tuple[int]`):
        The grid size of the positional embedding.
    use_real (`bool`):
        If True, return real part and imaginary part separately. Otherwise, return complex numbers.
    device: (`torch.device`, **optional**):
        The device used to create tensors.

    Returns:
        `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
    """
    if output_type == "np":
        deprecation_message = (
            "`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
            " `from_numpy` is no longer required."
            "  Pass `output_type='pt' to use the new version now."
        )
        deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
        return _get_2d_rotary_pos_embed_np(
            embed_dim=embed_dim,
            crops_coords=crops_coords,
            grid_size=grid_size,
            use_real=use_real,
        )
    start, stop = crops_coords
    # scale end by (steps−1)/steps matches np.linspace(..., endpoint=False)
    grid_h = torch.linspace(
        start[0], stop[0] * (grid_size[0] - 1) / grid_size[0], grid_size[0], device=device, dtype=torch.float32
    )
    grid_w = torch.linspace(
        start[1], stop[1] * (grid_size[1] - 1) / grid_size[1], grid_size[1], device=device, dtype=torch.float32
    )
    grid = torch.meshgrid(grid_w, grid_h, indexing="xy")
    grid = torch.stack(grid, dim=0)  # [2, W, H]

    grid = grid.reshape([2, 1, *grid.shape[1:]])
    pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
    return pos_embed


def _get_2d_rotary_pos_embed_np(embed_dim, crops_coords, grid_size, use_real=True):
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    """
    RoPE for image tokens with 2d structure.

    Args:
    embed_dim: (`int`):
        The embedding dimension size
    crops_coords (`Tuple[int]`)
        The top-left and bottom-right coordinates of the crop.
    grid_size (`Tuple[int]`):
        The grid size of the positional embedding.
    use_real (`bool`):
        If True, return real part and imaginary part separately. Otherwise, return complex numbers.

    Returns:
1025
        `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    """
    start, stop = crops_coords
    grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
    grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)  # [2, W, H]

    grid = grid.reshape([2, 1, *grid.shape[1:]])
    pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
    return pos_embed


def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    """
    Get 2D RoPE from grid.

    Args:
    embed_dim: (`int`):
        The embedding dimension size, corresponding to hidden_size_head.
    grid (`np.ndarray`):
        The grid of the positional embedding.
    use_real (`bool`):
        If True, return real part and imaginary part separately. Otherwise, return complex numbers.

    Returns:
        `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
    """
1053
1054
1055
    assert embed_dim % 4 == 0

    # use half of dimensions to encode grid_h
1056
1057
1058
1059
1060
1061
    emb_h = get_1d_rotary_pos_embed(
        embed_dim // 2, grid[0].reshape(-1), use_real=use_real
    )  # (H*W, D/2) if use_real else (H*W, D/4)
    emb_w = get_1d_rotary_pos_embed(
        embed_dim // 2, grid[1].reshape(-1), use_real=use_real
    )  # (H*W, D/2) if use_real else (H*W, D/4)
1062
1063

    if use_real:
1064
1065
        cos = torch.cat([emb_h[0], emb_w[0]], dim=1)  # (H*W, D)
        sin = torch.cat([emb_h[1], emb_w[1]], dim=1)  # (H*W, D)
1066
1067
1068
1069
1070
1071
        return cos, sin
    else:
        emb = torch.cat([emb_h, emb_w], dim=1)  # (H*W, D/2)
        return emb


1072
def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0):
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
    """
    Get 2D RoPE from grid.

    Args:
    embed_dim: (`int`):
        The embedding dimension size, corresponding to hidden_size_head.
    grid (`np.ndarray`):
        The grid of the positional embedding.
    linear_factor (`float`):
        The linear factor of the positional embedding, which is used to scale the positional embedding in the linear
        layer.
    ntk_factor (`float`):
        The ntk factor of the positional embedding, which is used to scale the positional embedding in the ntk layer.

    Returns:
        `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
    """
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    assert embed_dim % 4 == 0

    emb_h = get_1d_rotary_pos_embed(
        embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor
    )  # (H, D/4)
    emb_w = get_1d_rotary_pos_embed(
        embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor
    )  # (W, D/4)
    emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1)  # (H, W, D/4, 1)
    emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1)  # (H, W, D/4, 1)

    emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2)  # (H, W, D/2)
    return emb


def get_1d_rotary_pos_embed(
1106
1107
1108
1109
1110
1111
1112
    dim: int,
    pos: Union[np.ndarray, int],
    theta: float = 10000.0,
    use_real=False,
    linear_factor=1.0,
    ntk_factor=1.0,
    repeat_interleave_real=True,
1113
    freqs_dtype=torch.float32,  #  torch.float32, torch.float64 (flux)
1114
):
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    """
    Precompute the frequency tensor for complex exponentials (cis) with given dimensions.

    This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
    index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
    data type.

    Args:
        dim (`int`): Dimension of the frequency tensor.
        pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
        theta (`float`, *optional*, defaults to 10000.0):
            Scaling factor for frequency computation. Defaults to 10000.0.
        use_real (`bool`, *optional*):
            If True, return real part and imaginary part separately. Otherwise, return complex numbers.
1129
1130
1131
1132
        linear_factor (`float`, *optional*, defaults to 1.0):
            Scaling factor for the context extrapolation. Defaults to 1.0.
        ntk_factor (`float`, *optional*, defaults to 1.0):
            Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
1133
1134
1135
        repeat_interleave_real (`bool`, *optional*, defaults to `True`):
            If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
            Otherwise, they are concateanted with themselves.
YiYi Xu's avatar
YiYi Xu committed
1136
1137
        freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
            the dtype of the frequency tensor.
1138
1139
1140
    Returns:
        `torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
    """
1141
1142
    assert dim % 2 == 0

1143
    if isinstance(pos, int):
1144
1145
1146
1147
        pos = torch.arange(pos)
    if isinstance(pos, np.ndarray):
        pos = torch.from_numpy(pos)  # type: ignore  # [S]

1148
    theta = theta * ntk_factor
1149
1150
1151
1152
1153
    freqs = (
        1.0
        / (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
        / linear_factor
    )  # [D/2]
1154
    freqs = torch.outer(pos, freqs)  # type: ignore   # [S, D/2]
1155
    if use_real and repeat_interleave_real:
1156
        # flux, hunyuan-dit, cogvideox
YiYi Xu's avatar
YiYi Xu committed
1157
1158
        freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float()  # [S, D]
        freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float()  # [S, D]
1159
        return freqs_cos, freqs_sin
1160
    elif use_real:
Aryan's avatar
Aryan committed
1161
        # stable audio, allegro
YiYi Xu's avatar
YiYi Xu committed
1162
1163
        freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float()  # [S, D]
        freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float()  # [S, D]
1164
        return freqs_cos, freqs_sin
1165
    else:
1166
1167
        # lumina
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64     # [S, D/2]
1168
1169
1170
1171
1172
1173
        return freqs_cis


def apply_rotary_emb(
    x: torch.Tensor,
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
1174
    use_real: bool = True,
1175
    use_real_unbind_dim: int = -1,
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
    tensors contain rotary embeddings and are returned as real tensors.

    Args:
        x (`torch.Tensor`):
            Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
    """
1191
1192
1193
1194
1195
    if use_real:
        cos, sin = freqs_cis  # [S, D]
        cos = cos[None, None]
        sin = sin[None, None]
        cos, sin = cos.to(x.device), sin.to(x.device)
1196

1197
        if use_real_unbind_dim == -1:
1198
            # Used for flux, cogvideox, hunyuan-dit
1199
1200
1201
            x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
            x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        elif use_real_unbind_dim == -2:
1202
            # Used for Stable Audio
1203
1204
1205
1206
1207
            x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2)  # [B, S, H, D//2]
            x_rotated = torch.cat([-x_imag, x_real], dim=-1)
        else:
            raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")

1208
        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
1209

1210
1211
        return out
    else:
1212
        # used for lumina
1213
1214
1215
1216
1217
        x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
        freqs_cis = freqs_cis.unsqueeze(2)
        x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)

        return x_out.type_as(x)
1218
1219


Aryan's avatar
Aryan committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
def apply_rotary_emb_allegro(x: torch.Tensor, freqs_cis, positions):
    # TODO(aryan): rewrite
    def apply_1d_rope(tokens, pos, cos, sin):
        cos = F.embedding(pos, cos)[:, None, :, :]
        sin = F.embedding(pos, sin)[:, None, :, :]
        x1, x2 = tokens[..., : tokens.shape[-1] // 2], tokens[..., tokens.shape[-1] // 2 :]
        tokens_rotated = torch.cat((-x2, x1), dim=-1)
        return (tokens.float() * cos + tokens_rotated.float() * sin).to(tokens.dtype)

    (t_cos, t_sin), (h_cos, h_sin), (w_cos, w_sin) = freqs_cis
    t, h, w = x.chunk(3, dim=-1)
    t = apply_1d_rope(t, positions[0], t_cos, t_sin)
    h = apply_1d_rope(h, positions[1], h_cos, h_sin)
    w = apply_1d_rope(w, positions[2], w_cos, w_sin)
    x = torch.cat([t, h, w], dim=-1)
    return x


YiYi Xu's avatar
YiYi Xu committed
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
class FluxPosEmbed(nn.Module):
    # modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
    def __init__(self, theta: int, axes_dim: List[int]):
        super().__init__()
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: torch.Tensor) -> torch.Tensor:
        n_axes = ids.shape[-1]
        cos_out = []
        sin_out = []
1249
        pos = ids.float()
YiYi Xu's avatar
YiYi Xu committed
1250
1251
1252
1253
        is_mps = ids.device.type == "mps"
        freqs_dtype = torch.float32 if is_mps else torch.float64
        for i in range(n_axes):
            cos, sin = get_1d_rotary_pos_embed(
1254
1255
1256
1257
1258
1259
                self.axes_dim[i],
                pos[:, i],
                theta=self.theta,
                repeat_interleave_real=True,
                use_real=True,
                freqs_dtype=freqs_dtype,
YiYi Xu's avatar
YiYi Xu committed
1260
1261
1262
1263
1264
1265
1266
1267
            )
            cos_out.append(cos)
            sin_out.append(sin)
        freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
        freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
        return freqs_cos, freqs_sin


1268
class TimestepEmbedding(nn.Module):
1269
1270
1271
1272
1273
1274
1275
1276
    def __init__(
        self,
        in_channels: int,
        time_embed_dim: int,
        act_fn: str = "silu",
        out_dim: int = None,
        post_act_fn: Optional[str] = None,
        cond_proj_dim=None,
Will Berman's avatar
Will Berman committed
1277
        sample_proj_bias=True,
1278
    ):
1279
1280
        super().__init__()

1281
        self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
1282
1283
1284
1285
1286
1287

        if cond_proj_dim is not None:
            self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
        else:
            self.cond_proj = None

1288
        self.act = get_activation(act_fn)
1289
1290
1291
1292
1293

        if out_dim is not None:
            time_embed_dim_out = out_dim
        else:
            time_embed_dim_out = time_embed_dim
1294
        self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias)
1295

1296
1297
1298
        if post_act_fn is None:
            self.post_act = None
        else:
1299
            self.post_act = get_activation(post_act_fn)
1300
1301
1302
1303

    def forward(self, sample, condition=None):
        if condition is not None:
            sample = sample + self.cond_proj(condition)
1304
1305
1306
1307
1308
1309
        sample = self.linear_1(sample)

        if self.act is not None:
            sample = self.act(sample)

        sample = self.linear_2(sample)
1310
1311
1312

        if self.post_act is not None:
            sample = self.post_act(sample)
1313
1314
1315
1316
        return sample


class Timesteps(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
1317
    def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
1318
1319
1320
1321
        super().__init__()
        self.num_channels = num_channels
        self.flip_sin_to_cos = flip_sin_to_cos
        self.downscale_freq_shift = downscale_freq_shift
Sayak Paul's avatar
Sayak Paul committed
1322
        self.scale = scale
1323
1324
1325
1326
1327
1328
1329

    def forward(self, timesteps):
        t_emb = get_timestep_embedding(
            timesteps,
            self.num_channels,
            flip_sin_to_cos=self.flip_sin_to_cos,
            downscale_freq_shift=self.downscale_freq_shift,
Sayak Paul's avatar
Sayak Paul committed
1330
            scale=self.scale,
1331
1332
1333
1334
        )
        return t_emb


1335
1336
class GaussianFourierProjection(nn.Module):
    """Gaussian Fourier embeddings for noise levels."""
Patrick von Platen's avatar
Patrick von Platen committed
1337

1338
1339
1340
    def __init__(
        self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
    ):
1341
        super().__init__()
1342
        self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
1343
1344
        self.log = log
        self.flip_sin_to_cos = flip_sin_to_cos
1345

1346
1347
        if set_W_to_weight:
            # to delete later
1348
            del self.weight
1349
1350
            self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
            self.weight = self.W
1351
            del self.W
1352

1353
    def forward(self, x):
1354
1355
1356
        if self.log:
            x = torch.log(x)

1357
        x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
1358
1359
1360
1361
1362

        if self.flip_sin_to_cos:
            out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
        else:
            out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
1363
        return out
Will Berman's avatar
Will Berman committed
1364
1365


Dhruv Nair's avatar
Dhruv Nair committed
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
class SinusoidalPositionalEmbedding(nn.Module):
    """Apply positional information to a sequence of embeddings.

    Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
    them

    Args:
        embed_dim: (int): Dimension of the positional embedding.
        max_seq_length: Maximum sequence length to apply positional embeddings

    """

    def __init__(self, embed_dim: int, max_seq_length: int = 32):
        super().__init__()
        position = torch.arange(max_seq_length).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim))
        pe = torch.zeros(1, max_seq_length, embed_dim)
        pe[0, :, 0::2] = torch.sin(position * div_term)
        pe[0, :, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe)

    def forward(self, x):
        _, seq_length, _ = x.shape
        x = x + self.pe[:, :seq_length]
        return x


Will Berman's avatar
Will Berman committed
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
class ImagePositionalEmbeddings(nn.Module):
    """
    Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
    height and width of the latent space.

    For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092

    For VQ-diffusion:

    Output vector embeddings are used as input for the transformer.

    Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.

    Args:
        num_embed (`int`):
            Number of embeddings for the latent pixels embeddings.
        height (`int`):
            Height of the latent image i.e. the number of height embeddings.
        width (`int`):
            Width of the latent image i.e. the number of width embeddings.
        embed_dim (`int`):
            Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
    """

    def __init__(
        self,
        num_embed: int,
        height: int,
        width: int,
        embed_dim: int,
    ):
        super().__init__()

        self.height = height
        self.width = width
        self.num_embed = num_embed
        self.embed_dim = embed_dim

        self.emb = nn.Embedding(self.num_embed, embed_dim)
        self.height_emb = nn.Embedding(self.height, embed_dim)
        self.width_emb = nn.Embedding(self.width, embed_dim)

    def forward(self, index):
        emb = self.emb(index)

        height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))

        # 1 x H x D -> 1 x H x 1 x D
        height_emb = height_emb.unsqueeze(2)

        width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))

        # 1 x W x D -> 1 x 1 x W x D
        width_emb = width_emb.unsqueeze(1)

        pos_emb = height_emb + width_emb

        # 1 x H x W x D -> 1 x L xD
        pos_emb = pos_emb.view(1, self.height * self.width, -1)

        emb = emb + pos_emb[:, : emb.shape[1], :]

        return emb
Kashif Rasul's avatar
Kashif Rasul committed
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485


class LabelEmbedding(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.

    Args:
        num_classes (`int`): The number of classes.
        hidden_size (`int`): The size of the vector embeddings.
        dropout_prob (`float`): The probability of dropping a label.
    """

    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
        else:
            drop_ids = torch.tensor(force_drop_ids == 1)
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

1486
    def forward(self, labels: torch.LongTensor, force_drop_ids=None):
Kashif Rasul's avatar
Kashif Rasul committed
1487
1488
1489
1490
1491
1492
1493
        use_dropout = self.dropout_prob > 0
        if (self.training and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


YiYi Xu's avatar
YiYi Xu committed
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
class TextImageProjection(nn.Module):
    def __init__(
        self,
        text_embed_dim: int = 1024,
        image_embed_dim: int = 768,
        cross_attention_dim: int = 768,
        num_image_text_embeds: int = 10,
    ):
        super().__init__()

        self.num_image_text_embeds = num_image_text_embeds
        self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
        self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)

1508
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
        batch_size = text_embeds.shape[0]

        # image
        image_text_embeds = self.image_embeds(image_embeds)
        image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)

        # text
        text_embeds = self.text_proj(text_embeds)

        return torch.cat([image_text_embeds, text_embeds], dim=1)


YiYi Xu's avatar
YiYi Xu committed
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
class ImageProjection(nn.Module):
    def __init__(
        self,
        image_embed_dim: int = 768,
        cross_attention_dim: int = 768,
        num_image_text_embeds: int = 32,
    ):
        super().__init__()

        self.num_image_text_embeds = num_image_text_embeds
        self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
        self.norm = nn.LayerNorm(cross_attention_dim)

1534
    def forward(self, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1535
1536
1537
1538
1539
1540
1541
1542
1543
        batch_size = image_embeds.shape[0]

        # image
        image_embeds = self.image_embeds(image_embeds)
        image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
        image_embeds = self.norm(image_embeds)
        return image_embeds


1544
class IPAdapterFullImageProjection(nn.Module):
1545
1546
1547
1548
1549
1550
1551
    def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
        super().__init__()
        from .attention import FeedForward

        self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
        self.norm = nn.LayerNorm(cross_attention_dim)

1552
    def forward(self, image_embeds: torch.Tensor):
1553
1554
1555
        return self.norm(self.ff(image_embeds))


1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
class IPAdapterFaceIDImageProjection(nn.Module):
    def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1):
        super().__init__()
        from .attention import FeedForward

        self.num_tokens = num_tokens
        self.cross_attention_dim = cross_attention_dim
        self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu")
        self.norm = nn.LayerNorm(cross_attention_dim)

1566
    def forward(self, image_embeds: torch.Tensor):
1567
1568
1569
1570
1571
        x = self.ff(image_embeds)
        x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
        return self.norm(x)


Kashif Rasul's avatar
Kashif Rasul committed
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
class CombinedTimestepLabelEmbeddings(nn.Module):
    def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)

    def forward(self, timestep, class_labels, hidden_dtype=None):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        class_labels = self.class_embedder(class_labels)  # (N, D)

        conditioning = timesteps_emb + class_labels  # (N, D)

        return conditioning
Patrick von Platen's avatar
Patrick von Platen committed
1589
1590


Dhruv Nair's avatar
Dhruv Nair committed
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
class CombinedTimestepTextProjEmbeddings(nn.Module):
    def __init__(self, embedding_dim, pooled_projection_dim):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")

    def forward(self, timestep, pooled_projection):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))  # (N, D)

        pooled_projections = self.text_embedder(pooled_projection)

        conditioning = timesteps_emb + pooled_projections

        return conditioning


Sayak Paul's avatar
Sayak Paul committed
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
    def __init__(self, embedding_dim, pooled_projection_dim):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")

    def forward(self, timestep, guidance, pooled_projection):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))  # (N, D)

        guidance_proj = self.time_proj(guidance)
        guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))  # (N, D)

        time_guidance_emb = timesteps_emb + guidance_emb

        pooled_projections = self.text_embedder(pooled_projection)
        conditioning = time_guidance_emb + pooled_projections

        return conditioning


Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
    def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
        super().__init__()

        self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.condition_proj = Timesteps(num_channels=condition_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim)
        self.condition_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")

    def forward(
        self,
        timestep: torch.Tensor,
        original_size: torch.Tensor,
        target_size: torch.Tensor,
        crop_coords: torch.Tensor,
        hidden_dtype: torch.dtype,
    ) -> torch.Tensor:
        timesteps_proj = self.time_proj(timestep)

        original_size_proj = self.condition_proj(original_size.flatten()).view(original_size.size(0), -1)
        crop_coords_proj = self.condition_proj(crop_coords.flatten()).view(crop_coords.size(0), -1)
        target_size_proj = self.condition_proj(target_size.flatten()).view(target_size.size(0), -1)

        # (B, 3 * condition_dim)
        condition_proj = torch.cat([original_size_proj, crop_coords_proj, target_size_proj], dim=1)

        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (B, embedding_dim)
        condition_emb = self.condition_embedder(condition_proj.to(dtype=hidden_dtype))  # (B, embedding_dim)

        conditioning = timesteps_emb + condition_emb
        return conditioning


1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
class HunyuanDiTAttentionPool(nn.Module):
    # Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6

    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        x = x.permute(1, 0, 2)  # NLC -> LNC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (L+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (L+1)NC
        x, _ = F.multi_head_attention_forward(
            query=x[:1],
            key=x,
            value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False,
        )
        return x.squeeze(0)


class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module):
1708
1709
1710
1711
1712
1713
1714
1715
    def __init__(
        self,
        embedding_dim,
        pooled_projection_dim=1024,
        seq_len=256,
        cross_attention_dim=2048,
        use_style_cond_and_image_meta_size=True,
    ):
1716
1717
1718
1719
1720
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

1721
1722
        self.size_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)

1723
1724
1725
        self.pooler = HunyuanDiTAttentionPool(
            seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim
        )
1726

1727
        # Here we use a default learned embedder layer for future extension.
1728
1729
1730
1731
1732
1733
1734
        self.use_style_cond_and_image_meta_size = use_style_cond_and_image_meta_size
        if use_style_cond_and_image_meta_size:
            self.style_embedder = nn.Embedding(1, embedding_dim)
            extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim
        else:
            extra_in_dim = pooled_projection_dim

1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
        self.extra_embedder = PixArtAlphaTextProjection(
            in_features=extra_in_dim,
            hidden_size=embedding_dim * 4,
            out_features=embedding_dim,
            act_fn="silu_fp32",
        )

    def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, 256)

        # extra condition1: text
        pooled_projections = self.pooler(encoder_hidden_states)  # (N, 1024)

1749
        if self.use_style_cond_and_image_meta_size:
1750
            # extra condition2: image meta size embedding
1751
            image_meta_size = self.size_proj(image_meta_size.view(-1))
1752
1753
            image_meta_size = image_meta_size.to(dtype=hidden_dtype)
            image_meta_size = image_meta_size.view(-1, 6 * 256)  # (N, 1536)
1754

1755
1756
1757
1758
1759
1760
1761
            # extra condition3: style embedding
            style_embedding = self.style_embedder(style)  # (N, embedding_dim)

            # Concatenate all extra vectors
            extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1)
        else:
            extra_cond = torch.cat([pooled_projections], dim=1)
1762
1763
1764
1765
1766
1767

        conditioning = timesteps_emb + self.extra_embedder(extra_cond)  # [B, D]

        return conditioning


1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
class LuminaCombinedTimestepCaptionEmbedding(nn.Module):
    def __init__(self, hidden_size=4096, cross_attention_dim=2048, frequency_embedding_size=256):
        super().__init__()
        self.time_proj = Timesteps(
            num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0
        )

        self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)

        self.caption_embedder = nn.Sequential(
            nn.LayerNorm(cross_attention_dim),
            nn.Linear(
                cross_attention_dim,
                hidden_size,
                bias=True,
            ),
        )

    def forward(self, timestep, caption_feat, caption_mask):
        # timestep embedding:
        time_freq = self.time_proj(timestep)
        time_embed = self.timestep_embedder(time_freq.to(dtype=self.timestep_embedder.linear_1.weight.dtype))

        # caption condition embedding:
        caption_mask_float = caption_mask.float().unsqueeze(-1)
        caption_feats_pool = (caption_feat * caption_mask_float).sum(dim=1) / caption_mask_float.sum(dim=1)
        caption_feats_pool = caption_feats_pool.to(caption_feat)
        caption_embed = self.caption_embedder(caption_feats_pool)

        conditioning = time_embed + caption_embed

        return conditioning


Aryan's avatar
Aryan committed
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
class MochiCombinedTimestepCaptionEmbedding(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        pooled_projection_dim: int,
        text_embed_dim: int,
        time_embed_dim: int = 256,
        num_attention_heads: int = 8,
    ) -> None:
        super().__init__()

        self.time_proj = Timesteps(num_channels=time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0)
        self.timestep_embedder = TimestepEmbedding(in_channels=time_embed_dim, time_embed_dim=embedding_dim)
        self.pooler = MochiAttentionPool(
            num_attention_heads=num_attention_heads, embed_dim=text_embed_dim, output_dim=embedding_dim
        )
        self.caption_proj = nn.Linear(text_embed_dim, pooled_projection_dim)

    def forward(
        self,
        timestep: torch.LongTensor,
        encoder_hidden_states: torch.Tensor,
        encoder_attention_mask: torch.Tensor,
        hidden_dtype: Optional[torch.dtype] = None,
    ):
        time_proj = self.time_proj(timestep)
        time_emb = self.timestep_embedder(time_proj.to(dtype=hidden_dtype))

        pooled_projections = self.pooler(encoder_hidden_states, encoder_attention_mask)
        caption_proj = self.caption_proj(encoder_hidden_states)

        conditioning = time_emb + pooled_projections
        return conditioning, caption_proj


Patrick von Platen's avatar
Patrick von Platen committed
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
class TextTimeEmbedding(nn.Module):
    def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
        super().__init__()
        self.norm1 = nn.LayerNorm(encoder_dim)
        self.pool = AttentionPooling(num_heads, encoder_dim)
        self.proj = nn.Linear(encoder_dim, time_embed_dim)
        self.norm2 = nn.LayerNorm(time_embed_dim)

    def forward(self, hidden_states):
        hidden_states = self.norm1(hidden_states)
        hidden_states = self.pool(hidden_states)
        hidden_states = self.proj(hidden_states)
        hidden_states = self.norm2(hidden_states)
        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
1853
1854
1855
1856
1857
1858
1859
class TextImageTimeEmbedding(nn.Module):
    def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.text_proj = nn.Linear(text_embed_dim, time_embed_dim)
        self.text_norm = nn.LayerNorm(time_embed_dim)
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)

1860
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
        # text
        time_text_embeds = self.text_proj(text_embeds)
        time_text_embeds = self.text_norm(time_text_embeds)

        # image
        time_image_embeds = self.image_proj(image_embeds)

        return time_image_embeds + time_text_embeds


YiYi Xu's avatar
YiYi Xu committed
1871
1872
1873
1874
1875
1876
class ImageTimeEmbedding(nn.Module):
    def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
        self.image_norm = nn.LayerNorm(time_embed_dim)

1877
    def forward(self, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
        # image
        time_image_embeds = self.image_proj(image_embeds)
        time_image_embeds = self.image_norm(time_image_embeds)
        return time_image_embeds


class ImageHintTimeEmbedding(nn.Module):
    def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
        self.image_norm = nn.LayerNorm(time_embed_dim)
        self.input_hint_block = nn.Sequential(
            nn.Conv2d(3, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 32, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(32, 32, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(32, 96, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(96, 96, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(96, 256, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(256, 4, 3, padding=1),
        )

1907
    def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1908
1909
1910
1911
1912
1913
1914
        # image
        time_image_embeds = self.image_proj(image_embeds)
        time_image_embeds = self.image_norm(time_image_embeds)
        hint = self.input_hint_block(hint)
        return time_image_embeds, hint


Patrick von Platen's avatar
Patrick von Platen committed
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
class AttentionPooling(nn.Module):
    # Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54

    def __init__(self, num_heads, embed_dim, dtype=None):
        super().__init__()
        self.dtype = dtype
        self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.num_heads = num_heads
        self.dim_per_head = embed_dim // self.num_heads

    def forward(self, x):
        bs, length, width = x.size()

        def shape(x):
            # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
            x = x.view(bs, -1, self.num_heads, self.dim_per_head)
            # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
            x = x.transpose(1, 2)
            # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
            x = x.reshape(bs * self.num_heads, -1, self.dim_per_head)
            # (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length)
            x = x.transpose(1, 2)
            return x

        class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype)
        x = torch.cat([class_token, x], dim=1)  # (bs, length+1, width)

        # (bs*n_heads, class_token_length, dim_per_head)
        q = shape(self.q_proj(class_token))
        # (bs*n_heads, length+class_token_length, dim_per_head)
        k = shape(self.k_proj(x))
        v = shape(self.v_proj(x))

        # (bs*n_heads, class_token_length, length+class_token_length):
        scale = 1 / math.sqrt(math.sqrt(self.dim_per_head))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)

        # (bs*n_heads, dim_per_head, class_token_length)
        a = torch.einsum("bts,bcs->bct", weight, v)

        # (bs, length+1, width)
        a = a.reshape(bs, -1, 1).transpose(1, 2)

        return a[:, 0, :]  # cls_token
1963
1964


Aryan's avatar
Aryan committed
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
class MochiAttentionPool(nn.Module):
    def __init__(
        self,
        num_attention_heads: int,
        embed_dim: int,
        output_dim: Optional[int] = None,
    ) -> None:
        super().__init__()

        self.output_dim = output_dim or embed_dim
        self.num_attention_heads = num_attention_heads

        self.to_kv = nn.Linear(embed_dim, 2 * embed_dim)
        self.to_q = nn.Linear(embed_dim, embed_dim)
        self.to_out = nn.Linear(embed_dim, self.output_dim)

    @staticmethod
    def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
        """
        Pool tokens in x using mask.

        NOTE: We assume x does not require gradients.

        Args:
            x: (B, L, D) tensor of tokens.
            mask: (B, L) boolean tensor indicating which tokens are not padding.

        Returns:
            pooled: (B, D) tensor of pooled tokens.
        """
        assert x.size(1) == mask.size(1)  # Expected mask to have same length as tokens.
        assert x.size(0) == mask.size(0)  # Expected mask to have same batch size as tokens.
        mask = mask[:, :, None].to(dtype=x.dtype)
        mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
        pooled = (x * mask).sum(dim=1, keepdim=keepdim)
        return pooled

    def forward(self, x: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor:
        r"""
        Args:
            x (`torch.Tensor`):
                Tensor of shape `(B, S, D)` of input tokens.
            mask (`torch.Tensor`):
                Boolean ensor of shape `(B, S)` indicating which tokens are not padding.

        Returns:
            `torch.Tensor`:
                `(B, D)` tensor of pooled tokens.
        """
        D = x.size(2)

        # Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
        attn_mask = mask[:, None, None, :].bool()  # (B, 1, 1, L).
        attn_mask = F.pad(attn_mask, (1, 0), value=True)  # (B, 1, 1, 1+L).

        # Average non-padding token features. These will be used as the query.
        x_pool = self.pool_tokens(x, mask, keepdim=True)  # (B, 1, D)

        # Concat pooled features to input sequence.
        x = torch.cat([x_pool, x], dim=1)  # (B, L+1, D)

        # Compute queries, keys, values. Only the mean token is used to create a query.
        kv = self.to_kv(x)  # (B, L+1, 2 * D)
        q = self.to_q(x[:, 0])  # (B, D)

        # Extract heads.
        head_dim = D // self.num_attention_heads
        kv = kv.unflatten(2, (2, self.num_attention_heads, head_dim))  # (B, 1+L, 2, H, head_dim)
        kv = kv.transpose(1, 3)  # (B, H, 2, 1+L, head_dim)
        k, v = kv.unbind(2)  # (B, H, 1+L, head_dim)
        q = q.unflatten(1, (self.num_attention_heads, head_dim))  # (B, H, head_dim)
        q = q.unsqueeze(2)  # (B, H, 1, head_dim)

        # Compute attention.
        x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0)  # (B, H, 1, head_dim)

        # Concatenate heads and run output.
        x = x.squeeze(2).flatten(1, 2)  # (B, D = H * head_dim)
        x = self.to_out(x)
        return x


2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
def get_fourier_embeds_from_boundingbox(embed_dim, box):
    """
    Args:
        embed_dim: int
        box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline
    Returns:
        [B x N x embed_dim] tensor of positional embeddings
    """

    batch_size, num_boxes = box.shape[:2]
2057

2058
2059
2060
    emb = 100 ** (torch.arange(embed_dim) / embed_dim)
    emb = emb[None, None, None].to(device=box.device, dtype=box.dtype)
    emb = emb * box.unsqueeze(-1)
2061

2062
2063
    emb = torch.stack((emb.sin(), emb.cos()), dim=-1)
    emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4)
2064

2065
    return emb
2066
2067


2068
class GLIGENTextBoundingboxProjection(nn.Module):
2069
    def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8):
2070
2071
2072
2073
        super().__init__()
        self.positive_len = positive_len
        self.out_dim = out_dim

2074
        self.fourier_embedder_dim = fourier_freqs
2075
2076
2077
2078
2079
        self.position_dim = fourier_freqs * 2 * 4  # 2: sin/cos, 4: xyxy

        if isinstance(out_dim, tuple):
            out_dim = out_dim[0]

2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
        if feature_type == "text-only":
            self.linears = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

        elif feature_type == "text-image":
            self.linears_text = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.linears_image = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
            self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

2108
2109
        self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))

2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
    def forward(
        self,
        boxes,
        masks,
        positive_embeddings=None,
        phrases_masks=None,
        image_masks=None,
        phrases_embeddings=None,
        image_embeddings=None,
    ):
2120
2121
2122
        masks = masks.unsqueeze(-1)

        # embedding position (it may includes padding as placeholder)
2123
        xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes)  # B*N*4 -> B*N*C
2124
2125
2126
2127
2128
2129
2130

        # learnable null embedding
        xyxy_null = self.null_position_feature.view(1, 1, -1)

        # replace padding with learnable null embedding
        xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null

2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
        # positionet with text only information
        if positive_embeddings is not None:
            # learnable null embedding
            positive_null = self.null_positive_feature.view(1, 1, -1)

            # replace padding with learnable null embedding
            positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null

            objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))

2141
        # positionet with text and image information
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
        else:
            phrases_masks = phrases_masks.unsqueeze(-1)
            image_masks = image_masks.unsqueeze(-1)

            # learnable null embedding
            text_null = self.null_text_feature.view(1, 1, -1)
            image_null = self.null_image_feature.view(1, 1, -1)

            # replace padding with learnable null embedding
            phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
            image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null

            objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
            objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
            objs = torch.cat([objs_text, objs_image], dim=1)

2158
        return objs
Sayak Paul's avatar
Sayak Paul committed
2159
2160


2161
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
    """
    For PixArt-Alpha.

    Reference:
    https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
    """

    def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
        super().__init__()

        self.outdim = size_emb_dim
        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

        self.use_additional_conditions = use_additional_conditions
        if use_additional_conditions:
            self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
            self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
            self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)

    def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        if self.use_additional_conditions:
2187
2188
2189
2190
2191
            resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
            resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
            aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
            aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
            conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
Sayak Paul's avatar
Sayak Paul committed
2192
2193
2194
2195
2196
2197
        else:
            conditioning = timesteps_emb

        return conditioning


2198
class PixArtAlphaTextProjection(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
2199
2200
2201
2202
2203
2204
    """
    Projects caption embeddings. Also handles dropout for classifier-free guidance.

    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
    """

2205
    def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"):
Sayak Paul's avatar
Sayak Paul committed
2206
        super().__init__()
2207
2208
        if out_features is None:
            out_features = hidden_size
Sayak Paul's avatar
Sayak Paul committed
2209
        self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
2210
2211
        if act_fn == "gelu_tanh":
            self.act_1 = nn.GELU(approximate="tanh")
Dhruv Nair's avatar
Dhruv Nair committed
2212
2213
        elif act_fn == "silu":
            self.act_1 = nn.SiLU()
2214
2215
2216
2217
2218
        elif act_fn == "silu_fp32":
            self.act_1 = FP32SiLU()
        else:
            raise ValueError(f"Unknown activation function: {act_fn}")
        self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
Sayak Paul's avatar
Sayak Paul committed
2219

2220
    def forward(self, caption):
Sayak Paul's avatar
Sayak Paul committed
2221
2222
2223
2224
        hidden_states = self.linear_1(caption)
        hidden_states = self.act_1(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states
2225
2226


2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
class IPAdapterPlusImageProjectionBlock(nn.Module):
    def __init__(
        self,
        embed_dims: int = 768,
        dim_head: int = 64,
        heads: int = 16,
        ffn_ratio: float = 4,
    ) -> None:
        super().__init__()
        from .attention import FeedForward

        self.ln0 = nn.LayerNorm(embed_dims)
        self.ln1 = nn.LayerNorm(embed_dims)
        self.attn = Attention(
            query_dim=embed_dims,
            dim_head=dim_head,
            heads=heads,
            out_bias=False,
        )
        self.ff = nn.Sequential(
            nn.LayerNorm(embed_dims),
            FeedForward(embed_dims, embed_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
        )

    def forward(self, x, latents, residual):
        encoder_hidden_states = self.ln0(x)
        latents = self.ln1(latents)
        encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
        latents = self.attn(latents, encoder_hidden_states) + residual
        latents = self.ff(latents) + latents
        return latents


2260
class IPAdapterPlusImageProjection(nn.Module):
2261
2262
2263
    """Resampler of IP-Adapter Plus.

    Args:
2264
2265
2266
        embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
        that is the same
            number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
2267
2268
        hidden_dims (int):
            The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
2269
        to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
2270
2271
        Defaults to 16. num_queries (int):
            The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio
2272
        of feedforward network hidden
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
            layer channels. Defaults to 4.
    """

    def __init__(
        self,
        embed_dims: int = 768,
        output_dims: int = 1024,
        hidden_dims: int = 1280,
        depth: int = 4,
        dim_head: int = 64,
        heads: int = 16,
        num_queries: int = 8,
        ffn_ratio: float = 4,
    ) -> None:
        super().__init__()
        self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)

        self.proj_in = nn.Linear(embed_dims, hidden_dims)

        self.proj_out = nn.Linear(hidden_dims, output_dims)
        self.norm_out = nn.LayerNorm(output_dims)

2295
2296
2297
        self.layers = nn.ModuleList(
            [IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
        )
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            x (torch.Tensor): Input Tensor.
        Returns:
            torch.Tensor: Output Tensor.
        """
        latents = self.latents.repeat(x.size(0), 1, 1)

        x = self.proj_in(x)

2311
        for block in self.layers:
2312
            residual = latents
2313
            latents = block(x, latents, residual)
2314
2315
2316

        latents = self.proj_out(latents)
        return self.norm_out(latents)
2317
2318


2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
class IPAdapterFaceIDPlusImageProjection(nn.Module):
    """FacePerceiverResampler of IP-Adapter Plus.

    Args:
        embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
        that is the same
            number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
        hidden_dims (int):
            The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
        to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
        Defaults to 16. num_tokens (int): Number of tokens num_queries (int): The number of queries. Defaults to 8.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        ffproj_ratio (float): The expansion ratio of feedforward network hidden
            layer channels (for ID embeddings). Defaults to 4.
    """

    def __init__(
        self,
        embed_dims: int = 768,
        output_dims: int = 768,
        hidden_dims: int = 1280,
        id_embeddings_dim: int = 512,
        depth: int = 4,
        dim_head: int = 64,
        heads: int = 16,
        num_tokens: int = 4,
        num_queries: int = 8,
        ffn_ratio: float = 4,
        ffproj_ratio: int = 2,
    ) -> None:
        super().__init__()
        from .attention import FeedForward

        self.num_tokens = num_tokens
        self.embed_dim = embed_dims
        self.clip_embeds = None
        self.shortcut = False
        self.shortcut_scale = 1.0

        self.proj = FeedForward(id_embeddings_dim, embed_dims * num_tokens, activation_fn="gelu", mult=ffproj_ratio)
        self.norm = nn.LayerNorm(embed_dims)

        self.proj_in = nn.Linear(hidden_dims, embed_dims)

        self.proj_out = nn.Linear(embed_dims, output_dims)
        self.norm_out = nn.LayerNorm(output_dims)

        self.layers = nn.ModuleList(
            [IPAdapterPlusImageProjectionBlock(embed_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
        )

    def forward(self, id_embeds: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            id_embeds (torch.Tensor): Input Tensor (ID embeds).
        Returns:
            torch.Tensor: Output Tensor.
        """
        id_embeds = id_embeds.to(self.clip_embeds.dtype)
        id_embeds = self.proj(id_embeds)
        id_embeds = id_embeds.reshape(-1, self.num_tokens, self.embed_dim)
        id_embeds = self.norm(id_embeds)
        latents = id_embeds

        clip_embeds = self.proj_in(self.clip_embeds)
        x = clip_embeds.reshape(-1, clip_embeds.shape[2], clip_embeds.shape[3])

        for block in self.layers:
            residual = latents
            latents = block(x, latents, residual)

        latents = self.proj_out(latents)
        out = self.norm_out(latents)
        if self.shortcut:
            out = id_embeds + self.shortcut_scale * out
        return out


2399
2400
2401
2402
2403
class MultiIPAdapterImageProjection(nn.Module):
    def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]):
        super().__init__()
        self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)

2404
    def forward(self, image_embeds: List[torch.Tensor]):
2405
2406
2407
2408
2409
2410
2411
2412
        projected_image_embeds = []

        # currently, we accept `image_embeds` as
        #  1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
        #  2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
        if not isinstance(image_embeds, list):
            deprecation_message = (
                "You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release."
2413
                " Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning."
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
            )
            deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False)
            image_embeds = [image_embeds.unsqueeze(1)]

        if len(image_embeds) != len(self.image_projection_layers):
            raise ValueError(
                f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
            )

        for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
            batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
            image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
            image_embed = image_projection_layer(image_embed)
            image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])

            projected_image_embeds.append(image_embed)

        return projected_image_embeds