Unverified Commit 1ca0a755 authored by YiYi Xu's avatar YiYi Xu Committed by GitHub
Browse files

refactor 3d rope for cogvideox (#9269)

* refactor 3d rope

* repeat -> expand
parent c1e6a32a
......@@ -391,15 +391,16 @@ def get_3d_rotary_pos_embed(
The size of the temporal dimension.
theta (`float`):
Scaling factor for frequency computation.
use_real (`bool`):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
Returns:
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
"""
if use_real is not True:
raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed")
start, stop = crops_coords
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
grid_size_h, grid_size_w = grid_size
grid_h = np.linspace(start[0], stop[0], grid_size_h, endpoint=False, dtype=np.float32)
grid_w = np.linspace(start[1], stop[1], grid_size_w, endpoint=False, dtype=np.float32)
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
# Compute dimensions for each axis
......@@ -408,54 +409,37 @@ def get_3d_rotary_pos_embed(
dim_w = embed_dim // 8 * 3
# Temporal frequencies
freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t))
grid_t = torch.from_numpy(grid_t).float()
freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t)
freqs_t = freqs_t.repeat_interleave(2, dim=-1)
freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, use_real=True)
# Spatial frequencies for height and width
freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h))
freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w))
grid_h = torch.from_numpy(grid_h).float()
grid_w = torch.from_numpy(grid_w).float()
freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h)
freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w)
freqs_h = freqs_h.repeat_interleave(2, dim=-1)
freqs_w = freqs_w.repeat_interleave(2, dim=-1)
# Broadcast and concatenate tensors along specified dimension
def broadcast(tensors, dim=-1):
num_tensors = len(tensors)
shape_lens = {len(t.shape) for t in tensors}
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
shape_len = list(shape_lens)[0]
dim = (dim + shape_len) if dim < 0 else dim
dims = list(zip(*(list(t.shape) for t in tensors)))
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
assert all(
[*(len(set(t[1])) <= 2 for t in expandable_dims)]
), "invalid dimensions for broadcastable concatenation"
max_dims = [(t[0], max(t[1])) for t in expandable_dims]
expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims]
expanded_dims.insert(dim, (dim, dims[dim]))
expandable_shapes = list(zip(*(t[1] for t in expanded_dims)))
tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)]
return torch.cat(tensors, dim=dim)
freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1)
t, h, w, d = freqs.shape
freqs = freqs.view(t * h * w, d)
# Generate sine and cosine components
sin = freqs.sin()
cos = freqs.cos()
if use_real:
return cos, sin
else:
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis
freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, use_real=True)
freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, use_real=True)
# BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor
def combine_time_height_width(freqs_t, freqs_h, freqs_w):
freqs_t = freqs_t[:, None, None, :].expand(
-1, grid_size_h, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_w, dim_t
freqs_h = freqs_h[None, :, None, :].expand(
temporal_size, -1, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_2, dim_h
freqs_w = freqs_w[None, None, :, :].expand(
temporal_size, grid_size_h, -1, -1
) # temporal_size, grid_size_h, grid_size_2, dim_w
freqs = torch.cat(
[freqs_t, freqs_h, freqs_w], dim=-1
) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w)
freqs = freqs.view(
temporal_size * grid_size_h * grid_size_w, -1
) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w)
return freqs
t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t
h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h
w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w
cos = combine_time_height_width(t_cos, h_cos, w_cos)
sin = combine_time_height_width(t_sin, h_sin, w_sin)
return cos, sin
def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
......
......@@ -463,7 +463,6 @@ class CogVideoXPipeline(DiffusionPipeline):
crops_coords=grid_crops_coords,
grid_size=(grid_height, grid_width),
temporal_size=num_frames,
use_real=True,
)
freqs_cos = freqs_cos.to(device=device)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment