embeddings.py 79.5 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
import numpy as np
import torch
19
import torch.nn.functional as F
20
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
21

22
from ..utils import deprecate
23
from .activations import FP32SiLU, get_activation
24
from .attention_processor import Attention
25

26

27
def get_timestep_embedding(
Kashif Rasul's avatar
Kashif Rasul committed
28
29
30
31
32
33
    timesteps: torch.Tensor,
    embedding_dim: int,
    flip_sin_to_cos: bool = False,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
34
):
Patrick von Platen's avatar
Patrick von Platen committed
35
    """
Patrick von Platen's avatar
Patrick von Platen committed
36
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    Args
        timesteps (torch.Tensor):
            a 1-D Tensor of N indices, one per batch element. These may be fractional.
        embedding_dim (int):
            the dimension of the output.
        flip_sin_to_cos (bool):
            Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
        downscale_freq_shift (float):
            Controls the delta between frequencies between dimensions
        scale (float):
            Scaling factor applied to the embeddings.
        max_period (int):
            Controls the maximum frequency of the embeddings
    Returns
        torch.Tensor: an [N x dim] Tensor of positional embeddings.
Patrick von Platen's avatar
Patrick von Platen committed
53
    """
54
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
Patrick von Platen's avatar
Patrick von Platen committed
55
56

    half_dim = embedding_dim // 2
57
58
59
    exponent = -math.log(max_period) * torch.arange(
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
    )
60
    exponent = exponent / (half_dim - downscale_freq_shift)
61

62
    emb = torch.exp(exponent)
63
64
    emb = timesteps[:, None].float() * emb[None, :]

65
66
67
    # scale embeddings
    emb = scale * emb

68
    # concat sine and cosine embeddings
69
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
70

71
    # flip sine and cosine embeddings
72
73
74
75
76
    if flip_sin_to_cos:
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
80
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def get_3d_sincos_pos_embed(
    embed_dim: int,
    spatial_size: Union[int, Tuple[int, int]],
    temporal_size: int,
    spatial_interpolation_scale: float = 1.0,
    temporal_interpolation_scale: float = 1.0,
) -> np.ndarray:
    r"""
    Args:
        embed_dim (`int`):
        spatial_size (`int` or `Tuple[int, int]`):
        temporal_size (`int`):
        spatial_interpolation_scale (`float`, defaults to 1.0):
        temporal_interpolation_scale (`float`, defaults to 1.0):
    """
    if embed_dim % 4 != 0:
        raise ValueError("`embed_dim` must be divisible by 4")
    if isinstance(spatial_size, int):
        spatial_size = (spatial_size, spatial_size)

    embed_dim_spatial = 3 * embed_dim // 4
    embed_dim_temporal = embed_dim // 4

    # 1. Spatial
    grid_h = np.arange(spatial_size[1], dtype=np.float32) / spatial_interpolation_scale
    grid_w = np.arange(spatial_size[0], dtype=np.float32) / spatial_interpolation_scale
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]])
    pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)

    # 2. Temporal
    grid_t = np.arange(temporal_size, dtype=np.float32) / temporal_interpolation_scale
    pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t)

    # 3. Concat
    pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
    pos_embed_spatial = np.repeat(pos_embed_spatial, temporal_size, axis=0)  # [T, H*W, D // 4 * 3]

    pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
    pos_embed_temporal = np.repeat(pos_embed_temporal, spatial_size[0] * spatial_size[1], axis=1)  # [T, H*W, D // 4]

    pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)  # [T, H*W, D]
    return pos_embed


Sayak Paul's avatar
Sayak Paul committed
128
129
130
def get_2d_sincos_pos_embed(
    embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
Kashif Rasul's avatar
Kashif Rasul committed
131
132
133
134
    """
    grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
    [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
Sayak Paul's avatar
Sayak Paul committed
135
136
137
138
139
    if isinstance(grid_size, int):
        grid_size = (grid_size, grid_size)

    grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
    grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
Kashif Rasul's avatar
Kashif Rasul committed
140
141
142
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

Sayak Paul's avatar
Sayak Paul committed
143
    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
Kashif Rasul's avatar
Kashif Rasul committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
    """
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class PatchEmbed(nn.Module):
Dhruv Nair's avatar
Dhruv Nair committed
184
    """2D Image to Patch Embedding with support for SD3 cropping."""
Kashif Rasul's avatar
Kashif Rasul committed
185
186
187
188
189
190
191
192
193
194
195

    def __init__(
        self,
        height=224,
        width=224,
        patch_size=16,
        in_channels=3,
        embed_dim=768,
        layer_norm=False,
        flatten=True,
        bias=True,
Sayak Paul's avatar
Sayak Paul committed
196
        interpolation_scale=1,
197
        pos_embed_type="sincos",
Dhruv Nair's avatar
Dhruv Nair committed
198
        pos_embed_max_size=None,  # For SD3 cropping
Kashif Rasul's avatar
Kashif Rasul committed
199
200
201
202
203
204
    ):
        super().__init__()

        num_patches = (height // patch_size) * (width // patch_size)
        self.flatten = flatten
        self.layer_norm = layer_norm
Dhruv Nair's avatar
Dhruv Nair committed
205
        self.pos_embed_max_size = pos_embed_max_size
Kashif Rasul's avatar
Kashif Rasul committed
206
207
208
209
210
211
212
213
214

        self.proj = nn.Conv2d(
            in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
        )
        if layer_norm:
            self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
        else:
            self.norm = None

Sayak Paul's avatar
Sayak Paul committed
215
216
217
218
        self.patch_size = patch_size
        self.height, self.width = height // patch_size, width // patch_size
        self.base_size = height // patch_size
        self.interpolation_scale = interpolation_scale
Dhruv Nair's avatar
Dhruv Nair committed
219
220
221
222
223
224
225

        # Calculate positional embeddings based on max size or default
        if pos_embed_max_size:
            grid_size = pos_embed_max_size
        else:
            grid_size = int(num_patches**0.5)

226
227
228
229
        if pos_embed_type is None:
            self.pos_embed = None
        elif pos_embed_type == "sincos":
            pos_embed = get_2d_sincos_pos_embed(
Dhruv Nair's avatar
Dhruv Nair committed
230
                embed_dim, grid_size, base_size=self.base_size, interpolation_scale=self.interpolation_scale
231
            )
Dhruv Nair's avatar
Dhruv Nair committed
232
233
            persistent = True if pos_embed_max_size else False
            self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=persistent)
234
235
        else:
            raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
Kashif Rasul's avatar
Kashif Rasul committed
236

Dhruv Nair's avatar
Dhruv Nair committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    def cropped_pos_embed(self, height, width):
        """Crops positional embeddings for SD3 compatibility."""
        if self.pos_embed_max_size is None:
            raise ValueError("`pos_embed_max_size` must be set for cropping.")

        height = height // self.patch_size
        width = width // self.patch_size
        if height > self.pos_embed_max_size:
            raise ValueError(
                f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
            )
        if width > self.pos_embed_max_size:
            raise ValueError(
                f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
            )

        top = (self.pos_embed_max_size - height) // 2
        left = (self.pos_embed_max_size - width) // 2
        spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
        spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
        spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
        return spatial_pos_embed

Kashif Rasul's avatar
Kashif Rasul committed
260
    def forward(self, latent):
Dhruv Nair's avatar
Dhruv Nair committed
261
262
263
264
        if self.pos_embed_max_size is not None:
            height, width = latent.shape[-2:]
        else:
            height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
Sayak Paul's avatar
Sayak Paul committed
265

Kashif Rasul's avatar
Kashif Rasul committed
266
267
268
269
270
        latent = self.proj(latent)
        if self.flatten:
            latent = latent.flatten(2).transpose(1, 2)  # BCHW -> BNC
        if self.layer_norm:
            latent = self.norm(latent)
271
272
        if self.pos_embed is None:
            return latent.to(latent.dtype)
Dhruv Nair's avatar
Dhruv Nair committed
273
274
275
        # Interpolate or crop positional embeddings as needed
        if self.pos_embed_max_size:
            pos_embed = self.cropped_pos_embed(height, width)
Sayak Paul's avatar
Sayak Paul committed
276
        else:
Dhruv Nair's avatar
Dhruv Nair committed
277
278
279
280
281
282
283
284
285
286
            if self.height != height or self.width != width:
                pos_embed = get_2d_sincos_pos_embed(
                    embed_dim=self.pos_embed.shape[-1],
                    grid_size=(height, width),
                    base_size=self.base_size,
                    interpolation_scale=self.interpolation_scale,
                )
                pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).to(latent.device)
            else:
                pos_embed = self.pos_embed
Sayak Paul's avatar
Sayak Paul committed
287
288

        return (latent + pos_embed).to(latent.dtype)
Kashif Rasul's avatar
Kashif Rasul committed
289
290


291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
class LuminaPatchEmbed(nn.Module):
    """2D Image to Patch Embedding with support for Lumina-T2X"""

    def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True):
        super().__init__()
        self.patch_size = patch_size
        self.proj = nn.Linear(
            in_features=patch_size * patch_size * in_channels,
            out_features=embed_dim,
            bias=bias,
        )

    def forward(self, x, freqs_cis):
        """
        Patchifies and embeds the input tensor(s).

        Args:
            x (List[torch.Tensor] | torch.Tensor): The input tensor(s) to be patchified and embedded.

        Returns:
            Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: A tuple containing the patchified
            and embedded tensor(s), the mask indicating the valid patches, the original image size(s), and the
            frequency tensor(s).
        """
        freqs_cis = freqs_cis.to(x[0].device)
        patch_height = patch_width = self.patch_size
        batch_size, channel, height, width = x.size()
        height_tokens, width_tokens = height // patch_height, width // patch_width

        x = x.view(batch_size, channel, height_tokens, patch_height, width_tokens, patch_width).permute(
            0, 2, 4, 1, 3, 5
        )
        x = x.flatten(3)
        x = self.proj(x)
        x = x.flatten(1, 2)

        mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device)

        return (
            x,
            mask,
            [(height, width)] * batch_size,
            freqs_cis[:height_tokens, :width_tokens].flatten(0, 1).unsqueeze(0),
        )


337
338
339
340
class CogVideoXPatchEmbed(nn.Module):
    def __init__(
        self,
        patch_size: int = 2,
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
341
        patch_size_t: Optional[int] = None,
342
343
344
345
        in_channels: int = 16,
        embed_dim: int = 1920,
        text_embed_dim: int = 4096,
        bias: bool = True,
346
347
348
349
350
351
352
353
        sample_width: int = 90,
        sample_height: int = 60,
        sample_frames: int = 49,
        temporal_compression_ratio: int = 4,
        max_text_seq_length: int = 226,
        spatial_interpolation_scale: float = 1.875,
        temporal_interpolation_scale: float = 1.0,
        use_positional_embeddings: bool = True,
354
        use_learned_positional_embeddings: bool = True,
355
356
    ) -> None:
        super().__init__()
357

358
        self.patch_size = patch_size
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
359
        self.patch_size_t = patch_size_t
360
361
362
363
364
365
366
367
368
        self.embed_dim = embed_dim
        self.sample_height = sample_height
        self.sample_width = sample_width
        self.sample_frames = sample_frames
        self.temporal_compression_ratio = temporal_compression_ratio
        self.max_text_seq_length = max_text_seq_length
        self.spatial_interpolation_scale = spatial_interpolation_scale
        self.temporal_interpolation_scale = temporal_interpolation_scale
        self.use_positional_embeddings = use_positional_embeddings
369
        self.use_learned_positional_embeddings = use_learned_positional_embeddings
370

Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
371
372
373
374
375
376
377
378
379
        if patch_size_t is None:
            # CogVideoX 1.0 checkpoints
            self.proj = nn.Conv2d(
                in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
            )
        else:
            # CogVideoX 1.5 checkpoints
            self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim)

380
381
        self.text_proj = nn.Linear(text_embed_dim, embed_dim)

382
383
        if use_positional_embeddings or use_learned_positional_embeddings:
            persistent = use_learned_positional_embeddings
384
            pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames)
385
            self.register_buffer("pos_embedding", pos_embedding, persistent=persistent)
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

    def _get_positional_embeddings(self, sample_height: int, sample_width: int, sample_frames: int) -> torch.Tensor:
        post_patch_height = sample_height // self.patch_size
        post_patch_width = sample_width // self.patch_size
        post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1
        num_patches = post_patch_height * post_patch_width * post_time_compression_frames

        pos_embedding = get_3d_sincos_pos_embed(
            self.embed_dim,
            (post_patch_width, post_patch_height),
            post_time_compression_frames,
            self.spatial_interpolation_scale,
            self.temporal_interpolation_scale,
        )
        pos_embedding = torch.from_numpy(pos_embedding).flatten(0, 1)
        joint_pos_embedding = torch.zeros(
            1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False
        )
        joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding)

        return joint_pos_embedding

408
409
410
411
412
413
414
415
416
417
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
        r"""
        Args:
            text_embeds (`torch.Tensor`):
                Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
            image_embeds (`torch.Tensor`):
                Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
        """
        text_embeds = self.text_proj(text_embeds)

Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        batch_size, num_frames, channels, height, width = image_embeds.shape

        if self.patch_size_t is None:
            image_embeds = image_embeds.reshape(-1, channels, height, width)
            image_embeds = self.proj(image_embeds)
            image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:])
            image_embeds = image_embeds.flatten(3).transpose(2, 3)  # [batch, num_frames, height x width, channels]
            image_embeds = image_embeds.flatten(1, 2)  # [batch, num_frames x height x width, channels]
        else:
            p = self.patch_size
            p_t = self.patch_size_t

            image_embeds = image_embeds.permute(0, 1, 3, 4, 2)
            image_embeds = image_embeds.reshape(
                batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels
            )
            image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3)
            image_embeds = self.proj(image_embeds)
436
437
438
439

        embeds = torch.cat(
            [text_embeds, image_embeds], dim=1
        ).contiguous()  # [batch, seq_length + num_frames x height x width, channels]
440

441
442
443
444
445
446
447
        if self.use_positional_embeddings or self.use_learned_positional_embeddings:
            if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height):
                raise ValueError(
                    "It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'."
                    "If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues."
                )

448
            pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
449

450
451
452
453
454
455
456
457
458
459
460
461
            if (
                self.sample_height != height
                or self.sample_width != width
                or self.sample_frames != pre_time_compression_frames
            ):
                pos_embedding = self._get_positional_embeddings(height, width, pre_time_compression_frames)
                pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype)
            else:
                pos_embedding = self.pos_embedding

            embeds = embeds + pos_embedding

462
463
464
        return embeds


Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
class CogView3PlusPatchEmbed(nn.Module):
    def __init__(
        self,
        in_channels: int = 16,
        hidden_size: int = 2560,
        patch_size: int = 2,
        text_hidden_size: int = 4096,
        pos_embed_max_size: int = 128,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.hidden_size = hidden_size
        self.patch_size = patch_size
        self.text_hidden_size = text_hidden_size
        self.pos_embed_max_size = pos_embed_max_size
        # Linear projection for image patches
        self.proj = nn.Linear(in_channels * patch_size**2, hidden_size)

        # Linear projection for text embeddings
        self.text_proj = nn.Linear(text_hidden_size, hidden_size)

        pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, base_size=pos_embed_max_size)
        pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size)
        self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float(), persistent=False)

    def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size, channel, height, width = hidden_states.shape

        if height % self.patch_size != 0 or width % self.patch_size != 0:
            raise ValueError("Height and width must be divisible by patch size")

        height = height // self.patch_size
        width = width // self.patch_size
        hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size)
        hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous()
        hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size)

        # Project the patches
        hidden_states = self.proj(hidden_states)
        encoder_hidden_states = self.text_proj(encoder_hidden_states)
        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        # Calculate text_length
        text_length = encoder_hidden_states.shape[1]

        image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1)
        text_pos_embed = torch.zeros(
            (text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device
        )
        pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...]

        return (hidden_states + pos_embed).to(hidden_states.dtype)


zR's avatar
zR committed
519
def get_3d_rotary_pos_embed(
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
520
521
522
523
524
525
526
527
    embed_dim,
    crops_coords,
    grid_size,
    temporal_size,
    theta: int = 10000,
    use_real: bool = True,
    grid_type: str = "linspace",
    max_size: Optional[Tuple[int, int]] = None,
zR's avatar
zR committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
    """
    RoPE for video tokens with 3D structure.

    Args:
    embed_dim: (`int`):
        The embedding dimension size, corresponding to hidden_size_head.
    crops_coords (`Tuple[int]`):
        The top-left and bottom-right coordinates of the crop.
    grid_size (`Tuple[int]`):
        The grid size of the spatial positional embedding (height, width).
    temporal_size (`int`):
        The size of the temporal dimension.
    theta (`float`):
        Scaling factor for frequency computation.
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
543
544
    grid_type (`str`):
        Whether to use "linspace" or "slice" to compute grids.
zR's avatar
zR committed
545
546
547
548

    Returns:
        `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
    """
549
550
    if use_real is not True:
        raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed")
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

    if grid_type == "linspace":
        start, stop = crops_coords
        grid_size_h, grid_size_w = grid_size
        grid_h = np.linspace(start[0], stop[0], grid_size_h, endpoint=False, dtype=np.float32)
        grid_w = np.linspace(start[1], stop[1], grid_size_w, endpoint=False, dtype=np.float32)
        grid_t = np.arange(temporal_size, dtype=np.float32)
        grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
    elif grid_type == "slice":
        max_h, max_w = max_size
        grid_size_h, grid_size_w = grid_size
        grid_h = np.arange(max_h, dtype=np.float32)
        grid_w = np.arange(max_w, dtype=np.float32)
        grid_t = np.arange(temporal_size, dtype=np.float32)
    else:
        raise ValueError("Invalid value passed for `grid_type`.")
zR's avatar
zR committed
567
568
569
570
571
572
573

    # Compute dimensions for each axis
    dim_t = embed_dim // 4
    dim_h = embed_dim // 8 * 3
    dim_w = embed_dim // 8 * 3

    # Temporal frequencies
574
    freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, use_real=True)
zR's avatar
zR committed
575
    # Spatial frequencies for height and width
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, use_real=True)
    freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, use_real=True)

    # BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor
    def combine_time_height_width(freqs_t, freqs_h, freqs_w):
        freqs_t = freqs_t[:, None, None, :].expand(
            -1, grid_size_h, grid_size_w, -1
        )  # temporal_size, grid_size_h, grid_size_w, dim_t
        freqs_h = freqs_h[None, :, None, :].expand(
            temporal_size, -1, grid_size_w, -1
        )  # temporal_size, grid_size_h, grid_size_2, dim_h
        freqs_w = freqs_w[None, None, :, :].expand(
            temporal_size, grid_size_h, -1, -1
        )  # temporal_size, grid_size_h, grid_size_2, dim_w

        freqs = torch.cat(
            [freqs_t, freqs_h, freqs_w], dim=-1
        )  # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w)
        freqs = freqs.view(
            temporal_size * grid_size_h * grid_size_w, -1
        )  # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w)
        return freqs

    t_cos, t_sin = freqs_t  # both t_cos and t_sin has shape: temporal_size, dim_t
    h_cos, h_sin = freqs_h  # both h_cos and h_sin has shape: grid_size_h, dim_h
    w_cos, w_sin = freqs_w  # both w_cos and w_sin has shape: grid_size_w, dim_w
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
602
603
604
605
606
607

    if grid_type == "slice":
        t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size]
        h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h]
        w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w]

608
609
610
    cos = combine_time_height_width(t_cos, h_cos, w_cos)
    sin = combine_time_height_width(t_sin, h_sin, w_sin)
    return cos, sin
zR's avatar
zR committed
611
612


Aryan's avatar
Aryan committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
def get_3d_rotary_pos_embed_allegro(
    embed_dim,
    crops_coords,
    grid_size,
    temporal_size,
    interpolation_scale: Tuple[float, float, float] = (1.0, 1.0, 1.0),
    theta: int = 10000,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
    # TODO(aryan): docs
    start, stop = crops_coords
    grid_size_h, grid_size_w = grid_size
    interpolation_scale_t, interpolation_scale_h, interpolation_scale_w = interpolation_scale
    grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
    grid_h = np.linspace(start[0], stop[0], grid_size_h, endpoint=False, dtype=np.float32)
    grid_w = np.linspace(start[1], stop[1], grid_size_w, endpoint=False, dtype=np.float32)

    # Compute dimensions for each axis
    dim_t = embed_dim // 3
    dim_h = embed_dim // 3
    dim_w = embed_dim // 3

    # Temporal frequencies
    freqs_t = get_1d_rotary_pos_embed(
        dim_t, grid_t / interpolation_scale_t, theta=theta, use_real=True, repeat_interleave_real=False
    )
    # Spatial frequencies for height and width
    freqs_h = get_1d_rotary_pos_embed(
        dim_h, grid_h / interpolation_scale_h, theta=theta, use_real=True, repeat_interleave_real=False
    )
    freqs_w = get_1d_rotary_pos_embed(
        dim_w, grid_w / interpolation_scale_w, theta=theta, use_real=True, repeat_interleave_real=False
    )

    return freqs_t, freqs_h, freqs_w, grid_t, grid_h, grid_w


649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
    """
    RoPE for image tokens with 2d structure.

    Args:
    embed_dim: (`int`):
        The embedding dimension size
    crops_coords (`Tuple[int]`)
        The top-left and bottom-right coordinates of the crop.
    grid_size (`Tuple[int]`):
        The grid size of the positional embedding.
    use_real (`bool`):
        If True, return real part and imaginary part separately. Otherwise, return complex numbers.

    Returns:
664
        `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    """
    start, stop = crops_coords
    grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
    grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)  # [2, W, H]

    grid = grid.reshape([2, 1, *grid.shape[1:]])
    pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
    return pos_embed


def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
    assert embed_dim % 4 == 0

    # use half of dimensions to encode grid_h
681
682
683
684
685
686
    emb_h = get_1d_rotary_pos_embed(
        embed_dim // 2, grid[0].reshape(-1), use_real=use_real
    )  # (H*W, D/2) if use_real else (H*W, D/4)
    emb_w = get_1d_rotary_pos_embed(
        embed_dim // 2, grid[1].reshape(-1), use_real=use_real
    )  # (H*W, D/2) if use_real else (H*W, D/4)
687
688

    if use_real:
689
690
        cos = torch.cat([emb_h[0], emb_w[0]], dim=1)  # (H*W, D)
        sin = torch.cat([emb_h[1], emb_w[1]], dim=1)  # (H*W, D)
691
692
693
694
695
696
        return cos, sin
    else:
        emb = torch.cat([emb_h, emb_w], dim=1)  # (H*W, D/2)
        return emb


697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0):
    assert embed_dim % 4 == 0

    emb_h = get_1d_rotary_pos_embed(
        embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor
    )  # (H, D/4)
    emb_w = get_1d_rotary_pos_embed(
        embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor
    )  # (W, D/4)
    emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1)  # (H, W, D/4, 1)
    emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1)  # (H, W, D/4, 1)

    emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2)  # (H, W, D/2)
    return emb


def get_1d_rotary_pos_embed(
714
715
716
717
718
719
720
    dim: int,
    pos: Union[np.ndarray, int],
    theta: float = 10000.0,
    use_real=False,
    linear_factor=1.0,
    ntk_factor=1.0,
    repeat_interleave_real=True,
721
    freqs_dtype=torch.float32,  #  torch.float32, torch.float64 (flux)
722
):
723
724
725
726
727
728
729
730
731
732
733
734
735
736
    """
    Precompute the frequency tensor for complex exponentials (cis) with given dimensions.

    This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
    index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
    data type.

    Args:
        dim (`int`): Dimension of the frequency tensor.
        pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
        theta (`float`, *optional*, defaults to 10000.0):
            Scaling factor for frequency computation. Defaults to 10000.0.
        use_real (`bool`, *optional*):
            If True, return real part and imaginary part separately. Otherwise, return complex numbers.
737
738
739
740
        linear_factor (`float`, *optional*, defaults to 1.0):
            Scaling factor for the context extrapolation. Defaults to 1.0.
        ntk_factor (`float`, *optional*, defaults to 1.0):
            Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
741
742
743
        repeat_interleave_real (`bool`, *optional*, defaults to `True`):
            If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
            Otherwise, they are concateanted with themselves.
YiYi Xu's avatar
YiYi Xu committed
744
745
        freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
            the dtype of the frequency tensor.
746
747
748
    Returns:
        `torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
    """
749
750
    assert dim % 2 == 0

751
    if isinstance(pos, int):
752
753
754
755
        pos = torch.arange(pos)
    if isinstance(pos, np.ndarray):
        pos = torch.from_numpy(pos)  # type: ignore  # [S]

756
    theta = theta * ntk_factor
757
758
759
760
761
    freqs = (
        1.0
        / (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
        / linear_factor
    )  # [D/2]
762
    freqs = torch.outer(pos, freqs)  # type: ignore   # [S, D/2]
763
    if use_real and repeat_interleave_real:
764
        # flux, hunyuan-dit, cogvideox
YiYi Xu's avatar
YiYi Xu committed
765
766
        freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float()  # [S, D]
        freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float()  # [S, D]
767
        return freqs_cos, freqs_sin
768
    elif use_real:
Aryan's avatar
Aryan committed
769
        # stable audio, allegro
YiYi Xu's avatar
YiYi Xu committed
770
771
        freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float()  # [S, D]
        freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float()  # [S, D]
772
        return freqs_cos, freqs_sin
773
    else:
774
775
        # lumina
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64     # [S, D/2]
776
777
778
779
780
781
        return freqs_cis


def apply_rotary_emb(
    x: torch.Tensor,
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
782
    use_real: bool = True,
783
    use_real_unbind_dim: int = -1,
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
    tensors contain rotary embeddings and are returned as real tensors.

    Args:
        x (`torch.Tensor`):
            Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
    """
799
800
801
802
803
    if use_real:
        cos, sin = freqs_cis  # [S, D]
        cos = cos[None, None]
        sin = sin[None, None]
        cos, sin = cos.to(x.device), sin.to(x.device)
804

805
        if use_real_unbind_dim == -1:
806
            # Used for flux, cogvideox, hunyuan-dit
807
808
809
            x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
            x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        elif use_real_unbind_dim == -2:
810
            # Used for Stable Audio
811
812
813
814
815
            x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2)  # [B, S, H, D//2]
            x_rotated = torch.cat([-x_imag, x_real], dim=-1)
        else:
            raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")

816
        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
817

818
819
        return out
    else:
820
        # used for lumina
821
822
823
824
825
        x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
        freqs_cis = freqs_cis.unsqueeze(2)
        x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)

        return x_out.type_as(x)
826
827


Aryan's avatar
Aryan committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
def apply_rotary_emb_allegro(x: torch.Tensor, freqs_cis, positions):
    # TODO(aryan): rewrite
    def apply_1d_rope(tokens, pos, cos, sin):
        cos = F.embedding(pos, cos)[:, None, :, :]
        sin = F.embedding(pos, sin)[:, None, :, :]
        x1, x2 = tokens[..., : tokens.shape[-1] // 2], tokens[..., tokens.shape[-1] // 2 :]
        tokens_rotated = torch.cat((-x2, x1), dim=-1)
        return (tokens.float() * cos + tokens_rotated.float() * sin).to(tokens.dtype)

    (t_cos, t_sin), (h_cos, h_sin), (w_cos, w_sin) = freqs_cis
    t, h, w = x.chunk(3, dim=-1)
    t = apply_1d_rope(t, positions[0], t_cos, t_sin)
    h = apply_1d_rope(h, positions[1], h_cos, h_sin)
    w = apply_1d_rope(w, positions[2], w_cos, w_sin)
    x = torch.cat([t, h, w], dim=-1)
    return x


YiYi Xu's avatar
YiYi Xu committed
846
847
848
849
850
851
852
853
854
855
856
class FluxPosEmbed(nn.Module):
    # modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
    def __init__(self, theta: int, axes_dim: List[int]):
        super().__init__()
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: torch.Tensor) -> torch.Tensor:
        n_axes = ids.shape[-1]
        cos_out = []
        sin_out = []
857
        pos = ids.float()
YiYi Xu's avatar
YiYi Xu committed
858
859
860
861
862
863
864
865
866
867
868
869
870
        is_mps = ids.device.type == "mps"
        freqs_dtype = torch.float32 if is_mps else torch.float64
        for i in range(n_axes):
            cos, sin = get_1d_rotary_pos_embed(
                self.axes_dim[i], pos[:, i], repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype
            )
            cos_out.append(cos)
            sin_out.append(sin)
        freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
        freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
        return freqs_cos, freqs_sin


871
class TimestepEmbedding(nn.Module):
872
873
874
875
876
877
878
879
    def __init__(
        self,
        in_channels: int,
        time_embed_dim: int,
        act_fn: str = "silu",
        out_dim: int = None,
        post_act_fn: Optional[str] = None,
        cond_proj_dim=None,
Will Berman's avatar
Will Berman committed
880
        sample_proj_bias=True,
881
    ):
882
883
        super().__init__()

884
        self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
885
886
887
888
889
890

        if cond_proj_dim is not None:
            self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
        else:
            self.cond_proj = None

891
        self.act = get_activation(act_fn)
892
893
894
895
896

        if out_dim is not None:
            time_embed_dim_out = out_dim
        else:
            time_embed_dim_out = time_embed_dim
897
        self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias)
898

899
900
901
        if post_act_fn is None:
            self.post_act = None
        else:
902
            self.post_act = get_activation(post_act_fn)
903
904
905
906

    def forward(self, sample, condition=None):
        if condition is not None:
            sample = sample + self.cond_proj(condition)
907
908
909
910
911
912
        sample = self.linear_1(sample)

        if self.act is not None:
            sample = self.act(sample)

        sample = self.linear_2(sample)
913
914
915

        if self.post_act is not None:
            sample = self.post_act(sample)
916
917
918
919
        return sample


class Timesteps(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
920
    def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
921
922
923
924
        super().__init__()
        self.num_channels = num_channels
        self.flip_sin_to_cos = flip_sin_to_cos
        self.downscale_freq_shift = downscale_freq_shift
Sayak Paul's avatar
Sayak Paul committed
925
        self.scale = scale
926
927
928
929
930
931
932

    def forward(self, timesteps):
        t_emb = get_timestep_embedding(
            timesteps,
            self.num_channels,
            flip_sin_to_cos=self.flip_sin_to_cos,
            downscale_freq_shift=self.downscale_freq_shift,
Sayak Paul's avatar
Sayak Paul committed
933
            scale=self.scale,
934
935
936
937
        )
        return t_emb


938
939
class GaussianFourierProjection(nn.Module):
    """Gaussian Fourier embeddings for noise levels."""
Patrick von Platen's avatar
Patrick von Platen committed
940

941
942
943
    def __init__(
        self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
    ):
944
        super().__init__()
945
        self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
946
947
        self.log = log
        self.flip_sin_to_cos = flip_sin_to_cos
948

949
950
        if set_W_to_weight:
            # to delete later
951
            del self.weight
952
953
            self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
            self.weight = self.W
954
            del self.W
955

956
    def forward(self, x):
957
958
959
        if self.log:
            x = torch.log(x)

960
        x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
961
962
963
964
965

        if self.flip_sin_to_cos:
            out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
        else:
            out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
966
        return out
Will Berman's avatar
Will Berman committed
967
968


Dhruv Nair's avatar
Dhruv Nair committed
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
class SinusoidalPositionalEmbedding(nn.Module):
    """Apply positional information to a sequence of embeddings.

    Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
    them

    Args:
        embed_dim: (int): Dimension of the positional embedding.
        max_seq_length: Maximum sequence length to apply positional embeddings

    """

    def __init__(self, embed_dim: int, max_seq_length: int = 32):
        super().__init__()
        position = torch.arange(max_seq_length).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim))
        pe = torch.zeros(1, max_seq_length, embed_dim)
        pe[0, :, 0::2] = torch.sin(position * div_term)
        pe[0, :, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe)

    def forward(self, x):
        _, seq_length, _ = x.shape
        x = x + self.pe[:, :seq_length]
        return x


Will Berman's avatar
Will Berman committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
class ImagePositionalEmbeddings(nn.Module):
    """
    Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
    height and width of the latent space.

    For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092

    For VQ-diffusion:

    Output vector embeddings are used as input for the transformer.

    Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.

    Args:
        num_embed (`int`):
            Number of embeddings for the latent pixels embeddings.
        height (`int`):
            Height of the latent image i.e. the number of height embeddings.
        width (`int`):
            Width of the latent image i.e. the number of width embeddings.
        embed_dim (`int`):
            Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
    """

    def __init__(
        self,
        num_embed: int,
        height: int,
        width: int,
        embed_dim: int,
    ):
        super().__init__()

        self.height = height
        self.width = width
        self.num_embed = num_embed
        self.embed_dim = embed_dim

        self.emb = nn.Embedding(self.num_embed, embed_dim)
        self.height_emb = nn.Embedding(self.height, embed_dim)
        self.width_emb = nn.Embedding(self.width, embed_dim)

    def forward(self, index):
        emb = self.emb(index)

        height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))

        # 1 x H x D -> 1 x H x 1 x D
        height_emb = height_emb.unsqueeze(2)

        width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))

        # 1 x W x D -> 1 x 1 x W x D
        width_emb = width_emb.unsqueeze(1)

        pos_emb = height_emb + width_emb

        # 1 x H x W x D -> 1 x L xD
        pos_emb = pos_emb.view(1, self.height * self.width, -1)

        emb = emb + pos_emb[:, : emb.shape[1], :]

        return emb
Kashif Rasul's avatar
Kashif Rasul committed
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088


class LabelEmbedding(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.

    Args:
        num_classes (`int`): The number of classes.
        hidden_size (`int`): The size of the vector embeddings.
        dropout_prob (`float`): The probability of dropping a label.
    """

    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
        else:
            drop_ids = torch.tensor(force_drop_ids == 1)
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

1089
    def forward(self, labels: torch.LongTensor, force_drop_ids=None):
Kashif Rasul's avatar
Kashif Rasul committed
1090
1091
1092
1093
1094
1095
1096
        use_dropout = self.dropout_prob > 0
        if (self.training and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


YiYi Xu's avatar
YiYi Xu committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
class TextImageProjection(nn.Module):
    def __init__(
        self,
        text_embed_dim: int = 1024,
        image_embed_dim: int = 768,
        cross_attention_dim: int = 768,
        num_image_text_embeds: int = 10,
    ):
        super().__init__()

        self.num_image_text_embeds = num_image_text_embeds
        self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
        self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)

1111
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
        batch_size = text_embeds.shape[0]

        # image
        image_text_embeds = self.image_embeds(image_embeds)
        image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)

        # text
        text_embeds = self.text_proj(text_embeds)

        return torch.cat([image_text_embeds, text_embeds], dim=1)


YiYi Xu's avatar
YiYi Xu committed
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
class ImageProjection(nn.Module):
    def __init__(
        self,
        image_embed_dim: int = 768,
        cross_attention_dim: int = 768,
        num_image_text_embeds: int = 32,
    ):
        super().__init__()

        self.num_image_text_embeds = num_image_text_embeds
        self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
        self.norm = nn.LayerNorm(cross_attention_dim)

1137
    def forward(self, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1138
1139
1140
1141
1142
1143
1144
1145
1146
        batch_size = image_embeds.shape[0]

        # image
        image_embeds = self.image_embeds(image_embeds)
        image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
        image_embeds = self.norm(image_embeds)
        return image_embeds


1147
class IPAdapterFullImageProjection(nn.Module):
1148
1149
1150
1151
1152
1153
1154
    def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
        super().__init__()
        from .attention import FeedForward

        self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
        self.norm = nn.LayerNorm(cross_attention_dim)

1155
    def forward(self, image_embeds: torch.Tensor):
1156
1157
1158
        return self.norm(self.ff(image_embeds))


1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
class IPAdapterFaceIDImageProjection(nn.Module):
    def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1):
        super().__init__()
        from .attention import FeedForward

        self.num_tokens = num_tokens
        self.cross_attention_dim = cross_attention_dim
        self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu")
        self.norm = nn.LayerNorm(cross_attention_dim)

1169
    def forward(self, image_embeds: torch.Tensor):
1170
1171
1172
1173
1174
        x = self.ff(image_embeds)
        x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
        return self.norm(x)


Kashif Rasul's avatar
Kashif Rasul committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
class CombinedTimestepLabelEmbeddings(nn.Module):
    def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)

    def forward(self, timestep, class_labels, hidden_dtype=None):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        class_labels = self.class_embedder(class_labels)  # (N, D)

        conditioning = timesteps_emb + class_labels  # (N, D)

        return conditioning
Patrick von Platen's avatar
Patrick von Platen committed
1192
1193


Dhruv Nair's avatar
Dhruv Nair committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
class CombinedTimestepTextProjEmbeddings(nn.Module):
    def __init__(self, embedding_dim, pooled_projection_dim):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")

    def forward(self, timestep, pooled_projection):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))  # (N, D)

        pooled_projections = self.text_embedder(pooled_projection)

        conditioning = timesteps_emb + pooled_projections

        return conditioning


Sayak Paul's avatar
Sayak Paul committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
    def __init__(self, embedding_dim, pooled_projection_dim):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")

    def forward(self, timestep, guidance, pooled_projection):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))  # (N, D)

        guidance_proj = self.time_proj(guidance)
        guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))  # (N, D)

        time_guidance_emb = timesteps_emb + guidance_emb

        pooled_projections = self.text_embedder(pooled_projection)
        conditioning = time_guidance_emb + pooled_projections

        return conditioning


Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
    def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
        super().__init__()

        self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.condition_proj = Timesteps(num_channels=condition_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim)
        self.condition_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")

    def forward(
        self,
        timestep: torch.Tensor,
        original_size: torch.Tensor,
        target_size: torch.Tensor,
        crop_coords: torch.Tensor,
        hidden_dtype: torch.dtype,
    ) -> torch.Tensor:
        timesteps_proj = self.time_proj(timestep)

        original_size_proj = self.condition_proj(original_size.flatten()).view(original_size.size(0), -1)
        crop_coords_proj = self.condition_proj(crop_coords.flatten()).view(crop_coords.size(0), -1)
        target_size_proj = self.condition_proj(target_size.flatten()).view(target_size.size(0), -1)

        # (B, 3 * condition_dim)
        condition_proj = torch.cat([original_size_proj, crop_coords_proj, target_size_proj], dim=1)

        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (B, embedding_dim)
        condition_emb = self.condition_embedder(condition_proj.to(dtype=hidden_dtype))  # (B, embedding_dim)

        conditioning = timesteps_emb + condition_emb
        return conditioning


1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
class HunyuanDiTAttentionPool(nn.Module):
    # Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6

    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        x = x.permute(1, 0, 2)  # NLC -> LNC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (L+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (L+1)NC
        x, _ = F.multi_head_attention_forward(
            query=x[:1],
            key=x,
            value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False,
        )
        return x.squeeze(0)


class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module):
1311
1312
1313
1314
1315
1316
1317
1318
    def __init__(
        self,
        embedding_dim,
        pooled_projection_dim=1024,
        seq_len=256,
        cross_attention_dim=2048,
        use_style_cond_and_image_meta_size=True,
    ):
1319
1320
1321
1322
1323
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

1324
1325
        self.size_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)

1326
1327
1328
        self.pooler = HunyuanDiTAttentionPool(
            seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim
        )
1329

1330
        # Here we use a default learned embedder layer for future extension.
1331
1332
1333
1334
1335
1336
1337
        self.use_style_cond_and_image_meta_size = use_style_cond_and_image_meta_size
        if use_style_cond_and_image_meta_size:
            self.style_embedder = nn.Embedding(1, embedding_dim)
            extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim
        else:
            extra_in_dim = pooled_projection_dim

1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
        self.extra_embedder = PixArtAlphaTextProjection(
            in_features=extra_in_dim,
            hidden_size=embedding_dim * 4,
            out_features=embedding_dim,
            act_fn="silu_fp32",
        )

    def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, 256)

        # extra condition1: text
        pooled_projections = self.pooler(encoder_hidden_states)  # (N, 1024)

1352
        if self.use_style_cond_and_image_meta_size:
1353
            # extra condition2: image meta size embedding
1354
            image_meta_size = self.size_proj(image_meta_size.view(-1))
1355
1356
            image_meta_size = image_meta_size.to(dtype=hidden_dtype)
            image_meta_size = image_meta_size.view(-1, 6 * 256)  # (N, 1536)
1357

1358
1359
1360
1361
1362
1363
1364
            # extra condition3: style embedding
            style_embedding = self.style_embedder(style)  # (N, embedding_dim)

            # Concatenate all extra vectors
            extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1)
        else:
            extra_cond = torch.cat([pooled_projections], dim=1)
1365
1366
1367
1368
1369
1370

        conditioning = timesteps_emb + self.extra_embedder(extra_cond)  # [B, D]

        return conditioning


1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
class LuminaCombinedTimestepCaptionEmbedding(nn.Module):
    def __init__(self, hidden_size=4096, cross_attention_dim=2048, frequency_embedding_size=256):
        super().__init__()
        self.time_proj = Timesteps(
            num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0
        )

        self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)

        self.caption_embedder = nn.Sequential(
            nn.LayerNorm(cross_attention_dim),
            nn.Linear(
                cross_attention_dim,
                hidden_size,
                bias=True,
            ),
        )

    def forward(self, timestep, caption_feat, caption_mask):
        # timestep embedding:
        time_freq = self.time_proj(timestep)
        time_embed = self.timestep_embedder(time_freq.to(dtype=self.timestep_embedder.linear_1.weight.dtype))

        # caption condition embedding:
        caption_mask_float = caption_mask.float().unsqueeze(-1)
        caption_feats_pool = (caption_feat * caption_mask_float).sum(dim=1) / caption_mask_float.sum(dim=1)
        caption_feats_pool = caption_feats_pool.to(caption_feat)
        caption_embed = self.caption_embedder(caption_feats_pool)

        conditioning = time_embed + caption_embed

        return conditioning


Aryan's avatar
Aryan committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
class MochiCombinedTimestepCaptionEmbedding(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        pooled_projection_dim: int,
        text_embed_dim: int,
        time_embed_dim: int = 256,
        num_attention_heads: int = 8,
    ) -> None:
        super().__init__()

        self.time_proj = Timesteps(num_channels=time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0)
        self.timestep_embedder = TimestepEmbedding(in_channels=time_embed_dim, time_embed_dim=embedding_dim)
        self.pooler = MochiAttentionPool(
            num_attention_heads=num_attention_heads, embed_dim=text_embed_dim, output_dim=embedding_dim
        )
        self.caption_proj = nn.Linear(text_embed_dim, pooled_projection_dim)

    def forward(
        self,
        timestep: torch.LongTensor,
        encoder_hidden_states: torch.Tensor,
        encoder_attention_mask: torch.Tensor,
        hidden_dtype: Optional[torch.dtype] = None,
    ):
        time_proj = self.time_proj(timestep)
        time_emb = self.timestep_embedder(time_proj.to(dtype=hidden_dtype))

        pooled_projections = self.pooler(encoder_hidden_states, encoder_attention_mask)
        caption_proj = self.caption_proj(encoder_hidden_states)

        conditioning = time_emb + pooled_projections
        return conditioning, caption_proj


Patrick von Platen's avatar
Patrick von Platen committed
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
class TextTimeEmbedding(nn.Module):
    def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
        super().__init__()
        self.norm1 = nn.LayerNorm(encoder_dim)
        self.pool = AttentionPooling(num_heads, encoder_dim)
        self.proj = nn.Linear(encoder_dim, time_embed_dim)
        self.norm2 = nn.LayerNorm(time_embed_dim)

    def forward(self, hidden_states):
        hidden_states = self.norm1(hidden_states)
        hidden_states = self.pool(hidden_states)
        hidden_states = self.proj(hidden_states)
        hidden_states = self.norm2(hidden_states)
        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
1456
1457
1458
1459
1460
1461
1462
class TextImageTimeEmbedding(nn.Module):
    def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.text_proj = nn.Linear(text_embed_dim, time_embed_dim)
        self.text_norm = nn.LayerNorm(time_embed_dim)
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)

1463
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
        # text
        time_text_embeds = self.text_proj(text_embeds)
        time_text_embeds = self.text_norm(time_text_embeds)

        # image
        time_image_embeds = self.image_proj(image_embeds)

        return time_image_embeds + time_text_embeds


YiYi Xu's avatar
YiYi Xu committed
1474
1475
1476
1477
1478
1479
class ImageTimeEmbedding(nn.Module):
    def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
        self.image_norm = nn.LayerNorm(time_embed_dim)

1480
    def forward(self, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
        # image
        time_image_embeds = self.image_proj(image_embeds)
        time_image_embeds = self.image_norm(time_image_embeds)
        return time_image_embeds


class ImageHintTimeEmbedding(nn.Module):
    def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
        self.image_norm = nn.LayerNorm(time_embed_dim)
        self.input_hint_block = nn.Sequential(
            nn.Conv2d(3, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 32, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(32, 32, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(32, 96, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(96, 96, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(96, 256, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(256, 4, 3, padding=1),
        )

1510
    def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
1511
1512
1513
1514
1515
1516
1517
        # image
        time_image_embeds = self.image_proj(image_embeds)
        time_image_embeds = self.image_norm(time_image_embeds)
        hint = self.input_hint_block(hint)
        return time_image_embeds, hint


Patrick von Platen's avatar
Patrick von Platen committed
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
class AttentionPooling(nn.Module):
    # Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54

    def __init__(self, num_heads, embed_dim, dtype=None):
        super().__init__()
        self.dtype = dtype
        self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.num_heads = num_heads
        self.dim_per_head = embed_dim // self.num_heads

    def forward(self, x):
        bs, length, width = x.size()

        def shape(x):
            # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
            x = x.view(bs, -1, self.num_heads, self.dim_per_head)
            # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
            x = x.transpose(1, 2)
            # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
            x = x.reshape(bs * self.num_heads, -1, self.dim_per_head)
            # (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length)
            x = x.transpose(1, 2)
            return x

        class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype)
        x = torch.cat([class_token, x], dim=1)  # (bs, length+1, width)

        # (bs*n_heads, class_token_length, dim_per_head)
        q = shape(self.q_proj(class_token))
        # (bs*n_heads, length+class_token_length, dim_per_head)
        k = shape(self.k_proj(x))
        v = shape(self.v_proj(x))

        # (bs*n_heads, class_token_length, length+class_token_length):
        scale = 1 / math.sqrt(math.sqrt(self.dim_per_head))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)

        # (bs*n_heads, dim_per_head, class_token_length)
        a = torch.einsum("bts,bcs->bct", weight, v)

        # (bs, length+1, width)
        a = a.reshape(bs, -1, 1).transpose(1, 2)

        return a[:, 0, :]  # cls_token
1566
1567


Aryan's avatar
Aryan committed
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
class MochiAttentionPool(nn.Module):
    def __init__(
        self,
        num_attention_heads: int,
        embed_dim: int,
        output_dim: Optional[int] = None,
    ) -> None:
        super().__init__()

        self.output_dim = output_dim or embed_dim
        self.num_attention_heads = num_attention_heads

        self.to_kv = nn.Linear(embed_dim, 2 * embed_dim)
        self.to_q = nn.Linear(embed_dim, embed_dim)
        self.to_out = nn.Linear(embed_dim, self.output_dim)

    @staticmethod
    def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
        """
        Pool tokens in x using mask.

        NOTE: We assume x does not require gradients.

        Args:
            x: (B, L, D) tensor of tokens.
            mask: (B, L) boolean tensor indicating which tokens are not padding.

        Returns:
            pooled: (B, D) tensor of pooled tokens.
        """
        assert x.size(1) == mask.size(1)  # Expected mask to have same length as tokens.
        assert x.size(0) == mask.size(0)  # Expected mask to have same batch size as tokens.
        mask = mask[:, :, None].to(dtype=x.dtype)
        mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
        pooled = (x * mask).sum(dim=1, keepdim=keepdim)
        return pooled

    def forward(self, x: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor:
        r"""
        Args:
            x (`torch.Tensor`):
                Tensor of shape `(B, S, D)` of input tokens.
            mask (`torch.Tensor`):
                Boolean ensor of shape `(B, S)` indicating which tokens are not padding.

        Returns:
            `torch.Tensor`:
                `(B, D)` tensor of pooled tokens.
        """
        D = x.size(2)

        # Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
        attn_mask = mask[:, None, None, :].bool()  # (B, 1, 1, L).
        attn_mask = F.pad(attn_mask, (1, 0), value=True)  # (B, 1, 1, 1+L).

        # Average non-padding token features. These will be used as the query.
        x_pool = self.pool_tokens(x, mask, keepdim=True)  # (B, 1, D)

        # Concat pooled features to input sequence.
        x = torch.cat([x_pool, x], dim=1)  # (B, L+1, D)

        # Compute queries, keys, values. Only the mean token is used to create a query.
        kv = self.to_kv(x)  # (B, L+1, 2 * D)
        q = self.to_q(x[:, 0])  # (B, D)

        # Extract heads.
        head_dim = D // self.num_attention_heads
        kv = kv.unflatten(2, (2, self.num_attention_heads, head_dim))  # (B, 1+L, 2, H, head_dim)
        kv = kv.transpose(1, 3)  # (B, H, 2, 1+L, head_dim)
        k, v = kv.unbind(2)  # (B, H, 1+L, head_dim)
        q = q.unflatten(1, (self.num_attention_heads, head_dim))  # (B, H, head_dim)
        q = q.unsqueeze(2)  # (B, H, 1, head_dim)

        # Compute attention.
        x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0)  # (B, H, 1, head_dim)

        # Concatenate heads and run output.
        x = x.squeeze(2).flatten(1, 2)  # (B, D = H * head_dim)
        x = self.to_out(x)
        return x


1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
def get_fourier_embeds_from_boundingbox(embed_dim, box):
    """
    Args:
        embed_dim: int
        box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline
    Returns:
        [B x N x embed_dim] tensor of positional embeddings
    """

    batch_size, num_boxes = box.shape[:2]
1660

1661
1662
1663
    emb = 100 ** (torch.arange(embed_dim) / embed_dim)
    emb = emb[None, None, None].to(device=box.device, dtype=box.dtype)
    emb = emb * box.unsqueeze(-1)
1664

1665
1666
    emb = torch.stack((emb.sin(), emb.cos()), dim=-1)
    emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4)
1667

1668
    return emb
1669
1670


1671
class GLIGENTextBoundingboxProjection(nn.Module):
1672
    def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8):
1673
1674
1675
1676
        super().__init__()
        self.positive_len = positive_len
        self.out_dim = out_dim

1677
        self.fourier_embedder_dim = fourier_freqs
1678
1679
1680
1681
1682
        self.position_dim = fourier_freqs * 2 * 4  # 2: sin/cos, 4: xyxy

        if isinstance(out_dim, tuple):
            out_dim = out_dim[0]

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
        if feature_type == "text-only":
            self.linears = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

        elif feature_type == "text-image":
            self.linears_text = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.linears_image = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
            self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

1711
1712
        self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))

1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
    def forward(
        self,
        boxes,
        masks,
        positive_embeddings=None,
        phrases_masks=None,
        image_masks=None,
        phrases_embeddings=None,
        image_embeddings=None,
    ):
1723
1724
1725
        masks = masks.unsqueeze(-1)

        # embedding position (it may includes padding as placeholder)
1726
        xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes)  # B*N*4 -> B*N*C
1727
1728
1729
1730
1731
1732
1733

        # learnable null embedding
        xyxy_null = self.null_position_feature.view(1, 1, -1)

        # replace padding with learnable null embedding
        xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null

1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
        # positionet with text only information
        if positive_embeddings is not None:
            # learnable null embedding
            positive_null = self.null_positive_feature.view(1, 1, -1)

            # replace padding with learnable null embedding
            positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null

            objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))

1744
        # positionet with text and image information
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
        else:
            phrases_masks = phrases_masks.unsqueeze(-1)
            image_masks = image_masks.unsqueeze(-1)

            # learnable null embedding
            text_null = self.null_text_feature.view(1, 1, -1)
            image_null = self.null_image_feature.view(1, 1, -1)

            # replace padding with learnable null embedding
            phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
            image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null

            objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
            objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
            objs = torch.cat([objs_text, objs_image], dim=1)

1761
        return objs
Sayak Paul's avatar
Sayak Paul committed
1762
1763


1764
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
    """
    For PixArt-Alpha.

    Reference:
    https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
    """

    def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
        super().__init__()

        self.outdim = size_emb_dim
        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

        self.use_additional_conditions = use_additional_conditions
        if use_additional_conditions:
            self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
            self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
            self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)

    def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        if self.use_additional_conditions:
1790
1791
1792
1793
1794
            resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
            resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
            aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
            aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
            conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
Sayak Paul's avatar
Sayak Paul committed
1795
1796
1797
1798
1799
1800
        else:
            conditioning = timesteps_emb

        return conditioning


1801
class PixArtAlphaTextProjection(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
1802
1803
1804
1805
1806
1807
    """
    Projects caption embeddings. Also handles dropout for classifier-free guidance.

    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
    """

1808
    def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"):
Sayak Paul's avatar
Sayak Paul committed
1809
        super().__init__()
1810
1811
        if out_features is None:
            out_features = hidden_size
Sayak Paul's avatar
Sayak Paul committed
1812
        self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
1813
1814
        if act_fn == "gelu_tanh":
            self.act_1 = nn.GELU(approximate="tanh")
Dhruv Nair's avatar
Dhruv Nair committed
1815
1816
        elif act_fn == "silu":
            self.act_1 = nn.SiLU()
1817
1818
1819
1820
1821
        elif act_fn == "silu_fp32":
            self.act_1 = FP32SiLU()
        else:
            raise ValueError(f"Unknown activation function: {act_fn}")
        self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
Sayak Paul's avatar
Sayak Paul committed
1822

1823
    def forward(self, caption):
Sayak Paul's avatar
Sayak Paul committed
1824
1825
1826
1827
        hidden_states = self.linear_1(caption)
        hidden_states = self.act_1(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states
1828
1829


1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
class IPAdapterPlusImageProjectionBlock(nn.Module):
    def __init__(
        self,
        embed_dims: int = 768,
        dim_head: int = 64,
        heads: int = 16,
        ffn_ratio: float = 4,
    ) -> None:
        super().__init__()
        from .attention import FeedForward

        self.ln0 = nn.LayerNorm(embed_dims)
        self.ln1 = nn.LayerNorm(embed_dims)
        self.attn = Attention(
            query_dim=embed_dims,
            dim_head=dim_head,
            heads=heads,
            out_bias=False,
        )
        self.ff = nn.Sequential(
            nn.LayerNorm(embed_dims),
            FeedForward(embed_dims, embed_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
        )

    def forward(self, x, latents, residual):
        encoder_hidden_states = self.ln0(x)
        latents = self.ln1(latents)
        encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
        latents = self.attn(latents, encoder_hidden_states) + residual
        latents = self.ff(latents) + latents
        return latents


1863
class IPAdapterPlusImageProjection(nn.Module):
1864
1865
1866
    """Resampler of IP-Adapter Plus.

    Args:
1867
1868
1869
        embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
        that is the same
            number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
1870
1871
        hidden_dims (int):
            The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
1872
        to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
1873
1874
        Defaults to 16. num_queries (int):
            The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio
1875
        of feedforward network hidden
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
            layer channels. Defaults to 4.
    """

    def __init__(
        self,
        embed_dims: int = 768,
        output_dims: int = 1024,
        hidden_dims: int = 1280,
        depth: int = 4,
        dim_head: int = 64,
        heads: int = 16,
        num_queries: int = 8,
        ffn_ratio: float = 4,
    ) -> None:
        super().__init__()
        self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)

        self.proj_in = nn.Linear(embed_dims, hidden_dims)

        self.proj_out = nn.Linear(hidden_dims, output_dims)
        self.norm_out = nn.LayerNorm(output_dims)

1898
1899
1900
        self.layers = nn.ModuleList(
            [IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
        )
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            x (torch.Tensor): Input Tensor.
        Returns:
            torch.Tensor: Output Tensor.
        """
        latents = self.latents.repeat(x.size(0), 1, 1)

        x = self.proj_in(x)

1914
        for block in self.layers:
1915
            residual = latents
1916
            latents = block(x, latents, residual)
1917
1918
1919

        latents = self.proj_out(latents)
        return self.norm_out(latents)
1920
1921


1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
class IPAdapterFaceIDPlusImageProjection(nn.Module):
    """FacePerceiverResampler of IP-Adapter Plus.

    Args:
        embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
        that is the same
            number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
        hidden_dims (int):
            The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
        to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
        Defaults to 16. num_tokens (int): Number of tokens num_queries (int): The number of queries. Defaults to 8.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        ffproj_ratio (float): The expansion ratio of feedforward network hidden
            layer channels (for ID embeddings). Defaults to 4.
    """

    def __init__(
        self,
        embed_dims: int = 768,
        output_dims: int = 768,
        hidden_dims: int = 1280,
        id_embeddings_dim: int = 512,
        depth: int = 4,
        dim_head: int = 64,
        heads: int = 16,
        num_tokens: int = 4,
        num_queries: int = 8,
        ffn_ratio: float = 4,
        ffproj_ratio: int = 2,
    ) -> None:
        super().__init__()
        from .attention import FeedForward

        self.num_tokens = num_tokens
        self.embed_dim = embed_dims
        self.clip_embeds = None
        self.shortcut = False
        self.shortcut_scale = 1.0

        self.proj = FeedForward(id_embeddings_dim, embed_dims * num_tokens, activation_fn="gelu", mult=ffproj_ratio)
        self.norm = nn.LayerNorm(embed_dims)

        self.proj_in = nn.Linear(hidden_dims, embed_dims)

        self.proj_out = nn.Linear(embed_dims, output_dims)
        self.norm_out = nn.LayerNorm(output_dims)

        self.layers = nn.ModuleList(
            [IPAdapterPlusImageProjectionBlock(embed_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
        )

    def forward(self, id_embeds: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            id_embeds (torch.Tensor): Input Tensor (ID embeds).
        Returns:
            torch.Tensor: Output Tensor.
        """
        id_embeds = id_embeds.to(self.clip_embeds.dtype)
        id_embeds = self.proj(id_embeds)
        id_embeds = id_embeds.reshape(-1, self.num_tokens, self.embed_dim)
        id_embeds = self.norm(id_embeds)
        latents = id_embeds

        clip_embeds = self.proj_in(self.clip_embeds)
        x = clip_embeds.reshape(-1, clip_embeds.shape[2], clip_embeds.shape[3])

        for block in self.layers:
            residual = latents
            latents = block(x, latents, residual)

        latents = self.proj_out(latents)
        out = self.norm_out(latents)
        if self.shortcut:
            out = id_embeds + self.shortcut_scale * out
        return out


2002
2003
2004
2005
2006
class MultiIPAdapterImageProjection(nn.Module):
    def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]):
        super().__init__()
        self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)

2007
    def forward(self, image_embeds: List[torch.Tensor]):
2008
2009
2010
2011
2012
2013
2014
2015
        projected_image_embeds = []

        # currently, we accept `image_embeds` as
        #  1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
        #  2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
        if not isinstance(image_embeds, list):
            deprecation_message = (
                "You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release."
2016
                " Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning."
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
            )
            deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False)
            image_embeds = [image_embeds.unsqueeze(1)]

        if len(image_embeds) != len(self.image_projection_layers):
            raise ValueError(
                f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
            )

        for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
            batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
            image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
            image_embed = image_projection_layer(image_embed)
            image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])

            projected_image_embeds.append(image_embed)

        return projected_image_embeds