"vscode:/vscode.git/clone" did not exist on "4e891fe990a57145979b754551cfe034f0165ff0"
scheduling_ddim.py 5.9 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
19
import math

Patrick von Platen's avatar
Patrick von Platen committed
20
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
21
22

from ..configuration_utils import ConfigMixin
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
38

39
40
41
42
43
44
45
46
47
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
48
49


Patrick von Platen's avatar
Patrick von Platen committed
50
class DDIMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
51
52
53
54
55
56
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
patil-suraj's avatar
patil-suraj committed
57
58
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
Patrick von Platen committed
59
        clip_sample=True,
Patrick von Platen's avatar
Patrick von Platen committed
60
        tensor_format="np",
Patrick von Platen's avatar
Patrick von Platen committed
61
62
    ):
        super().__init__()
63
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
67
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
68
69
70
            trained_betas=trained_betas,
            timestep_values=timestep_values,
            clip_sample=clip_sample,
Patrick von Platen's avatar
Patrick von Platen committed
71
72
        )

73
        if beta_schedule == "linear":
74
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
75
76
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
77
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
84
85
86
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
87
    def get_variance(self, t, num_inference_steps):
88
89
        orig_t = self.config.timesteps // num_inference_steps * t
        orig_prev_t = self.config.timesteps // num_inference_steps * (t - 1) if t > 0 else -1
Patrick von Platen's avatar
Patrick von Platen committed
90

91
92
        alpha_prod_t = self.alphas_cumprod[orig_t]
        alpha_prod_t_prev = self.alphas_cumprod[orig_prev_t] if orig_prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
97
98
99
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

100
    def step(self, residual, sample, t, num_inference_steps, eta, use_clipped_residual=False):
Patrick von Platen's avatar
Patrick von Platen committed
101
102
103
104
105
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
106
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
107
108
        # - std_dev_t -> sigma_t
        # - eta -> η
109
110
        # - pred_sample_direction -> "direction pointingc to x_t"
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
111
112

        # 1. get actual t and t-1
113
114
        orig_t = self.config.timesteps // num_inference_steps * t
        orig_prev_t = self.config.timesteps // num_inference_steps * (t - 1) if t > 0 else -1
Patrick von Platen's avatar
Patrick von Platen committed
115
116

        # 2. compute alphas, betas
117
118
        alpha_prod_t = self.alphas_cumprod[orig_t]
        alpha_prod_t_prev = self.alphas_cumprod[orig_prev_t] if orig_prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
119
120
        beta_prod_t = 1 - alpha_prod_t

121
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
122
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
123
        pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
124
125

        # 4. Clip "predicted x_0"
126
        if self.config.clip_sample:
127
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
131

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self.get_variance(t, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
132
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
133

anton-l's avatar
anton-l committed
134
135
        if use_clipped_residual:
            # the residual is always re-derived from the clipped x_0 in GLIDE
136
            residual = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
137

Patrick von Platen's avatar
Patrick von Platen committed
138
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
139
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * residual
Patrick von Platen's avatar
Patrick von Platen committed
140
141

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
142
        pred_prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
Patrick von Platen's avatar
Patrick von Platen committed
143

144
        return pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
145
146

    def __len__(self):
147
        return self.config.timesteps