vae.py 17.3 KB
Newer Older
1
2
from dataclasses import dataclass
from typing import Optional, Tuple, Union
Partho's avatar
Partho committed
3

patil-suraj's avatar
patil-suraj committed
4
5
6
7
import numpy as np
import torch
import torch.nn as nn

8
from ..configuration_utils import ConfigMixin, register_to_config
patil-suraj's avatar
patil-suraj committed
9
from ..modeling_utils import ModelMixin
10
from ..utils import BaseOutput
11
from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block
patil-suraj's avatar
patil-suraj committed
12
13


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
@dataclass
class DecoderOutput(BaseOutput):
    """
    Output of decoding method.

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Decoded output sample of the model. Output of the last layer of the model.
    """

    sample: torch.FloatTensor


@dataclass
class VQEncoderOutput(BaseOutput):
    """
    Output of VQModel encoding method.

    Args:
        latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Encoded output sample of the model. Output of the last layer of the model.
    """

    latents: torch.FloatTensor


@dataclass
class AutoencoderKLOutput(BaseOutput):
    """
    Output of AutoencoderKL encoding method.

    Args:
        latent_dist (`DiagonalGaussianDistribution`):
            Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
            `DiagonalGaussianDistribution` allows for sampling latents from the distribution.
    """

    latent_dist: "DiagonalGaussianDistribution"


patil-suraj's avatar
patil-suraj committed
54
55
56
class Encoder(nn.Module):
    def __init__(
        self,
57
58
59
60
61
62
        in_channels=3,
        out_channels=3,
        down_block_types=("DownEncoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=2,
        act_fn="silu",
patil-suraj's avatar
patil-suraj committed
63
64
65
        double_z=True,
    ):
        super().__init__()
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        self.layers_per_block = layers_per_block

        self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
87
                downsample_padding=0,
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
                resnet_act_fn=act_fn,
                attn_num_head_channels=None,
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attn_num_head_channels=None,
            resnet_groups=32,
            temb_channels=None,
patil-suraj's avatar
patil-suraj committed
104
105
        )

106
107
108
109
110
111
112
        # out
        num_groups_out = 32
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=num_groups_out, eps=1e-6)
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
113
114

    def forward(self, x):
115
116
117
118
119
120
        sample = x
        sample = self.conv_in(sample)

        # down
        for down_block in self.down_blocks:
            sample = down_block(sample)
patil-suraj's avatar
patil-suraj committed
121
122

        # middle
123
124
125
126
127
128
129
130
        sample = self.mid_block(sample)

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
131
132
133
134
135


class Decoder(nn.Module):
    def __init__(
        self,
136
137
138
139
140
141
        in_channels=3,
        out_channels=3,
        up_block_types=("UpDecoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=2,
        act_fn="silu",
patil-suraj's avatar
patil-suraj committed
142
143
    ):
        super().__init__()
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attn_num_head_channels=None,
            resnet_groups=32,
            temb_channels=None,
patil-suraj's avatar
patil-suraj committed
161
162
        )

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                attn_num_head_channels=None,
                temb_channels=None,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        num_groups_out = 32
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
192
193

    def forward(self, z):
194
195
        sample = z
        sample = self.conv_in(sample)
patil-suraj's avatar
patil-suraj committed
196

197
198
        # middle
        sample = self.mid_block(sample)
patil-suraj's avatar
patil-suraj committed
199

200
201
202
        # up
        for up_block in self.up_blocks:
            sample = up_block(sample)
patil-suraj's avatar
patil-suraj committed
203

204
205
206
207
208
209
        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339


class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
    def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
        super().__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.beta = beta
        self.legacy = legacy

        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

    def remap_to_used(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

    def unmap_to_all(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

    def forward(self, z):
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
        z_flattened = z.view(-1, self.e_dim)
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

        d = (
            torch.sum(z_flattened**2, dim=1, keepdim=True)
            + torch.sum(self.embedding.weight**2, dim=1)
            - 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t())
        )

        min_encoding_indices = torch.argmin(d, dim=1)
        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
        z_q = z + (z_q - z).detach()

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

    def get_codebook_entry(self, indices, shape):
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
        z_q = self.embedding(indices)

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters, deterministic=False):
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)

Partho's avatar
Partho committed
340
    def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
341
        x = self.mean + self.std * torch.randn(self.mean.shape, generator=generator, device=self.parameters.device)
patil-suraj's avatar
patil-suraj committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
        return x

    def kl(self, other=None):
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
                return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3])
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

    def nll(self, sample, dims=[1, 2, 3]):
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)

    def mode(self):
        return self.mean


class VQModel(ModelMixin, ConfigMixin):
371
    @register_to_config
patil-suraj's avatar
patil-suraj committed
372
373
    def __init__(
        self,
Partho's avatar
Partho committed
374
375
376
377
378
379
380
381
382
383
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 3,
        sample_size: int = 32,
        num_vq_embeddings: int = 256,
patil-suraj's avatar
patil-suraj committed
384
    ):
385
        super().__init__()
patil-suraj's avatar
patil-suraj committed
386
387
388
389

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
390
391
392
393
394
395
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            double_z=False,
patil-suraj's avatar
patil-suraj committed
396
397
        )

398
399
400
401
402
        self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
        self.quantize = VectorQuantizer(
            num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False
        )
        self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
patil-suraj's avatar
patil-suraj committed
403
404
405

        # pass init params to Decoder
        self.decoder = Decoder(
406
407
408
409
410
411
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
patil-suraj's avatar
patil-suraj committed
412
413
        )

414
    def encode(self, x, return_dict: bool = True):
patil-suraj's avatar
patil-suraj committed
415
416
417
        h = self.encoder(x)
        h = self.quant_conv(h)

418
419
420
421
422
423
424
425
        if not return_dict:
            return (h,)

        return VQEncoderOutput(latents=h)

    def decode(
        self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True
    ) -> Union[DecoderOutput, torch.FloatTensor]:
patil-suraj's avatar
patil-suraj committed
426
427
428
429
430
431
432
        # also go through quantization layer
        if not force_not_quantize:
            quant, emb_loss, info = self.quantize(h)
        else:
            quant = h
        quant = self.post_quant_conv(quant)
        dec = self.decoder(quant)
patil-suraj's avatar
style  
patil-suraj committed
433

434
435
436
437
438
439
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
440
        x = sample
441
442
443
444
445
446
447
        h = self.encode(x).latents
        dec = self.decode(h).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)
patil-suraj's avatar
patil-suraj committed
448
449
450


class AutoencoderKL(ModelMixin, ConfigMixin):
451
    @register_to_config
patil-suraj's avatar
patil-suraj committed
452
453
    def __init__(
        self,
Partho's avatar
Partho committed
454
455
456
457
458
459
460
461
462
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        sample_size: int = 32,
patil-suraj's avatar
patil-suraj committed
463
    ):
464
        super().__init__()
patil-suraj's avatar
patil-suraj committed
465
466
467
468

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
469
470
471
472
473
474
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            double_z=True,
patil-suraj's avatar
patil-suraj committed
475
476
477
478
        )

        # pass init params to Decoder
        self.decoder = Decoder(
479
480
481
482
483
484
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
patil-suraj's avatar
patil-suraj committed
485
486
        )

487
488
        self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
        self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
patil-suraj's avatar
patil-suraj committed
489

490
    def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
patil-suraj's avatar
patil-suraj committed
491
492
493
494
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)

495
496
497
498
499
500
        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
patil-suraj's avatar
patil-suraj committed
501
502
503
        z = self.post_quant_conv(z)
        dec = self.decoder(z)

504
505
506
507
508
509
510
511
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def forward(
        self, sample: torch.FloatTensor, sample_posterior: bool = False, return_dict: bool = True
    ) -> Union[DecoderOutput, torch.FloatTensor]:
512
        x = sample
513
        posterior = self.encode(x).latent_dist
patil-suraj's avatar
patil-suraj committed
514
515
516
517
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()
518
519
520
521
522
523
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)