single_file_utils.py 160 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
"""Conversion script for the Stable Diffusion checkpoints."""
16

17
import copy
18
19
20
21
22
23
24
import os
import re
from contextlib import nullcontext
from io import BytesIO
from urllib.parse import urlparse

import requests
Dhruv Nair's avatar
Dhruv Nair committed
25
import torch
26
27
28
29
30
31
import yaml

from ..models.modeling_utils import load_state_dict
from ..schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
32
    EDMDPMSolverMultistepScheduler,
33
34
35
36
37
38
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
39
40
41
42
43
44
45
46
from ..utils import (
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    deprecate,
    is_accelerate_available,
    is_transformers_available,
    logging,
)
47
from ..utils.constants import DIFFUSERS_REQUEST_TIMEOUT
48
from ..utils.hub_utils import _get_model_file
49
from ..utils.torch_utils import device_synchronize, empty_device_cache
50
51
52


if is_transformers_available():
53
    from transformers import AutoImageProcessor
54
55
56
57

if is_accelerate_available():
    from accelerate import init_empty_weights

58
59
    from ..models.modeling_utils import load_model_dict_into_meta

60
61
62
63
64
65
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

CHECKPOINT_KEY_NAMES = {
    "v2": "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
    "xl_base": "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias",
    "xl_refiner": "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias",
66
    "upscale": "model.diffusion_model.input_blocks.10.0.skip_connection.bias",
67
68
69
70
71
72
73
74
    "controlnet": [
        "control_model.time_embed.0.weight",
        "controlnet_cond_embedding.conv_in.weight",
    ],
    # TODO: find non-Diffusers keys for controlnet_xl
    "controlnet_xl": "add_embedding.linear_1.weight",
    "controlnet_xl_large": "down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k.weight",
    "controlnet_xl_mid": "down_blocks.1.attentions.0.norm.weight",
75
76
    "playground-v2-5": "edm_mean",
    "inpainting": "model.diffusion_model.input_blocks.0.0.weight",
77
    "clip": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
78
    "clip_sdxl": "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight",
Dhruv Nair's avatar
Dhruv Nair committed
79
    "clip_sd3": "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight",
80
81
82
    "open_clip": "cond_stage_model.model.token_embedding.weight",
    "open_clip_sdxl": "conditioner.embedders.1.model.positional_embedding",
    "open_clip_sdxl_refiner": "conditioner.embedders.0.model.text_projection",
Dhruv Nair's avatar
Dhruv Nair committed
83
    "open_clip_sd3": "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight",
84
85
    "stable_cascade_stage_b": "down_blocks.1.0.channelwise.0.weight",
    "stable_cascade_stage_c": "clip_txt_mapper.weight",
86
87
88
89
90
91
92
93
    "sd3": [
        "joint_blocks.0.context_block.adaLN_modulation.1.bias",
        "model.diffusion_model.joint_blocks.0.context_block.adaLN_modulation.1.bias",
    ],
    "sd35_large": [
        "joint_blocks.37.x_block.mlp.fc1.weight",
        "model.diffusion_model.joint_blocks.37.x_block.mlp.fc1.weight",
    ],
94
    "animatediff": "down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.pos_encoder.pe",
95
96
    "animatediff_v2": "mid_block.motion_modules.0.temporal_transformer.norm.bias",
    "animatediff_sdxl_beta": "up_blocks.2.motion_modules.0.temporal_transformer.norm.weight",
97
98
    "animatediff_scribble": "controlnet_cond_embedding.conv_in.weight",
    "animatediff_rgb": "controlnet_cond_embedding.weight",
99
100
101
102
103
104
    "auraflow": [
        "double_layers.0.attn.w2q.weight",
        "double_layers.0.attn.w1q.weight",
        "cond_seq_linear.weight",
        "t_embedder.mlp.0.weight",
    ],
105
106
107
108
    "flux": [
        "double_blocks.0.img_attn.norm.key_norm.scale",
        "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale",
    ],
Aryan's avatar
Aryan committed
109
    "ltx-video": [
110
111
112
113
114
        "model.diffusion_model.patchify_proj.weight",
        "model.diffusion_model.transformer_blocks.27.scale_shift_table",
        "patchify_proj.weight",
        "transformer_blocks.27.scale_shift_table",
        "vae.per_channel_statistics.mean-of-means",
Aryan's avatar
Aryan committed
115
    ],
116
117
    "autoencoder-dc": "decoder.stages.1.op_list.0.main.conv.conv.bias",
    "autoencoder-dc-sana": "encoder.project_in.conv.bias",
118
    "mochi-1-preview": ["model.diffusion_model.blocks.0.attn.qkv_x.weight", "blocks.0.attn.qkv_x.weight"],
119
    "hunyuan-video": "txt_in.individual_token_refiner.blocks.0.adaLN_modulation.1.bias",
120
    "instruct-pix2pix": "model.diffusion_model.input_blocks.0.0.weight",
121
    "lumina2": ["model.diffusion_model.cap_embedder.0.weight", "cap_embedder.0.weight"],
122
123
124
125
126
127
    "sana": [
        "blocks.0.cross_attn.q_linear.weight",
        "blocks.0.cross_attn.q_linear.bias",
        "blocks.0.cross_attn.kv_linear.weight",
        "blocks.0.cross_attn.kv_linear.bias",
    ],
128
129
    "wan": ["model.diffusion_model.head.modulation", "head.modulation"],
    "wan_vae": "decoder.middle.0.residual.0.gamma",
130
    "wan_vace": "vace_blocks.0.after_proj.bias",
131
    "hidream": "double_stream_blocks.0.block.adaLN_modulation.1.bias",
Aryan's avatar
Aryan committed
132
133
134
135
136
137
138
139
140
141
    "cosmos-1.0": [
        "net.x_embedder.proj.1.weight",
        "net.blocks.block1.blocks.0.block.attn.to_q.0.weight",
        "net.extra_pos_embedder.pos_emb_h",
    ],
    "cosmos-2.0": [
        "net.x_embedder.proj.1.weight",
        "net.blocks.0.self_attn.q_proj.weight",
        "net.pos_embedder.dim_spatial_range",
    ],
142
143
}

144
145
146
147
148
149
DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
    "xl_base": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-base-1.0"},
    "xl_refiner": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-refiner-1.0"},
    "xl_inpaint": {"pretrained_model_name_or_path": "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"},
    "playground-v2-5": {"pretrained_model_name_or_path": "playgroundai/playground-v2.5-1024px-aesthetic"},
    "upscale": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-x4-upscaler"},
150
    "inpainting": {"pretrained_model_name_or_path": "stable-diffusion-v1-5/stable-diffusion-inpainting"},
151
152
    "inpainting_v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-inpainting"},
    "controlnet": {"pretrained_model_name_or_path": "lllyasviel/control_v11p_sd15_canny"},
153
154
155
    "controlnet_xl_large": {"pretrained_model_name_or_path": "diffusers/controlnet-canny-sdxl-1.0"},
    "controlnet_xl_mid": {"pretrained_model_name_or_path": "diffusers/controlnet-canny-sdxl-1.0-mid"},
    "controlnet_xl_small": {"pretrained_model_name_or_path": "diffusers/controlnet-canny-sdxl-1.0-small"},
156
    "v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-1"},
157
    "v1": {"pretrained_model_name_or_path": "stable-diffusion-v1-5/stable-diffusion-v1-5"},
158
159
160
161
162
163
164
165
166
167
168
169
170
    "stable_cascade_stage_b": {"pretrained_model_name_or_path": "stabilityai/stable-cascade", "subfolder": "decoder"},
    "stable_cascade_stage_b_lite": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade",
        "subfolder": "decoder_lite",
    },
    "stable_cascade_stage_c": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade-prior",
        "subfolder": "prior",
    },
    "stable_cascade_stage_c_lite": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade-prior",
        "subfolder": "prior_lite",
    },
Dhruv Nair's avatar
Dhruv Nair committed
171
172
173
    "sd3": {
        "pretrained_model_name_or_path": "stabilityai/stable-diffusion-3-medium-diffusers",
    },
Dhruv Nair's avatar
Dhruv Nair committed
174
175
176
    "sd35_large": {
        "pretrained_model_name_or_path": "stabilityai/stable-diffusion-3.5-large",
    },
177
178
179
    "sd35_medium": {
        "pretrained_model_name_or_path": "stabilityai/stable-diffusion-3.5-medium",
    },
180
181
182
183
    "animatediff_v1": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5"},
    "animatediff_v2": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-2"},
    "animatediff_v3": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-3"},
    "animatediff_sdxl_beta": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-sdxl-beta"},
184
185
    "animatediff_scribble": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-scribble"},
    "animatediff_rgb": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-rgb"},
186
    "auraflow": {"pretrained_model_name_or_path": "fal/AuraFlow-v0.3"},
187
    "flux-dev": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-dev"},
188
189
    "flux-fill": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-Fill-dev"},
    "flux-depth": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-Depth-dev"},
190
    "flux-schnell": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-schnell"},
Aryan's avatar
Aryan committed
191
192
    "ltx-video": {"pretrained_model_name_or_path": "diffusers/LTX-Video-0.9.0"},
    "ltx-video-0.9.1": {"pretrained_model_name_or_path": "diffusers/LTX-Video-0.9.1"},
hlky's avatar
hlky committed
193
    "ltx-video-0.9.5": {"pretrained_model_name_or_path": "Lightricks/LTX-Video-0.9.5"},
194
    "ltx-video-0.9.7": {"pretrained_model_name_or_path": "Lightricks/LTX-Video-0.9.7-dev"},
195
196
197
198
    "autoencoder-dc-f128c512": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers"},
    "autoencoder-dc-f64c128": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers"},
    "autoencoder-dc-f32c32": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f32c32-mix-1.0-diffusers"},
    "autoencoder-dc-f32c32-sana": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers"},
199
    "mochi-1-preview": {"pretrained_model_name_or_path": "genmo/mochi-1-preview"},
200
    "hunyuan-video": {"pretrained_model_name_or_path": "hunyuanvideo-community/HunyuanVideo"},
201
    "instruct-pix2pix": {"pretrained_model_name_or_path": "timbrooks/instruct-pix2pix"},
202
    "lumina2": {"pretrained_model_name_or_path": "Alpha-VLLM/Lumina-Image-2.0"},
203
    "sana": {"pretrained_model_name_or_path": "Efficient-Large-Model/Sana_1600M_1024px_diffusers"},
204
205
206
    "wan-t2v-1.3B": {"pretrained_model_name_or_path": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"},
    "wan-t2v-14B": {"pretrained_model_name_or_path": "Wan-AI/Wan2.1-T2V-14B-Diffusers"},
    "wan-i2v-14B": {"pretrained_model_name_or_path": "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"},
207
208
    "wan-vace-1.3B": {"pretrained_model_name_or_path": "Wan-AI/Wan2.1-VACE-1.3B-diffusers"},
    "wan-vace-14B": {"pretrained_model_name_or_path": "Wan-AI/Wan2.1-VACE-14B-diffusers"},
209
    "hidream": {"pretrained_model_name_or_path": "HiDream-ai/HiDream-I1-Dev"},
Aryan's avatar
Aryan committed
210
211
212
213
214
215
216
217
    "cosmos-1.0-t2w-7B": {"pretrained_model_name_or_path": "nvidia/Cosmos-1.0-Diffusion-7B-Text2World"},
    "cosmos-1.0-t2w-14B": {"pretrained_model_name_or_path": "nvidia/Cosmos-1.0-Diffusion-14B-Text2World"},
    "cosmos-1.0-v2w-7B": {"pretrained_model_name_or_path": "nvidia/Cosmos-1.0-Diffusion-7B-Video2World"},
    "cosmos-1.0-v2w-14B": {"pretrained_model_name_or_path": "nvidia/Cosmos-1.0-Diffusion-14B-Video2World"},
    "cosmos-2.0-t2i-2B": {"pretrained_model_name_or_path": "nvidia/Cosmos-Predict2-2B-Text2Image"},
    "cosmos-2.0-t2i-14B": {"pretrained_model_name_or_path": "nvidia/Cosmos-Predict2-14B-Text2Image"},
    "cosmos-2.0-v2w-2B": {"pretrained_model_name_or_path": "nvidia/Cosmos-Predict2-2B-Video2World"},
    "cosmos-2.0-v2w-14B": {"pretrained_model_name_or_path": "nvidia/Cosmos-Predict2-14B-Video2World"},
218
219
}

220
221
222
223
224
225
226
227
228
229
# Use to configure model sample size when original config is provided
DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP = {
    "xl_base": 1024,
    "xl_refiner": 1024,
    "xl_inpaint": 1024,
    "playground-v2-5": 1024,
    "upscale": 512,
    "inpainting": 512,
    "inpainting_v2": 512,
    "controlnet": 512,
230
    "instruct-pix2pix": 512,
231
232
    "v2": 768,
    "v1": 512,
233
234
235
}


236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
DIFFUSERS_TO_LDM_MAPPING = {
    "unet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "conv_norm_out.weight": "out.0.weight",
            "conv_norm_out.bias": "out.0.bias",
            "conv_out.weight": "out.2.weight",
            "conv_out.bias": "out.2.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "controlnet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "controlnet_cond_embedding.conv_in.weight": "input_hint_block.0.weight",
            "controlnet_cond_embedding.conv_in.bias": "input_hint_block.0.bias",
            "controlnet_cond_embedding.conv_out.weight": "input_hint_block.14.weight",
            "controlnet_cond_embedding.conv_out.bias": "input_hint_block.14.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "vae": {
        "encoder.conv_in.weight": "encoder.conv_in.weight",
        "encoder.conv_in.bias": "encoder.conv_in.bias",
        "encoder.conv_out.weight": "encoder.conv_out.weight",
        "encoder.conv_out.bias": "encoder.conv_out.bias",
        "encoder.conv_norm_out.weight": "encoder.norm_out.weight",
        "encoder.conv_norm_out.bias": "encoder.norm_out.bias",
        "decoder.conv_in.weight": "decoder.conv_in.weight",
        "decoder.conv_in.bias": "decoder.conv_in.bias",
        "decoder.conv_out.weight": "decoder.conv_out.weight",
        "decoder.conv_out.bias": "decoder.conv_out.bias",
        "decoder.conv_norm_out.weight": "decoder.norm_out.weight",
        "decoder.conv_norm_out.bias": "decoder.norm_out.bias",
        "quant_conv.weight": "quant_conv.weight",
        "quant_conv.bias": "quant_conv.bias",
        "post_quant_conv.weight": "post_quant_conv.weight",
        "post_quant_conv.bias": "post_quant_conv.bias",
    },
    "openclip": {
        "layers": {
            "text_model.embeddings.position_embedding.weight": "positional_embedding",
            "text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "text_model.final_layer_norm.weight": "ln_final.weight",
            "text_model.final_layer_norm.bias": "ln_final.bias",
            "text_projection.weight": "text_projection",
        },
        "transformer": {
            "text_model.encoder.layers.": "resblocks.",
            "layer_norm1": "ln_1",
            "layer_norm2": "ln_2",
            ".fc1.": ".c_fc.",
            ".fc2.": ".c_proj.",
            ".self_attn": ".attn",
            "transformer.text_model.final_layer_norm.": "ln_final.",
            "transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "transformer.text_model.embeddings.position_embedding.weight": "positional_embedding",
        },
    },
}

SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_weight",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.weight",
    "cond_stage_model.model.text_projection",
]

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# To support legacy scheduler_type argument
SCHEDULER_DEFAULT_CONFIG = {
    "beta_schedule": "scaled_linear",
    "beta_start": 0.00085,
    "beta_end": 0.012,
    "interpolation_type": "linear",
    "num_train_timesteps": 1000,
    "prediction_type": "epsilon",
    "sample_max_value": 1.0,
    "set_alpha_to_one": False,
    "skip_prk_steps": True,
    "steps_offset": 1,
    "timestep_spacing": "leading",
}

360
LDM_VAE_KEYS = ["first_stage_model.", "vae."]
361
362
363
364
LDM_VAE_DEFAULT_SCALING_FACTOR = 0.18215
PLAYGROUND_VAE_SCALING_FACTOR = 0.5
LDM_UNET_KEY = "model.diffusion_model."
LDM_CONTROLNET_KEY = "control_model."
Dhruv Nair's avatar
Dhruv Nair committed
365
366
367
368
LDM_CLIP_PREFIX_TO_REMOVE = [
    "cond_stage_model.transformer.",
    "conditioner.embedders.0.transformer.",
]
369
LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024
370
SCHEDULER_LEGACY_KWARGS = ["prediction_type", "scheduler_type"]
371
372
373
374

VALID_URL_PREFIXES = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]


375
376
377
378
379
380
381
382
383
384
385
386
387
388
class SingleFileComponentError(Exception):
    def __init__(self, message=None):
        self.message = message
        super().__init__(self.message)


def is_valid_url(url):
    result = urlparse(url)
    if result.scheme and result.netloc:
        return True

    return False


389
def _extract_repo_id_and_weights_name(pretrained_model_name_or_path):
390
391
392
    if not is_valid_url(pretrained_model_name_or_path):
        raise ValueError("Invalid `pretrained_model_name_or_path` provided. Please set it to a valid URL.")

393
394
395
396
397
398
399
    pattern = r"([^/]+)/([^/]+)/(?:blob/main/)?(.+)"
    weights_name = None
    repo_id = (None,)
    for prefix in VALID_URL_PREFIXES:
        pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, "")
    match = re.match(pattern, pretrained_model_name_or_path)
    if not match:
400
        logger.warning("Unable to identify the repo_id and weights_name from the provided URL.")
401
402
403
404
405
406
407
408
        return repo_id, weights_name

    repo_id = f"{match.group(1)}/{match.group(2)}"
    weights_name = match.group(3)

    return repo_id, weights_name


409
410
411
412
413
414
415
def _is_model_weights_in_cached_folder(cached_folder, name):
    pretrained_model_name_or_path = os.path.join(cached_folder, name)
    weights_exist = False

    for weights_name in [WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME]:
        if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
            weights_exist = True
416

417
    return weights_exist
418
419


420
421
422
423
def _is_legacy_scheduler_kwargs(kwargs):
    return any(k in SCHEDULER_LEGACY_KWARGS for k in kwargs.keys())


424
def load_single_file_checkpoint(
425
426
427
428
429
430
431
    pretrained_model_link_or_path,
    force_download=False,
    proxies=None,
    token=None,
    cache_dir=None,
    local_files_only=None,
    revision=None,
432
    disable_mmap=False,
433
    user_agent=None,
434
):
435
436
437
    if user_agent is None:
        user_agent = {"file_type": "single_file", "framework": "pytorch"}

438
    if os.path.isfile(pretrained_model_link_or_path):
439
440
        pretrained_model_link_or_path = pretrained_model_link_or_path

441
442
    else:
        repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path)
443
        pretrained_model_link_or_path = _get_model_file(
444
445
446
447
448
449
450
451
            repo_id,
            weights_name=weights_name,
            force_download=force_download,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
452
            user_agent=user_agent,
453
        )
454

455
    checkpoint = load_state_dict(pretrained_model_link_or_path, disable_mmap=disable_mmap)
456
457
458
459
460

    # some checkpoints contain the model state dict under a "state_dict" key
    while "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]

461
    return checkpoint
462
463


464
465
466
467
def fetch_original_config(original_config_file, local_files_only=False):
    if os.path.isfile(original_config_file):
        with open(original_config_file, "r") as fp:
            original_config_file = fp.read()
468

469
470
471
472
473
474
    elif is_valid_url(original_config_file):
        if local_files_only:
            raise ValueError(
                "`local_files_only` is set to True, but a URL was provided as `original_config_file`. "
                "Please provide a valid local file path."
            )
475

476
        original_config_file = BytesIO(requests.get(original_config_file, timeout=DIFFUSERS_REQUEST_TIMEOUT).content)
477

478
479
    else:
        raise ValueError("Invalid `original_config_file` provided. Please set it to a valid file path or URL.")
480

481
    original_config = yaml.safe_load(original_config_file)
482

483
    return original_config
484
485


486
487
488
def is_clip_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip"] in checkpoint:
        return True
489

490
    return False
491
492


493
494
495
def is_clip_sdxl_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip_sdxl"] in checkpoint:
        return True
496

497
    return False
498
499


Dhruv Nair's avatar
Dhruv Nair committed
500
501
502
503
504
505
506
def is_clip_sd3_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip_sd3"] in checkpoint:
        return True

    return False


507
508
509
def is_open_clip_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["open_clip"] in checkpoint:
        return True
510

511
    return False
512
513


514
515
516
def is_open_clip_sdxl_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["open_clip_sdxl"] in checkpoint:
        return True
517

518
    return False
519
520


Dhruv Nair's avatar
Dhruv Nair committed
521
def is_open_clip_sd3_model(checkpoint):
522
523
524
525
    if CHECKPOINT_KEY_NAMES["open_clip_sd3"] in checkpoint:
        return True

    return False
Dhruv Nair's avatar
Dhruv Nair committed
526
527


528
def is_open_clip_sdxl_refiner_model(checkpoint):
529
    if CHECKPOINT_KEY_NAMES["open_clip_sdxl_refiner"] in checkpoint:
530
531
532
533
534
535
536
537
538
        return True

    return False


def is_clip_model_in_single_file(class_obj, checkpoint):
    is_clip_in_checkpoint = any(
        [
            is_clip_model(checkpoint),
Dhruv Nair's avatar
Dhruv Nair committed
539
            is_clip_sd3_model(checkpoint),
540
541
542
            is_open_clip_model(checkpoint),
            is_open_clip_sdxl_model(checkpoint),
            is_open_clip_sdxl_refiner_model(checkpoint),
Dhruv Nair's avatar
Dhruv Nair committed
543
            is_open_clip_sd3_model(checkpoint),
544
        ]
545
    )
546
547
548
549
550
551
    if (
        class_obj.__name__ == "CLIPTextModel" or class_obj.__name__ == "CLIPTextModelWithProjection"
    ) and is_clip_in_checkpoint:
        return True

    return False
552
553


554
555
556
557
558
559
560
def infer_diffusers_model_type(checkpoint):
    if (
        CHECKPOINT_KEY_NAMES["inpainting"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["inpainting"]].shape[1] == 9
    ):
        if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
            model_type = "inpainting_v2"
561
562
        elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint:
            model_type = "xl_inpaint"
563
        else:
564
            model_type = "inpainting"
565

566
567
    elif CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
        model_type = "v2"
568

569
570
    elif CHECKPOINT_KEY_NAMES["playground-v2-5"] in checkpoint:
        model_type = "playground-v2-5"
571

572
573
    elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint:
        model_type = "xl_base"
574

575
576
    elif CHECKPOINT_KEY_NAMES["xl_refiner"] in checkpoint:
        model_type = "xl_refiner"
577

578
579
    elif CHECKPOINT_KEY_NAMES["upscale"] in checkpoint:
        model_type = "upscale"
580

581
582
583
584
585
586
587
588
589
590
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["controlnet"]):
        if CHECKPOINT_KEY_NAMES["controlnet_xl"] in checkpoint:
            if CHECKPOINT_KEY_NAMES["controlnet_xl_large"] in checkpoint:
                model_type = "controlnet_xl_large"
            elif CHECKPOINT_KEY_NAMES["controlnet_xl_mid"] in checkpoint:
                model_type = "controlnet_xl_mid"
            else:
                model_type = "controlnet_xl_small"
        else:
            model_type = "controlnet"
591

592
593
594
595
596
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 1536
    ):
        model_type = "stable_cascade_stage_c_lite"
597

598
599
600
601
602
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 2048
    ):
        model_type = "stable_cascade_stage_c"
603

604
605
606
607
608
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 576
    ):
        model_type = "stable_cascade_stage_b_lite"
609
610

    elif (
611
612
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 640
613
    ):
614
        model_type = "stable_cascade_stage_b"
615

616
617
618
619
620
621
622
623
624
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["sd3"]) and any(
        checkpoint[key].shape[-1] == 9216 if key in checkpoint else False for key in CHECKPOINT_KEY_NAMES["sd3"]
    ):
        if "model.diffusion_model.pos_embed" in checkpoint:
            key = "model.diffusion_model.pos_embed"
        else:
            key = "pos_embed"

        if checkpoint[key].shape[1] == 36864:
625
            model_type = "sd3"
626
        elif checkpoint[key].shape[1] == 147456:
627
            model_type = "sd35_medium"
Dhruv Nair's avatar
Dhruv Nair committed
628

629
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["sd35_large"]):
Dhruv Nair's avatar
Dhruv Nair committed
630
631
        model_type = "sd35_large"

632
    elif CHECKPOINT_KEY_NAMES["animatediff"] in checkpoint:
633
634
635
636
637
638
639
        if CHECKPOINT_KEY_NAMES["animatediff_scribble"] in checkpoint:
            model_type = "animatediff_scribble"

        elif CHECKPOINT_KEY_NAMES["animatediff_rgb"] in checkpoint:
            model_type = "animatediff_rgb"

        elif CHECKPOINT_KEY_NAMES["animatediff_v2"] in checkpoint:
640
641
642
643
644
645
646
647
648
649
650
            model_type = "animatediff_v2"

        elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff_sdxl_beta"]].shape[-1] == 320:
            model_type = "animatediff_sdxl_beta"

        elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff"]].shape[1] == 24:
            model_type = "animatediff_v1"

        else:
            model_type = "animatediff_v3"

651
652
653
654
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["flux"]):
        if any(
            g in checkpoint for g in ["guidance_in.in_layer.bias", "model.diffusion_model.guidance_in.in_layer.bias"]
        ):
655
656
657
658
            if "model.diffusion_model.img_in.weight" in checkpoint:
                key = "model.diffusion_model.img_in.weight"
            else:
                key = "img_in.weight"
659

660
661
662
            if checkpoint[key].shape[1] == 384:
                model_type = "flux-fill"
            elif checkpoint[key].shape[1] == 128:
663
664
665
                model_type = "flux-depth"
            else:
                model_type = "flux-dev"
666
667
        else:
            model_type = "flux-schnell"
668

669
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["ltx-video"]):
670
671
672
673
        has_vae = "vae.encoder.conv_in.conv.bias" in checkpoint
        if any(key.endswith("transformer_blocks.47.scale_shift_table") for key in checkpoint):
            model_type = "ltx-video-0.9.7"
        elif has_vae and checkpoint["vae.encoder.conv_out.conv.weight"].shape[1] == 2048:
hlky's avatar
hlky committed
674
675
            model_type = "ltx-video-0.9.5"
        elif "vae.decoder.last_time_embedder.timestep_embedder.linear_1.weight" in checkpoint:
Aryan's avatar
Aryan committed
676
677
678
            model_type = "ltx-video-0.9.1"
        else:
            model_type = "ltx-video"
Aryan's avatar
Aryan committed
679

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    elif CHECKPOINT_KEY_NAMES["autoencoder-dc"] in checkpoint:
        encoder_key = "encoder.project_in.conv.conv.bias"
        decoder_key = "decoder.project_in.main.conv.weight"

        if CHECKPOINT_KEY_NAMES["autoencoder-dc-sana"] in checkpoint:
            model_type = "autoencoder-dc-f32c32-sana"

        elif checkpoint[encoder_key].shape[-1] == 64 and checkpoint[decoder_key].shape[1] == 32:
            model_type = "autoencoder-dc-f32c32"

        elif checkpoint[encoder_key].shape[-1] == 64 and checkpoint[decoder_key].shape[1] == 128:
            model_type = "autoencoder-dc-f64c128"

        else:
            model_type = "autoencoder-dc-f128c512"

696
697
698
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["mochi-1-preview"]):
        model_type = "mochi-1-preview"

699
    elif CHECKPOINT_KEY_NAMES["hunyuan-video"] in checkpoint:
700
701
        model_type = "hunyuan-video"

702
703
704
    elif all(key in checkpoint for key in CHECKPOINT_KEY_NAMES["auraflow"]):
        model_type = "auraflow"

705
706
707
708
709
710
    elif (
        CHECKPOINT_KEY_NAMES["instruct-pix2pix"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["instruct-pix2pix"]].shape[1] == 8
    ):
        model_type = "instruct-pix2pix"

711
712
713
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["lumina2"]):
        model_type = "lumina2"

714
715
716
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["sana"]):
        model_type = "sana"

717
718
719
720
721
722
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["wan"]):
        if "model.diffusion_model.patch_embedding.weight" in checkpoint:
            target_key = "model.diffusion_model.patch_embedding.weight"
        else:
            target_key = "patch_embedding.weight"

723
724
725
726
727
728
729
        if CHECKPOINT_KEY_NAMES["wan_vace"] in checkpoint:
            if checkpoint[target_key].shape[0] == 1536:
                model_type = "wan-vace-1.3B"
            elif checkpoint[target_key].shape[0] == 5120:
                model_type = "wan-vace-14B"

        elif checkpoint[target_key].shape[0] == 1536:
730
731
732
733
734
            model_type = "wan-t2v-1.3B"
        elif checkpoint[target_key].shape[0] == 5120 and checkpoint[target_key].shape[1] == 16:
            model_type = "wan-t2v-14B"
        else:
            model_type = "wan-i2v-14B"
Aryan's avatar
Aryan committed
735

736
737
738
    elif CHECKPOINT_KEY_NAMES["wan_vae"] in checkpoint:
        # All Wan models use the same VAE so we can use the same default model repo to fetch the config
        model_type = "wan-t2v-14B"
Aryan's avatar
Aryan committed
739

740
741
    elif CHECKPOINT_KEY_NAMES["hidream"] in checkpoint:
        model_type = "hidream"
Aryan's avatar
Aryan committed
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

    elif all(key in checkpoint for key in CHECKPOINT_KEY_NAMES["cosmos-1.0"]):
        x_embedder_shape = checkpoint[CHECKPOINT_KEY_NAMES["cosmos-1.0"][0]].shape
        if x_embedder_shape[1] == 68:
            model_type = "cosmos-1.0-t2w-7B" if x_embedder_shape[0] == 4096 else "cosmos-1.0-t2w-14B"
        elif x_embedder_shape[1] == 72:
            model_type = "cosmos-1.0-v2w-7B" if x_embedder_shape[0] == 4096 else "cosmos-1.0-v2w-14B"
        else:
            raise ValueError(f"Unexpected x_embedder shape: {x_embedder_shape} when loading Cosmos 1.0 model.")

    elif all(key in checkpoint for key in CHECKPOINT_KEY_NAMES["cosmos-2.0"]):
        x_embedder_shape = checkpoint[CHECKPOINT_KEY_NAMES["cosmos-2.0"][0]].shape
        if x_embedder_shape[1] == 68:
            model_type = "cosmos-2.0-t2i-2B" if x_embedder_shape[0] == 2048 else "cosmos-2.0-t2i-14B"
        elif x_embedder_shape[1] == 72:
            model_type = "cosmos-2.0-v2w-2B" if x_embedder_shape[0] == 2048 else "cosmos-2.0-v2w-14B"
        else:
            raise ValueError(f"Unexpected x_embedder shape: {x_embedder_shape} when loading Cosmos 2.0 model.")

761
    else:
762
763
764
765
766
767
768
769
        model_type = "v1"

    return model_type


def fetch_diffusers_config(checkpoint):
    model_type = infer_diffusers_model_type(checkpoint)
    model_path = DIFFUSERS_DEFAULT_PIPELINE_PATHS[model_type]
770
    model_path = copy.deepcopy(model_path)
771
772
773
774
775
776

    return model_path


def set_image_size(checkpoint, image_size=None):
    if image_size:
777
778
        return image_size

779
780
781
782
783
    model_type = infer_diffusers_model_type(checkpoint)
    image_size = DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP[model_type]

    return image_size

784
785
786
787
788
789
790
791
792
793
794
795
796
797

# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["query.weight", "key.weight", "value.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]


798
799
800
def create_unet_diffusers_config_from_ldm(
    original_config, checkpoint, image_size=None, upcast_attention=None, num_in_channels=None
):
801
802
803
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
804
805
806
807
808
809
810
811
812
    if image_size is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `image_size` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

813
814
815
816
817
818
819
820
    if (
        "unet_config" in original_config["model"]["params"]
        and original_config["model"]["params"]["unet_config"] is not None
    ):
        unet_params = original_config["model"]["params"]["unet_config"]["params"]
    else:
        unet_params = original_config["model"]["params"]["network_config"]["params"]

821
822
823
824
825
826
827
828
829
830
    if num_in_channels is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `num_in_channels` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)
        in_channels = num_in_channels
    else:
        in_channels = unet_params["in_channels"]

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
    block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]

    down_block_types = []
    resolution = 1
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
        down_block_types.append(block_type)
        if i != len(block_out_channels) - 1:
            resolution *= 2

    up_block_types = []
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
        up_block_types.append(block_type)
        resolution //= 2

    if unet_params["transformer_depth"] is not None:
        transformer_layers_per_block = (
            unet_params["transformer_depth"]
            if isinstance(unet_params["transformer_depth"], int)
            else list(unet_params["transformer_depth"])
        )
    else:
        transformer_layers_per_block = 1

    vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)

    head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
    use_linear_projection = (
        unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
    )
    if use_linear_projection:
        # stable diffusion 2-base-512 and 2-768
        if head_dim is None:
            head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"]
            head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])]

    class_embed_type = None
    addition_embed_type = None
    addition_time_embed_dim = None
    projection_class_embeddings_input_dim = None
    context_dim = None

    if unet_params["context_dim"] is not None:
        context_dim = (
            unet_params["context_dim"]
            if isinstance(unet_params["context_dim"], int)
            else unet_params["context_dim"][0]
        )

    if "num_classes" in unet_params:
        if unet_params["num_classes"] == "sequential":
            if context_dim in [2048, 1280]:
                # SDXL
                addition_embed_type = "text_time"
                addition_time_embed_dim = 256
            else:
                class_embed_type = "projection"
            assert "adm_in_channels" in unet_params
            projection_class_embeddings_input_dim = unet_params["adm_in_channels"]

    config = {
        "sample_size": image_size // vae_scale_factor,
895
        "in_channels": in_channels,
896
897
        "down_block_types": down_block_types,
        "block_out_channels": block_out_channels,
898
899
900
901
902
903
904
905
906
907
908
        "layers_per_block": unet_params["num_res_blocks"],
        "cross_attention_dim": context_dim,
        "attention_head_dim": head_dim,
        "use_linear_projection": use_linear_projection,
        "class_embed_type": class_embed_type,
        "addition_embed_type": addition_embed_type,
        "addition_time_embed_dim": addition_time_embed_dim,
        "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
        "transformer_layers_per_block": transformer_layers_per_block,
    }

909
910
911
912
913
914
915
916
    if upcast_attention is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)
        config["upcast_attention"] = upcast_attention

917
918
919
920
921
922
923
    if "disable_self_attentions" in unet_params:
        config["only_cross_attention"] = unet_params["disable_self_attentions"]

    if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int):
        config["num_class_embeds"] = unet_params["num_classes"]

    config["out_channels"] = unet_params["out_channels"]
924
    config["up_block_types"] = up_block_types
925
926
927
928

    return config


929
930
931
932
933
934
935
936
937
938
def create_controlnet_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, **kwargs):
    if image_size is not None:
        deprecation_message = (
            "Configuring ControlNetModel with the `image_size` argument"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

939
    unet_params = original_config["model"]["params"]["control_stage_config"]["params"]
940
    diffusers_unet_config = create_unet_diffusers_config_from_ldm(original_config, image_size=image_size)
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960

    controlnet_config = {
        "conditioning_channels": unet_params["hint_channels"],
        "in_channels": diffusers_unet_config["in_channels"],
        "down_block_types": diffusers_unet_config["down_block_types"],
        "block_out_channels": diffusers_unet_config["block_out_channels"],
        "layers_per_block": diffusers_unet_config["layers_per_block"],
        "cross_attention_dim": diffusers_unet_config["cross_attention_dim"],
        "attention_head_dim": diffusers_unet_config["attention_head_dim"],
        "use_linear_projection": diffusers_unet_config["use_linear_projection"],
        "class_embed_type": diffusers_unet_config["class_embed_type"],
        "addition_embed_type": diffusers_unet_config["addition_embed_type"],
        "addition_time_embed_dim": diffusers_unet_config["addition_time_embed_dim"],
        "projection_class_embeddings_input_dim": diffusers_unet_config["projection_class_embeddings_input_dim"],
        "transformer_layers_per_block": diffusers_unet_config["transformer_layers_per_block"],
    }

    return controlnet_config


961
def create_vae_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, scaling_factor=None):
962
963
964
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
    if image_size is not None:
        deprecation_message = (
            "Configuring AutoencoderKL with the `image_size` argument"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

    if "edm_mean" in checkpoint and "edm_std" in checkpoint:
        latents_mean = checkpoint["edm_mean"]
        latents_std = checkpoint["edm_std"]
    else:
        latents_mean = None
        latents_std = None

981
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
982
983
    if (scaling_factor is None) and (latents_mean is not None) and (latents_std is not None):
        scaling_factor = PLAYGROUND_VAE_SCALING_FACTOR
984

985
    elif (scaling_factor is None) and ("scale_factor" in original_config["model"]["params"]):
986
        scaling_factor = original_config["model"]["params"]["scale_factor"]
987

988
989
    elif scaling_factor is None:
        scaling_factor = LDM_VAE_DEFAULT_SCALING_FACTOR
990
991
992
993
994
995
996
997
998

    block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)

    config = {
        "sample_size": image_size,
        "in_channels": vae_params["in_channels"],
        "out_channels": vae_params["out_ch"],
999
1000
1001
        "down_block_types": down_block_types,
        "up_block_types": up_block_types,
        "block_out_channels": block_out_channels,
1002
1003
1004
1005
        "latent_channels": vae_params["z_channels"],
        "layers_per_block": vae_params["num_res_blocks"],
        "scaling_factor": scaling_factor,
    }
1006
1007
    if latents_mean is not None and latents_std is not None:
        config.update({"latents_mean": latents_mean, "latents_std": latents_std})
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

    return config


def update_unet_resnet_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping=None):
    for ldm_key in ldm_keys:
        diffusers_key = (
            ldm_key.replace("in_layers.0", "norm1")
            .replace("in_layers.2", "conv1")
            .replace("out_layers.0", "norm2")
            .replace("out_layers.3", "conv2")
            .replace("emb_layers.1", "time_emb_proj")
            .replace("skip_connection", "conv_shortcut")
        )
        if mapping:
            diffusers_key = diffusers_key.replace(mapping["old"], mapping["new"])
1024
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)
1025
1026
1027
1028
1029


def update_unet_attention_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in ldm_keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"])
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)


def update_vae_resnet_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]).replace("nin_shortcut", "conv_shortcut")
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)


def update_vae_attentions_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = (
            ldm_key.replace(mapping["old"], mapping["new"])
            .replace("norm.weight", "group_norm.weight")
            .replace("norm.bias", "group_norm.bias")
            .replace("q.weight", "to_q.weight")
            .replace("q.bias", "to_q.bias")
            .replace("k.weight", "to_k.weight")
            .replace("k.bias", "to_k.bias")
            .replace("v.weight", "to_v.weight")
            .replace("v.bias", "to_v.bias")
            .replace("proj_out.weight", "to_out.0.weight")
            .replace("proj_out.bias", "to_out.0.bias")
        )
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)

        # proj_attn.weight has to be converted from conv 1D to linear
        shape = new_checkpoint[diffusers_key].shape

        if len(shape) == 3:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0]
        elif len(shape) == 4:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0, 0]


def convert_stable_cascade_unet_single_file_to_diffusers(checkpoint, **kwargs):
    is_stage_c = "clip_txt_mapper.weight" in checkpoint

    if is_stage_c:
        state_dict = {}
        for key in checkpoint.keys():
            if key.endswith("in_proj_weight"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
                state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
                state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
            elif key.endswith("in_proj_bias"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
                state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
                state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
            elif key.endswith("out_proj.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
            elif key.endswith("out_proj.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
            else:
                state_dict[key] = checkpoint[key]
    else:
        state_dict = {}
        for key in checkpoint.keys():
            if key.endswith("in_proj_weight"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
                state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
                state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
            elif key.endswith("in_proj_bias"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
                state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
                state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
            elif key.endswith("out_proj.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
            elif key.endswith("out_proj.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
            # rename clip_mapper to clip_txt_pooled_mapper
            elif key.endswith("clip_mapper.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("clip_mapper.weight", "clip_txt_pooled_mapper.weight")] = weights
            elif key.endswith("clip_mapper.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("clip_mapper.bias", "clip_txt_pooled_mapper.bias")] = weights
            else:
                state_dict[key] = checkpoint[key]

    return state_dict
1119
1120


1121
def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False, **kwargs):
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    # extract state_dict for UNet
    unet_state_dict = {}
    keys = list(checkpoint.keys())
    unet_key = LDM_UNET_KEY

    # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
    if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
1132
1133
        logger.warning("Checkpoint has both EMA and non-EMA weights.")
        logger.warning(
1134
1135
1136
1137
1138
1139
            "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
            " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
        )
        for key in keys:
            if key.startswith("model.diffusion_model"):
                flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
1140
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(flat_ema_key)
1141
1142
    else:
        if sum(k.startswith("model_ema") for k in keys) > 100:
1143
            logger.warning(
1144
1145
1146
1147
1148
                "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
            )
        for key in keys:
            if key.startswith(unet_key):
1149
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(key)
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

    new_checkpoint = {}
    ldm_unet_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["layers"]
    for diffusers_key, ldm_key in ldm_unet_keys.items():
        if ldm_key not in unet_state_dict:
            continue
        new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("class_embed_type" in config) and (config["class_embed_type"] in ["timestep", "projection"]):
        class_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["class_embed_type"]
        for diffusers_key, ldm_key in class_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("addition_embed_type" in config) and (config["addition_embed_type"] == "text_time"):
        addition_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["addition_embed_type"]
        for diffusers_key, ldm_key in addition_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    # Relevant to StableDiffusionUpscalePipeline
    if "num_class_embeds" in config:
        if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict):
            new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
1210
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.get(
1211
1212
                f"input_blocks.{i}.0.op.weight"
            )
1213
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.get(
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # Mid blocks
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
    for key in middle_blocks.keys():
        diffusers_key = max(key - 1, 0)
        if key % 2 == 0:
            update_unet_resnet_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                unet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"},
            )
        else:
            update_unet_attention_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                unet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"},
            )
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290

    # Up Blocks
    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)

        resnets = [
            key for key in output_blocks[i] if f"output_blocks.{i}.0" in key and f"output_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        attentions = [
            key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and f"output_blocks.{i}.1.conv" not in key
        ]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

        if f"output_blocks.{i}.1.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.bias"
            ]
        if f"output_blocks.{i}.2.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.bias"
            ]

    return new_checkpoint


def convert_controlnet_checkpoint(
    checkpoint,
    config,
1291
    **kwargs,
1292
):
1293
1294
1295
    # Return checkpoint if it's already been converted
    if "time_embedding.linear_1.weight" in checkpoint:
        return checkpoint
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
    # Some controlnet ckpt files are distributed independently from the rest of the
    # model components i.e. https://huggingface.co/thibaud/controlnet-sd21/
    if "time_embed.0.weight" in checkpoint:
        controlnet_state_dict = checkpoint

    else:
        controlnet_state_dict = {}
        keys = list(checkpoint.keys())
        controlnet_key = LDM_CONTROLNET_KEY
        for key in keys:
            if key.startswith(controlnet_key):
1307
                controlnet_state_dict[key.replace(controlnet_key, "")] = checkpoint.get(key)
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340

    new_checkpoint = {}
    ldm_controlnet_keys = DIFFUSERS_TO_LDM_MAPPING["controlnet"]["layers"]
    for diffusers_key, ldm_key in ldm_controlnet_keys.items():
        if ldm_key not in controlnet_state_dict:
            continue
        new_checkpoint[diffusers_key] = controlnet_state_dict[ldm_key]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "input_blocks" in layer}
    )
    input_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            controlnet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in controlnet_state_dict:
1341
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = controlnet_state_dict.get(
1342
1343
                f"input_blocks.{i}.0.op.weight"
            )
1344
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = controlnet_state_dict.get(
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                controlnet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # controlnet down blocks
    for i in range(num_input_blocks):
1359
1360
        new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = controlnet_state_dict.get(f"zero_convs.{i}.0.weight")
        new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = controlnet_state_dict.get(f"zero_convs.{i}.0.bias")
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "middle_block" in layer}
    )
    middle_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
    # Mid blocks
    for key in middle_blocks.keys():
        diffusers_key = max(key - 1, 0)
        if key % 2 == 0:
            update_unet_resnet_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                controlnet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"},
            )
        else:
            update_unet_attention_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                controlnet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"},
            )
1388
1389

    # mid block
1390
1391
    new_checkpoint["controlnet_mid_block.weight"] = controlnet_state_dict.get("middle_block_out.0.weight")
    new_checkpoint["controlnet_mid_block.bias"] = controlnet_state_dict.get("middle_block_out.0.bias")
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

    # controlnet cond embedding blocks
    cond_embedding_blocks = {
        ".".join(layer.split(".")[:2])
        for layer in controlnet_state_dict
        if "input_hint_block" in layer and ("input_hint_block.0" not in layer) and ("input_hint_block.14" not in layer)
    }
    num_cond_embedding_blocks = len(cond_embedding_blocks)

    for idx in range(1, num_cond_embedding_blocks + 1):
        diffusers_idx = idx - 1
        cond_block_id = 2 * idx

1405
        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.weight"] = controlnet_state_dict.get(
1406
1407
            f"input_hint_block.{cond_block_id}.weight"
        )
1408
        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.bias"] = controlnet_state_dict.get(
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
            f"input_hint_block.{cond_block_id}.bias"
        )

    return new_checkpoint


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    # remove the LDM_VAE_KEY prefix from the ldm checkpoint keys so that it is easier to map them to diffusers keys
    vae_state_dict = {}
    keys = list(checkpoint.keys())
1420
1421
1422
1423
1424
    vae_key = ""
    for ldm_vae_key in LDM_VAE_KEYS:
        if any(k.startswith(ldm_vae_key) for k in keys):
            vae_key = ldm_vae_key

1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}
    vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["vae"]
    for diffusers_key, ldm_key in vae_diffusers_ldm_map.items():
        if ldm_key not in vae_state_dict:
            continue
        new_checkpoint[diffusers_key] = vae_state_dict[ldm_key]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len(config["down_block_types"])
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"},
        )
        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
1451
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.get(
1452
1453
                f"encoder.down.{i}.downsample.conv.weight"
            )
1454
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.get(
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
                f"encoder.down.{i}.downsample.conv.bias"
            )

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len(config["up_block_types"])
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"},
        )
        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )
    conv_attn_to_linear(new_checkpoint)

    return new_checkpoint


1519
def convert_ldm_clip_checkpoint(checkpoint, remove_prefix=None):
1520
1521
1522
    keys = list(checkpoint.keys())
    text_model_dict = {}

1523
1524
1525
1526
    remove_prefixes = []
    remove_prefixes.extend(LDM_CLIP_PREFIX_TO_REMOVE)
    if remove_prefix:
        remove_prefixes.append(remove_prefix)
1527
1528
1529
1530
1531

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                diffusers_key = key.replace(prefix, "")
1532
                text_model_dict[diffusers_key] = checkpoint.get(key)
1533

1534
    return text_model_dict
1535

1536

1537
1538
def convert_open_clip_checkpoint(
    text_model,
1539
1540
1541
1542
1543
    checkpoint,
    prefix="cond_stage_model.model.",
):
    text_model_dict = {}
    text_proj_key = prefix + "text_projection"
1544
1545
1546

    if text_proj_key in checkpoint:
        text_proj_dim = int(checkpoint[text_proj_key].shape[0])
1547
1548
    elif hasattr(text_model.config, "hidden_size"):
        text_proj_dim = text_model.config.hidden_size
1549
1550
1551
    else:
        text_proj_dim = LDM_OPEN_CLIP_TEXT_PROJECTION_DIM

1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
    keys = list(checkpoint.keys())
    keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE

    openclip_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["layers"]
    for diffusers_key, ldm_key in openclip_diffusers_ldm_map.items():
        ldm_key = prefix + ldm_key
        if ldm_key not in checkpoint:
            continue
        if ldm_key in keys_to_ignore:
            continue
        if ldm_key.endswith("text_projection"):
            text_model_dict[diffusers_key] = checkpoint[ldm_key].T.contiguous()
        else:
            text_model_dict[diffusers_key] = checkpoint[ldm_key]

    for key in keys:
        if key in keys_to_ignore:
            continue

        if not key.startswith(prefix + "transformer."):
            continue

        diffusers_key = key.replace(prefix + "transformer.", "")
        transformer_diffusers_to_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["transformer"]
        for new_key, old_key in transformer_diffusers_to_ldm_map.items():
            diffusers_key = (
                diffusers_key.replace(old_key, new_key).replace(".in_proj_weight", "").replace(".in_proj_bias", "")
            )

        if key.endswith(".in_proj_weight"):
1582
            weight_value = checkpoint.get(key)
1583

1584
1585
1586
1587
1588
            text_model_dict[diffusers_key + ".q_proj.weight"] = weight_value[:text_proj_dim, :].clone().detach()
            text_model_dict[diffusers_key + ".k_proj.weight"] = (
                weight_value[text_proj_dim : text_proj_dim * 2, :].clone().detach()
            )
            text_model_dict[diffusers_key + ".v_proj.weight"] = weight_value[text_proj_dim * 2 :, :].clone().detach()
1589
1590

        elif key.endswith(".in_proj_bias"):
1591
1592
1593
1594
            weight_value = checkpoint.get(key)
            text_model_dict[diffusers_key + ".q_proj.bias"] = weight_value[:text_proj_dim].clone().detach()
            text_model_dict[diffusers_key + ".k_proj.bias"] = (
                weight_value[text_proj_dim : text_proj_dim * 2].clone().detach()
1595
            )
1596
1597
1598
            text_model_dict[diffusers_key + ".v_proj.bias"] = weight_value[text_proj_dim * 2 :].clone().detach()
        else:
            text_model_dict[diffusers_key] = checkpoint.get(key)
1599

1600
    return text_model_dict
1601
1602


1603
1604
def create_diffusers_clip_model_from_ldm(
    cls,
1605
    checkpoint,
1606
1607
    subfolder="",
    config=None,
1608
    torch_dtype=None,
1609
1610
    local_files_only=None,
    is_legacy_loading=False,
1611
):
1612
1613
1614
1615
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)
1616

1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
    # For backwards compatibility
    # Older versions of `from_single_file` expected CLIP configs to be placed in their original transformers model repo
    # in the cache_dir, rather than in a subfolder of the Diffusers model
    if is_legacy_loading:
        logger.warning(
            (
                "Detected legacy CLIP loading behavior. Please run `from_single_file` with `local_files_only=False once to update "
                "the local cache directory with the necessary CLIP model config files. "
                "Attempting to load CLIP model from legacy cache directory."
            )
        )
1628

1629
1630
1631
1632
        if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint):
            clip_config = "openai/clip-vit-large-patch14"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = ""
1633

1634
1635
1636
1637
        elif is_open_clip_model(checkpoint):
            clip_config = "stabilityai/stable-diffusion-2"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = "text_encoder"
1638

1639
1640
1641
1642
        else:
            clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = ""
1643

1644
    model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)
1645
1646
    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
1647
        model = cls(model_config)
1648

1649
    position_embedding_dim = model.text_model.embeddings.position_embedding.weight.shape[-1]
1650

1651
1652
    if is_clip_model(checkpoint):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint)
1653

1654
1655
1656
1657
1658
    elif (
        is_clip_sdxl_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["clip_sdxl"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint)
1659

1660
1661
1662
1663
1664
1665
1666
    elif (
        is_clip_sd3_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["clip_sd3"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_l.transformer.")
        diffusers_format_checkpoint["text_projection.weight"] = torch.eye(position_embedding_dim)

1667
1668
1669
    elif is_open_clip_model(checkpoint):
        prefix = "cond_stage_model.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1670

1671
1672
1673
1674
1675
1676
    elif (
        is_open_clip_sdxl_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sdxl"]].shape[-1] == position_embedding_dim
    ):
        prefix = "conditioner.embedders.1.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1677

1678
1679
1680
    elif is_open_clip_sdxl_refiner_model(checkpoint):
        prefix = "conditioner.embedders.0.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1681

1682
1683
1684
1685
1686
    elif (
        is_open_clip_sd3_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sd3"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_g.transformer.")
Dhruv Nair's avatar
Dhruv Nair committed
1687

1688
    else:
1689
        raise ValueError("The provided checkpoint does not seem to contain a valid CLIP model.")
1690
1691

    if is_accelerate_available():
1692
        load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
1693
1694
1695
1696
        # Ensure tensors are correctly placed on device by synchronizing before returning control to user. This is
        # required because we move tensors with non_blocking=True, which is slightly faster for model loading.
        empty_device_cache()
        device_synchronize()
1697
    else:
1698
        model.load_state_dict(diffusers_format_checkpoint, strict=False)
1699

1700
    if torch_dtype is not None:
1701
        model.to(torch_dtype)
1702

1703
    model.eval()
1704

1705
    return model
1706

1707
1708
1709

def _legacy_load_scheduler(
    cls,
1710
    checkpoint,
1711
1712
1713
    component_name,
    original_config=None,
    **kwargs,
1714
):
1715
1716
    scheduler_type = kwargs.get("scheduler_type", None)
    prediction_type = kwargs.get("prediction_type", None)
1717

1718
1719
    if scheduler_type is not None:
        deprecation_message = (
1720
1721
1722
1723
1724
            "Please pass an instance of a Scheduler object directly to the `scheduler` argument in `from_single_file`\n\n"
            "Example:\n\n"
            "from diffusers import StableDiffusionPipeline, DDIMScheduler\n\n"
            "scheduler = DDIMScheduler()\n"
            "pipe = StableDiffusionPipeline.from_single_file(<checkpoint path>, scheduler=scheduler)\n"
1725
1726
        )
        deprecate("scheduler_type", "1.0.0", deprecation_message)
1727

1728
1729
    if prediction_type is not None:
        deprecation_message = (
1730
1731
1732
1733
1734
1735
            "Please configure an instance of a Scheduler with the appropriate `prediction_type` and "
            "pass the object directly to the `scheduler` argument in `from_single_file`.\n\n"
            "Example:\n\n"
            "from diffusers import StableDiffusionPipeline, DDIMScheduler\n\n"
            'scheduler = DDIMScheduler(prediction_type="v_prediction")\n'
            "pipe = StableDiffusionPipeline.from_single_file(<checkpoint path>, scheduler=scheduler)\n"
1736
1737
        )
        deprecate("prediction_type", "1.0.0", deprecation_message)
1738

1739
1740
    scheduler_config = SCHEDULER_DEFAULT_CONFIG
    model_type = infer_diffusers_model_type(checkpoint=checkpoint)
1741
1742
1743

    global_step = checkpoint["global_step"] if "global_step" in checkpoint else None

1744
1745
1746
1747
1748
    if original_config:
        num_train_timesteps = getattr(original_config["model"]["params"], "timesteps", 1000)
    else:
        num_train_timesteps = 1000

1749
1750
    scheduler_config["num_train_timesteps"] = num_train_timesteps

1751
    if model_type == "v2":
1752
        if prediction_type is None:
1753
            # NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"` # as it relies on a brittle global step parameter here
1754
1755
1756
1757
1758
1759
1760
            prediction_type = "epsilon" if global_step == 875000 else "v_prediction"

    else:
        prediction_type = prediction_type or "epsilon"

    scheduler_config["prediction_type"] = prediction_type

1761
    if model_type in ["xl_base", "xl_refiner"]:
1762
        scheduler_type = "euler"
1763
    elif model_type == "playground":
1764
        scheduler_type = "edm_dpm_solver_multistep"
1765
    else:
1766
1767
1768
1769
1770
1771
1772
1773
        if original_config:
            beta_start = original_config["model"]["params"].get("linear_start")
            beta_end = original_config["model"]["params"].get("linear_end")

        else:
            beta_start = 0.02
            beta_end = 0.085

1774
1775
1776
1777
1778
1779
        scheduler_config["beta_start"] = beta_start
        scheduler_config["beta_end"] = beta_end
        scheduler_config["beta_schedule"] = "scaled_linear"
        scheduler_config["clip_sample"] = False
        scheduler_config["set_alpha_to_one"] = False

1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
    # to deal with an edge case StableDiffusionUpscale pipeline has two schedulers
    if component_name == "low_res_scheduler":
        return cls.from_config(
            {
                "beta_end": 0.02,
                "beta_schedule": "scaled_linear",
                "beta_start": 0.0001,
                "clip_sample": True,
                "num_train_timesteps": 1000,
                "prediction_type": "epsilon",
                "trained_betas": None,
                "variance_type": "fixed_small",
            }
        )

    if scheduler_type is None:
        return cls.from_config(scheduler_config)

    elif scheduler_type == "pndm":
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
        scheduler_config["skip_prk_steps"] = True
        scheduler = PNDMScheduler.from_config(scheduler_config)

    elif scheduler_type == "lms":
        scheduler = LMSDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "heun":
        scheduler = HeunDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler":
        scheduler = EulerDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler-ancestral":
        scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "dpm":
        scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)

    elif scheduler_type == "ddim":
        scheduler = DDIMScheduler.from_config(scheduler_config)

1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
    elif scheduler_type == "edm_dpm_solver_multistep":
        scheduler_config = {
            "algorithm_type": "dpmsolver++",
            "dynamic_thresholding_ratio": 0.995,
            "euler_at_final": False,
            "final_sigmas_type": "zero",
            "lower_order_final": True,
            "num_train_timesteps": 1000,
            "prediction_type": "epsilon",
            "rho": 7.0,
            "sample_max_value": 1.0,
            "sigma_data": 0.5,
            "sigma_max": 80.0,
            "sigma_min": 0.002,
            "solver_order": 2,
            "solver_type": "midpoint",
            "thresholding": False,
        }
        scheduler = EDMDPMSolverMultistepScheduler(**scheduler_config)

1840
1841
1842
    else:
        raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")

1843
    return scheduler
1844
1845


1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
def _legacy_load_clip_tokenizer(cls, checkpoint, config=None, local_files_only=False):
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)

    if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint):
        clip_config = "openai/clip-vit-large-patch14"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = ""

    elif is_open_clip_model(checkpoint):
        clip_config = "stabilityai/stable-diffusion-2"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = "tokenizer"

    else:
        clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = ""

    tokenizer = cls.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)

    return tokenizer


def _legacy_load_safety_checker(local_files_only, torch_dtype):
    # Support for loading safety checker components using the deprecated
    # `load_safety_checker` argument.

    from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

    feature_extractor = AutoImageProcessor.from_pretrained(
        "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
    )
    safety_checker = StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
    )

    return {"safety_checker": safety_checker, "feature_extractor": feature_extractor}
Dhruv Nair's avatar
Dhruv Nair committed
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895


# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
def swap_scale_shift(weight, dim):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)
    return new_weight


1896
1897
1898
1899
1900
1901
def swap_proj_gate(weight):
    proj, gate = weight.chunk(2, dim=0)
    new_weight = torch.cat([gate, proj], dim=0)
    return new_weight


Dhruv Nair's avatar
Dhruv Nair committed
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
def get_attn2_layers(state_dict):
    attn2_layers = []
    for key in state_dict.keys():
        if "attn2." in key:
            # Extract the layer number from the key
            layer_num = int(key.split(".")[1])
            attn2_layers.append(layer_num)

    return tuple(sorted(set(attn2_layers)))


def get_caption_projection_dim(state_dict):
    caption_projection_dim = state_dict["context_embedder.weight"].shape[0]
    return caption_projection_dim


Dhruv Nair's avatar
Dhruv Nair committed
1918
1919
1920
1921
1922
1923
1924
1925
def convert_sd3_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "joint_blocks" in k))[-1] + 1  # noqa: C401
Dhruv Nair's avatar
Dhruv Nair committed
1926
1927
1928
1929
    dual_attention_layers = get_attn2_layers(checkpoint)

    caption_projection_dim = get_caption_projection_dim(checkpoint)
    has_qk_norm = any("ln_q" in key for key in checkpoint.keys())
Dhruv Nair's avatar
Dhruv Nair committed
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

    # Positional and patch embeddings.
    converted_state_dict["pos_embed.pos_embed"] = checkpoint.pop("pos_embed")
    converted_state_dict["pos_embed.proj.weight"] = checkpoint.pop("x_embedder.proj.weight")
    converted_state_dict["pos_embed.proj.bias"] = checkpoint.pop("x_embedder.proj.bias")

    # Timestep embeddings.
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop(
        "t_embedder.mlp.0.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias")
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop(
        "t_embedder.mlp.2.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias")

    # Context projections.
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("context_embedder.weight")
    converted_state_dict["context_embedder.bias"] = checkpoint.pop("context_embedder.bias")

    # Pooled context projection.
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("y_embedder.mlp.0.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("y_embedder.mlp.0.bias")
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop("y_embedder.mlp.2.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("y_embedder.mlp.2.bias")

    # Transformer blocks 🎸.
    for i in range(num_layers):
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0
        )
        context_q, context_k, context_v = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0
        )

        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias])

        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias])

Dhruv Nair's avatar
Dhruv Nair committed
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
        # qk norm
        if has_qk_norm:
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_q.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn.ln_q.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_k.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn.ln_k.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_q.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.ln_q.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_k.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.ln_k.weight"
            )

Dhruv Nair's avatar
Dhruv Nair committed
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
        # output projections.
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.attn.proj.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.proj.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.proj.bias"
            )

Dhruv Nair's avatar
Dhruv Nair committed
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
        if i in dual_attention_layers:
            # Q, K, V
            sample_q2, sample_k2, sample_v2 = torch.chunk(
                checkpoint.pop(f"joint_blocks.{i}.x_block.attn2.qkv.weight"), 3, dim=0
            )
            sample_q2_bias, sample_k2_bias, sample_v2_bias = torch.chunk(
                checkpoint.pop(f"joint_blocks.{i}.x_block.attn2.qkv.bias"), 3, dim=0
            )
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.weight"] = torch.cat([sample_q2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.bias"] = torch.cat([sample_q2_bias])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.weight"] = torch.cat([sample_k2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.bias"] = torch.cat([sample_k2_bias])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.weight"] = torch.cat([sample_v2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.bias"] = torch.cat([sample_v2_bias])

            # qk norm
            if has_qk_norm:
                converted_state_dict[f"transformer_blocks.{i}.attn2.norm_q.weight"] = checkpoint.pop(
                    f"joint_blocks.{i}.x_block.attn2.ln_q.weight"
                )
                converted_state_dict[f"transformer_blocks.{i}.attn2.norm_k.weight"] = checkpoint.pop(
                    f"joint_blocks.{i}.x_block.attn2.ln_k.weight"
                )

            # output projections.
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn2.proj.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn2.proj.bias"
            )

Dhruv Nair's avatar
Dhruv Nair committed
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
        # norms.
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"
            )
        else:
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift(
                checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"),
                dim=caption_projection_dim,
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift(
                checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"),
                dim=caption_projection_dim,
            )

        # ffs.
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.bias"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.bias"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.bias"
            )

    # Final blocks.
    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim
    )

    return converted_state_dict


def is_t5_in_single_file(checkpoint):
    if "text_encoders.t5xxl.transformer.shared.weight" in checkpoint:
        return True

    return False


def convert_sd3_t5_checkpoint_to_diffusers(checkpoint):
    keys = list(checkpoint.keys())
    text_model_dict = {}

2123
    remove_prefixes = ["text_encoders.t5xxl.transformer."]
Dhruv Nair's avatar
Dhruv Nair committed
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                diffusers_key = key.replace(prefix, "")
                text_model_dict[diffusers_key] = checkpoint.get(key)

    return text_model_dict


def create_diffusers_t5_model_from_checkpoint(
    cls,
    checkpoint,
    subfolder="",
    config=None,
    torch_dtype=None,
    local_files_only=None,
):
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)

    model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)
    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        model = cls(model_config)

    diffusers_format_checkpoint = convert_sd3_t5_checkpoint_to_diffusers(checkpoint)

    if is_accelerate_available():
2155
        load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
2156
2157
2158
2159
        # Ensure tensors are correctly placed on device by synchronizing before returning control to user. This is
        # required because we move tensors with non_blocking=True, which is slightly faster for model loading.
        empty_device_cache()
        device_synchronize()
Dhruv Nair's avatar
Dhruv Nair committed
2160
2161
    else:
        model.load_state_dict(diffusers_format_checkpoint)
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174

    use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (torch_dtype == torch.float16)
    if use_keep_in_fp32_modules:
        keep_in_fp32_modules = model._keep_in_fp32_modules
    else:
        keep_in_fp32_modules = []

    if keep_in_fp32_modules is not None:
        for name, param in model.named_parameters():
            if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
                # param = param.to(torch.float32) does not work here as only in the local scope.
                param.data = param.data.to(torch.float32)

2175
    return model
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194


def convert_animatediff_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    for k, v in checkpoint.items():
        if "pos_encoder" in k:
            continue

        else:
            converted_state_dict[
                k.replace(".norms.0", ".norm1")
                .replace(".norms.1", ".norm2")
                .replace(".ff_norm", ".norm3")
                .replace(".attention_blocks.0", ".attn1")
                .replace(".attention_blocks.1", ".attn2")
                .replace(".temporal_transformer", "")
            ] = v

    return converted_state_dict
2195
2196
2197
2198


def convert_flux_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
2199
    keys = list(checkpoint.keys())
2200

2201
2202
2203
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1  # noqa: C401
    num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1  # noqa: C401
    mlp_ratio = 4.0
    inner_dim = 3072

    # in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
    # while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
    def swap_scale_shift(weight):
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        return new_weight

    ## time_text_embed.timestep_embedder <-  time_in
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop(
        "time_in.in_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("time_in.in_layer.bias")
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop(
        "time_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("time_in.out_layer.bias")

    ## time_text_embed.text_embedder <- vector_in
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("vector_in.in_layer.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("vector_in.in_layer.bias")
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop(
        "vector_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("vector_in.out_layer.bias")

    # guidance
    has_guidance = any("guidance" in k for k in checkpoint)
    if has_guidance:
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = checkpoint.pop(
            "guidance_in.in_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = checkpoint.pop(
            "guidance_in.in_layer.bias"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = checkpoint.pop(
            "guidance_in.out_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = checkpoint.pop(
            "guidance_in.out_layer.bias"
        )

    # context_embedder
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight")
    converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias")

    # x_embedder
    converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight")
    converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias")

    # double transformer blocks
    for i in range(num_layers):
        block_prefix = f"transformer_blocks.{i}."
        # norms.
        ## norm1
        converted_state_dict[f"{block_prefix}norm1.linear.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1.linear.bias"] = checkpoint.pop(
            f"double_blocks.{i}.img_mod.lin.bias"
        )
        ## norm1_context
        converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mod.lin.bias"
        )
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0)
        context_q, context_k, context_v = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
        # qk_norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.key_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
        )
        # ff img_mlp
        converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias")
        converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight")
        converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias")
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.bias"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.bias"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.bias"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.bias"
        )

2346
    # single transformer blocks
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
    for i in range(num_single_layers):
        block_prefix = f"single_transformer_blocks.{i}."
        # norm.linear  <- single_blocks.0.modulation.lin
        converted_state_dict[f"{block_prefix}norm.linear.weight"] = checkpoint.pop(
            f"single_blocks.{i}.modulation.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm.linear.bias"] = checkpoint.pop(
            f"single_blocks.{i}.modulation.lin.bias"
        )
        # Q, K, V, mlp
        mlp_hidden_dim = int(inner_dim * mlp_ratio)
        split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
        q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
        q_bias, k_bias, v_bias, mlp_bias = torch.split(
            checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
        converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
        converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
        # qk norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.key_norm.scale"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight")
        converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias")

    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.weight")
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.bias")
    )

    return converted_state_dict
2392
2393


Aryan's avatar
Aryan committed
2394
def convert_ltx_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
2395
    converted_state_dict = {key: checkpoint.pop(key) for key in list(checkpoint.keys()) if "vae" not in key}
Aryan's avatar
Aryan committed
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460

    TRANSFORMER_KEYS_RENAME_DICT = {
        "model.diffusion_model.": "",
        "patchify_proj": "proj_in",
        "adaln_single": "time_embed",
        "q_norm": "norm_q",
        "k_norm": "norm_k",
    }

    TRANSFORMER_SPECIAL_KEYS_REMAP = {}

    for key in list(converted_state_dict.keys()):
        new_key = key
        for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        converted_state_dict[new_key] = converted_state_dict.pop(key)

    for key in list(converted_state_dict.keys()):
        for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, converted_state_dict)

    return converted_state_dict


def convert_ltx_vae_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {key: checkpoint.pop(key) for key in list(checkpoint.keys()) if "vae." in key}

    def remove_keys_(key: str, state_dict):
        state_dict.pop(key)

    VAE_KEYS_RENAME_DICT = {
        # common
        "vae.": "",
        # decoder
        "up_blocks.0": "mid_block",
        "up_blocks.1": "up_blocks.0",
        "up_blocks.2": "up_blocks.1.upsamplers.0",
        "up_blocks.3": "up_blocks.1",
        "up_blocks.4": "up_blocks.2.conv_in",
        "up_blocks.5": "up_blocks.2.upsamplers.0",
        "up_blocks.6": "up_blocks.2",
        "up_blocks.7": "up_blocks.3.conv_in",
        "up_blocks.8": "up_blocks.3.upsamplers.0",
        "up_blocks.9": "up_blocks.3",
        # encoder
        "down_blocks.0": "down_blocks.0",
        "down_blocks.1": "down_blocks.0.downsamplers.0",
        "down_blocks.2": "down_blocks.0.conv_out",
        "down_blocks.3": "down_blocks.1",
        "down_blocks.4": "down_blocks.1.downsamplers.0",
        "down_blocks.5": "down_blocks.1.conv_out",
        "down_blocks.6": "down_blocks.2",
        "down_blocks.7": "down_blocks.2.downsamplers.0",
        "down_blocks.8": "down_blocks.3",
        "down_blocks.9": "mid_block",
        # common
        "conv_shortcut": "conv_shortcut.conv",
        "res_blocks": "resnets",
        "norm3.norm": "norm3",
        "per_channel_statistics.mean-of-means": "latents_mean",
        "per_channel_statistics.std-of-means": "latents_std",
    }

Aryan's avatar
Aryan committed
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
    VAE_091_RENAME_DICT = {
        # decoder
        "up_blocks.0": "mid_block",
        "up_blocks.1": "up_blocks.0.upsamplers.0",
        "up_blocks.2": "up_blocks.0",
        "up_blocks.3": "up_blocks.1.upsamplers.0",
        "up_blocks.4": "up_blocks.1",
        "up_blocks.5": "up_blocks.2.upsamplers.0",
        "up_blocks.6": "up_blocks.2",
        "up_blocks.7": "up_blocks.3.upsamplers.0",
        "up_blocks.8": "up_blocks.3",
        # common
        "last_time_embedder": "time_embedder",
        "last_scale_shift_table": "scale_shift_table",
    }

hlky's avatar
hlky committed
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
    VAE_095_RENAME_DICT = {
        # decoder
        "up_blocks.0": "mid_block",
        "up_blocks.1": "up_blocks.0.upsamplers.0",
        "up_blocks.2": "up_blocks.0",
        "up_blocks.3": "up_blocks.1.upsamplers.0",
        "up_blocks.4": "up_blocks.1",
        "up_blocks.5": "up_blocks.2.upsamplers.0",
        "up_blocks.6": "up_blocks.2",
        "up_blocks.7": "up_blocks.3.upsamplers.0",
        "up_blocks.8": "up_blocks.3",
        # encoder
        "down_blocks.0": "down_blocks.0",
        "down_blocks.1": "down_blocks.0.downsamplers.0",
        "down_blocks.2": "down_blocks.1",
        "down_blocks.3": "down_blocks.1.downsamplers.0",
        "down_blocks.4": "down_blocks.2",
        "down_blocks.5": "down_blocks.2.downsamplers.0",
        "down_blocks.6": "down_blocks.3",
        "down_blocks.7": "down_blocks.3.downsamplers.0",
        "down_blocks.8": "mid_block",
        # common
        "last_time_embedder": "time_embedder",
        "last_scale_shift_table": "scale_shift_table",
    }

Aryan's avatar
Aryan committed
2503
2504
2505
2506
2507
2508
    VAE_SPECIAL_KEYS_REMAP = {
        "per_channel_statistics.channel": remove_keys_,
        "per_channel_statistics.mean-of-means": remove_keys_,
        "per_channel_statistics.mean-of-stds": remove_keys_,
    }

hlky's avatar
hlky committed
2509
2510
2511
    if converted_state_dict["vae.encoder.conv_out.conv.weight"].shape[1] == 2048:
        VAE_KEYS_RENAME_DICT.update(VAE_095_RENAME_DICT)
    elif "vae.decoder.last_time_embedder.timestep_embedder.linear_1.weight" in converted_state_dict:
Aryan's avatar
Aryan committed
2512
2513
        VAE_KEYS_RENAME_DICT.update(VAE_091_RENAME_DICT)

Aryan's avatar
Aryan committed
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
    for key in list(converted_state_dict.keys()):
        new_key = key
        for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        converted_state_dict[new_key] = converted_state_dict.pop(key)

    for key in list(converted_state_dict.keys()):
        for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, converted_state_dict)

    return converted_state_dict


2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
def convert_autoencoder_dc_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {key: checkpoint.pop(key) for key in list(checkpoint.keys())}

    def remap_qkv_(key: str, state_dict):
        qkv = state_dict.pop(key)
        q, k, v = torch.chunk(qkv, 3, dim=0)
        parent_module, _, _ = key.rpartition(".qkv.conv.weight")
        state_dict[f"{parent_module}.to_q.weight"] = q.squeeze()
        state_dict[f"{parent_module}.to_k.weight"] = k.squeeze()
        state_dict[f"{parent_module}.to_v.weight"] = v.squeeze()

    def remap_proj_conv_(key: str, state_dict):
        parent_module, _, _ = key.rpartition(".proj.conv.weight")
        state_dict[f"{parent_module}.to_out.weight"] = state_dict.pop(key).squeeze()

    AE_KEYS_RENAME_DICT = {
        # common
        "main.": "",
        "op_list.": "",
        "context_module": "attn",
        "local_module": "conv_out",
        # NOTE: The below two lines work because scales in the available configs only have a tuple length of 1
        # If there were more scales, there would be more layers, so a loop would be better to handle this
        "aggreg.0.0": "to_qkv_multiscale.0.proj_in",
        "aggreg.0.1": "to_qkv_multiscale.0.proj_out",
        "depth_conv.conv": "conv_depth",
        "inverted_conv.conv": "conv_inverted",
        "point_conv.conv": "conv_point",
        "point_conv.norm": "norm",
        "conv.conv.": "conv.",
        "conv1.conv": "conv1",
        "conv2.conv": "conv2",
        "conv2.norm": "norm",
        "proj.norm": "norm_out",
        # encoder
        "encoder.project_in.conv": "encoder.conv_in",
        "encoder.project_out.0.conv": "encoder.conv_out",
        "encoder.stages": "encoder.down_blocks",
        # decoder
        "decoder.project_in.conv": "decoder.conv_in",
        "decoder.project_out.0": "decoder.norm_out",
        "decoder.project_out.2.conv": "decoder.conv_out",
        "decoder.stages": "decoder.up_blocks",
    }

    AE_F32C32_F64C128_F128C512_KEYS = {
        "encoder.project_in.conv": "encoder.conv_in.conv",
        "decoder.project_out.2.conv": "decoder.conv_out.conv",
    }

    AE_SPECIAL_KEYS_REMAP = {
        "qkv.conv.weight": remap_qkv_,
        "proj.conv.weight": remap_proj_conv_,
    }
    if "encoder.project_in.conv.bias" not in converted_state_dict:
        AE_KEYS_RENAME_DICT.update(AE_F32C32_F64C128_F128C512_KEYS)

    for key in list(converted_state_dict.keys()):
        new_key = key[:]
        for replace_key, rename_key in AE_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        converted_state_dict[new_key] = converted_state_dict.pop(key)

    for key in list(converted_state_dict.keys()):
        for special_key, handler_fn_inplace in AE_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, converted_state_dict)

    return converted_state_dict
2599
2600
2601


def convert_mochi_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
2602
    converted_state_dict = {}
2603
2604
2605
2606
2607
2608
2609
2610

    # Comfy checkpoints add this prefix
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    # Convert patch_embed
2611
2612
    converted_state_dict["patch_embed.proj.weight"] = checkpoint.pop("x_embedder.proj.weight")
    converted_state_dict["patch_embed.proj.bias"] = checkpoint.pop("x_embedder.proj.bias")
2613
2614

    # Convert time_embed
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
    converted_state_dict["time_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop("t_embedder.mlp.0.weight")
    converted_state_dict["time_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias")
    converted_state_dict["time_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop("t_embedder.mlp.2.weight")
    converted_state_dict["time_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias")
    converted_state_dict["time_embed.pooler.to_kv.weight"] = checkpoint.pop("t5_y_embedder.to_kv.weight")
    converted_state_dict["time_embed.pooler.to_kv.bias"] = checkpoint.pop("t5_y_embedder.to_kv.bias")
    converted_state_dict["time_embed.pooler.to_q.weight"] = checkpoint.pop("t5_y_embedder.to_q.weight")
    converted_state_dict["time_embed.pooler.to_q.bias"] = checkpoint.pop("t5_y_embedder.to_q.bias")
    converted_state_dict["time_embed.pooler.to_out.weight"] = checkpoint.pop("t5_y_embedder.to_out.weight")
    converted_state_dict["time_embed.pooler.to_out.bias"] = checkpoint.pop("t5_y_embedder.to_out.bias")
    converted_state_dict["time_embed.caption_proj.weight"] = checkpoint.pop("t5_yproj.weight")
    converted_state_dict["time_embed.caption_proj.bias"] = checkpoint.pop("t5_yproj.bias")
2627
2628
2629
2630
2631
2632
2633
2634

    # Convert transformer blocks
    num_layers = 48
    for i in range(num_layers):
        block_prefix = f"transformer_blocks.{i}."
        old_prefix = f"blocks.{i}."

        # norm1
2635
2636
        converted_state_dict[block_prefix + "norm1.linear.weight"] = checkpoint.pop(old_prefix + "mod_x.weight")
        converted_state_dict[block_prefix + "norm1.linear.bias"] = checkpoint.pop(old_prefix + "mod_x.bias")
2637
        if i < num_layers - 1:
2638
2639
2640
2641
2642
2643
            converted_state_dict[block_prefix + "norm1_context.linear.weight"] = checkpoint.pop(
                old_prefix + "mod_y.weight"
            )
            converted_state_dict[block_prefix + "norm1_context.linear.bias"] = checkpoint.pop(
                old_prefix + "mod_y.bias"
            )
2644
        else:
2645
            converted_state_dict[block_prefix + "norm1_context.linear_1.weight"] = checkpoint.pop(
2646
2647
                old_prefix + "mod_y.weight"
            )
2648
2649
2650
            converted_state_dict[block_prefix + "norm1_context.linear_1.bias"] = checkpoint.pop(
                old_prefix + "mod_y.bias"
            )
2651
2652
2653
2654
2655

        # Visual attention
        qkv_weight = checkpoint.pop(old_prefix + "attn.qkv_x.weight")
        q, k, v = qkv_weight.chunk(3, dim=0)

2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
        converted_state_dict[block_prefix + "attn1.to_q.weight"] = q
        converted_state_dict[block_prefix + "attn1.to_k.weight"] = k
        converted_state_dict[block_prefix + "attn1.to_v.weight"] = v
        converted_state_dict[block_prefix + "attn1.norm_q.weight"] = checkpoint.pop(
            old_prefix + "attn.q_norm_x.weight"
        )
        converted_state_dict[block_prefix + "attn1.norm_k.weight"] = checkpoint.pop(
            old_prefix + "attn.k_norm_x.weight"
        )
        converted_state_dict[block_prefix + "attn1.to_out.0.weight"] = checkpoint.pop(
            old_prefix + "attn.proj_x.weight"
        )
        converted_state_dict[block_prefix + "attn1.to_out.0.bias"] = checkpoint.pop(old_prefix + "attn.proj_x.bias")
2669
2670
2671
2672
2673

        # Context attention
        qkv_weight = checkpoint.pop(old_prefix + "attn.qkv_y.weight")
        q, k, v = qkv_weight.chunk(3, dim=0)

2674
2675
2676
2677
        converted_state_dict[block_prefix + "attn1.add_q_proj.weight"] = q
        converted_state_dict[block_prefix + "attn1.add_k_proj.weight"] = k
        converted_state_dict[block_prefix + "attn1.add_v_proj.weight"] = v
        converted_state_dict[block_prefix + "attn1.norm_added_q.weight"] = checkpoint.pop(
2678
2679
            old_prefix + "attn.q_norm_y.weight"
        )
2680
        converted_state_dict[block_prefix + "attn1.norm_added_k.weight"] = checkpoint.pop(
2681
2682
2683
            old_prefix + "attn.k_norm_y.weight"
        )
        if i < num_layers - 1:
2684
            converted_state_dict[block_prefix + "attn1.to_add_out.weight"] = checkpoint.pop(
2685
2686
                old_prefix + "attn.proj_y.weight"
            )
2687
2688
2689
            converted_state_dict[block_prefix + "attn1.to_add_out.bias"] = checkpoint.pop(
                old_prefix + "attn.proj_y.bias"
            )
2690
2691

        # MLP
2692
        converted_state_dict[block_prefix + "ff.net.0.proj.weight"] = swap_proj_gate(
2693
2694
            checkpoint.pop(old_prefix + "mlp_x.w1.weight")
        )
2695
        converted_state_dict[block_prefix + "ff.net.2.weight"] = checkpoint.pop(old_prefix + "mlp_x.w2.weight")
2696
        if i < num_layers - 1:
2697
            converted_state_dict[block_prefix + "ff_context.net.0.proj.weight"] = swap_proj_gate(
2698
2699
                checkpoint.pop(old_prefix + "mlp_y.w1.weight")
            )
2700
2701
2702
            converted_state_dict[block_prefix + "ff_context.net.2.weight"] = checkpoint.pop(
                old_prefix + "mlp_y.w2.weight"
            )
2703
2704

    # Output layers
2705
2706
2707
2708
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(checkpoint.pop("final_layer.mod.weight"), dim=0)
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(checkpoint.pop("final_layer.mod.bias"), dim=0)
    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
2709

2710
    converted_state_dict["pos_frequencies"] = checkpoint.pop("pos_frequencies")
2711

2712
    return converted_state_dict
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842


def convert_hunyuan_video_transformer_to_diffusers(checkpoint, **kwargs):
    def remap_norm_scale_shift_(key, state_dict):
        weight = state_dict.pop(key)
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        state_dict[key.replace("final_layer.adaLN_modulation.1", "norm_out.linear")] = new_weight

    def remap_txt_in_(key, state_dict):
        def rename_key(key):
            new_key = key.replace("individual_token_refiner.blocks", "token_refiner.refiner_blocks")
            new_key = new_key.replace("adaLN_modulation.1", "norm_out.linear")
            new_key = new_key.replace("txt_in", "context_embedder")
            new_key = new_key.replace("t_embedder.mlp.0", "time_text_embed.timestep_embedder.linear_1")
            new_key = new_key.replace("t_embedder.mlp.2", "time_text_embed.timestep_embedder.linear_2")
            new_key = new_key.replace("c_embedder", "time_text_embed.text_embedder")
            new_key = new_key.replace("mlp", "ff")
            return new_key

        if "self_attn_qkv" in key:
            weight = state_dict.pop(key)
            to_q, to_k, to_v = weight.chunk(3, dim=0)
            state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_q"))] = to_q
            state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_k"))] = to_k
            state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_v"))] = to_v
        else:
            state_dict[rename_key(key)] = state_dict.pop(key)

    def remap_img_attn_qkv_(key, state_dict):
        weight = state_dict.pop(key)
        to_q, to_k, to_v = weight.chunk(3, dim=0)
        state_dict[key.replace("img_attn_qkv", "attn.to_q")] = to_q
        state_dict[key.replace("img_attn_qkv", "attn.to_k")] = to_k
        state_dict[key.replace("img_attn_qkv", "attn.to_v")] = to_v

    def remap_txt_attn_qkv_(key, state_dict):
        weight = state_dict.pop(key)
        to_q, to_k, to_v = weight.chunk(3, dim=0)
        state_dict[key.replace("txt_attn_qkv", "attn.add_q_proj")] = to_q
        state_dict[key.replace("txt_attn_qkv", "attn.add_k_proj")] = to_k
        state_dict[key.replace("txt_attn_qkv", "attn.add_v_proj")] = to_v

    def remap_single_transformer_blocks_(key, state_dict):
        hidden_size = 3072

        if "linear1.weight" in key:
            linear1_weight = state_dict.pop(key)
            split_size = (hidden_size, hidden_size, hidden_size, linear1_weight.size(0) - 3 * hidden_size)
            q, k, v, mlp = torch.split(linear1_weight, split_size, dim=0)
            new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(".linear1.weight")
            state_dict[f"{new_key}.attn.to_q.weight"] = q
            state_dict[f"{new_key}.attn.to_k.weight"] = k
            state_dict[f"{new_key}.attn.to_v.weight"] = v
            state_dict[f"{new_key}.proj_mlp.weight"] = mlp

        elif "linear1.bias" in key:
            linear1_bias = state_dict.pop(key)
            split_size = (hidden_size, hidden_size, hidden_size, linear1_bias.size(0) - 3 * hidden_size)
            q_bias, k_bias, v_bias, mlp_bias = torch.split(linear1_bias, split_size, dim=0)
            new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(".linear1.bias")
            state_dict[f"{new_key}.attn.to_q.bias"] = q_bias
            state_dict[f"{new_key}.attn.to_k.bias"] = k_bias
            state_dict[f"{new_key}.attn.to_v.bias"] = v_bias
            state_dict[f"{new_key}.proj_mlp.bias"] = mlp_bias

        else:
            new_key = key.replace("single_blocks", "single_transformer_blocks")
            new_key = new_key.replace("linear2", "proj_out")
            new_key = new_key.replace("q_norm", "attn.norm_q")
            new_key = new_key.replace("k_norm", "attn.norm_k")
            state_dict[new_key] = state_dict.pop(key)

    TRANSFORMER_KEYS_RENAME_DICT = {
        "img_in": "x_embedder",
        "time_in.mlp.0": "time_text_embed.timestep_embedder.linear_1",
        "time_in.mlp.2": "time_text_embed.timestep_embedder.linear_2",
        "guidance_in.mlp.0": "time_text_embed.guidance_embedder.linear_1",
        "guidance_in.mlp.2": "time_text_embed.guidance_embedder.linear_2",
        "vector_in.in_layer": "time_text_embed.text_embedder.linear_1",
        "vector_in.out_layer": "time_text_embed.text_embedder.linear_2",
        "double_blocks": "transformer_blocks",
        "img_attn_q_norm": "attn.norm_q",
        "img_attn_k_norm": "attn.norm_k",
        "img_attn_proj": "attn.to_out.0",
        "txt_attn_q_norm": "attn.norm_added_q",
        "txt_attn_k_norm": "attn.norm_added_k",
        "txt_attn_proj": "attn.to_add_out",
        "img_mod.linear": "norm1.linear",
        "img_norm1": "norm1.norm",
        "img_norm2": "norm2",
        "img_mlp": "ff",
        "txt_mod.linear": "norm1_context.linear",
        "txt_norm1": "norm1.norm",
        "txt_norm2": "norm2_context",
        "txt_mlp": "ff_context",
        "self_attn_proj": "attn.to_out.0",
        "modulation.linear": "norm.linear",
        "pre_norm": "norm.norm",
        "final_layer.norm_final": "norm_out.norm",
        "final_layer.linear": "proj_out",
        "fc1": "net.0.proj",
        "fc2": "net.2",
        "input_embedder": "proj_in",
    }

    TRANSFORMER_SPECIAL_KEYS_REMAP = {
        "txt_in": remap_txt_in_,
        "img_attn_qkv": remap_img_attn_qkv_,
        "txt_attn_qkv": remap_txt_attn_qkv_,
        "single_blocks": remap_single_transformer_blocks_,
        "final_layer.adaLN_modulation.1": remap_norm_scale_shift_,
    }

    def update_state_dict_(state_dict, old_key, new_key):
        state_dict[new_key] = state_dict.pop(old_key)

    for key in list(checkpoint.keys()):
        new_key = key[:]
        for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        update_state_dict_(checkpoint, key, new_key)

    for key in list(checkpoint.keys()):
        for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, checkpoint)

    return checkpoint
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934


def convert_auraflow_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    state_dict_keys = list(checkpoint.keys())

    # Handle register tokens and positional embeddings
    converted_state_dict["register_tokens"] = checkpoint.pop("register_tokens", None)

    # Handle time step projection
    converted_state_dict["time_step_proj.linear_1.weight"] = checkpoint.pop("t_embedder.mlp.0.weight", None)
    converted_state_dict["time_step_proj.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias", None)
    converted_state_dict["time_step_proj.linear_2.weight"] = checkpoint.pop("t_embedder.mlp.2.weight", None)
    converted_state_dict["time_step_proj.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias", None)

    # Handle context embedder
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("cond_seq_linear.weight", None)

    # Calculate the number of layers
    def calculate_layers(keys, key_prefix):
        layers = set()
        for k in keys:
            if key_prefix in k:
                layer_num = int(k.split(".")[1])  # get the layer number
                layers.add(layer_num)
        return len(layers)

    mmdit_layers = calculate_layers(state_dict_keys, key_prefix="double_layers")
    single_dit_layers = calculate_layers(state_dict_keys, key_prefix="single_layers")

    # MMDiT blocks
    for i in range(mmdit_layers):
        # Feed-forward
        path_mapping = {"mlpX": "ff", "mlpC": "ff_context"}
        weight_mapping = {"c_fc1": "linear_1", "c_fc2": "linear_2", "c_proj": "out_projection"}
        for orig_k, diffuser_k in path_mapping.items():
            for k, v in weight_mapping.items():
                converted_state_dict[f"joint_transformer_blocks.{i}.{diffuser_k}.{v}.weight"] = checkpoint.pop(
                    f"double_layers.{i}.{orig_k}.{k}.weight", None
                )

        # Norms
        path_mapping = {"modX": "norm1", "modC": "norm1_context"}
        for orig_k, diffuser_k in path_mapping.items():
            converted_state_dict[f"joint_transformer_blocks.{i}.{diffuser_k}.linear.weight"] = checkpoint.pop(
                f"double_layers.{i}.{orig_k}.1.weight", None
            )

        # Attentions
        x_attn_mapping = {"w2q": "to_q", "w2k": "to_k", "w2v": "to_v", "w2o": "to_out.0"}
        context_attn_mapping = {"w1q": "add_q_proj", "w1k": "add_k_proj", "w1v": "add_v_proj", "w1o": "to_add_out"}
        for attn_mapping in [x_attn_mapping, context_attn_mapping]:
            for k, v in attn_mapping.items():
                converted_state_dict[f"joint_transformer_blocks.{i}.attn.{v}.weight"] = checkpoint.pop(
                    f"double_layers.{i}.attn.{k}.weight", None
                )

    # Single-DiT blocks
    for i in range(single_dit_layers):
        # Feed-forward
        mapping = {"c_fc1": "linear_1", "c_fc2": "linear_2", "c_proj": "out_projection"}
        for k, v in mapping.items():
            converted_state_dict[f"single_transformer_blocks.{i}.ff.{v}.weight"] = checkpoint.pop(
                f"single_layers.{i}.mlp.{k}.weight", None
            )

        # Norms
        converted_state_dict[f"single_transformer_blocks.{i}.norm1.linear.weight"] = checkpoint.pop(
            f"single_layers.{i}.modCX.1.weight", None
        )

        # Attentions
        x_attn_mapping = {"w1q": "to_q", "w1k": "to_k", "w1v": "to_v", "w1o": "to_out.0"}
        for k, v in x_attn_mapping.items():
            converted_state_dict[f"single_transformer_blocks.{i}.attn.{v}.weight"] = checkpoint.pop(
                f"single_layers.{i}.attn.{k}.weight", None
            )
    # Final blocks
    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_linear.weight", None)

    # Handle the final norm layer
    norm_weight = checkpoint.pop("modF.1.weight", None)
    if norm_weight is not None:
        converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(norm_weight, dim=None)
    else:
        converted_state_dict["norm_out.linear.weight"] = None

    converted_state_dict["pos_embed.pos_embed"] = checkpoint.pop("positional_encoding")
    converted_state_dict["pos_embed.proj.weight"] = checkpoint.pop("init_x_linear.weight")
    converted_state_dict["pos_embed.proj.bias"] = checkpoint.pop("init_x_linear.bias")

    return converted_state_dict
2935
2936
2937
2938
2939


def convert_lumina2_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}

2940
    # Original Lumina-Image-2 has an extra norm parameter that is unused
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
    # We just remove it here
    checkpoint.pop("norm_final.weight", None)

    # Comfy checkpoints add this prefix
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    LUMINA_KEY_MAP = {
        "cap_embedder": "time_caption_embed.caption_embedder",
        "t_embedder.mlp.0": "time_caption_embed.timestep_embedder.linear_1",
        "t_embedder.mlp.2": "time_caption_embed.timestep_embedder.linear_2",
        "attention": "attn",
        ".out.": ".to_out.0.",
        "k_norm": "norm_k",
        "q_norm": "norm_q",
        "w1": "linear_1",
        "w2": "linear_2",
        "w3": "linear_3",
        "adaLN_modulation.1": "norm1.linear",
    }
    ATTENTION_NORM_MAP = {
        "attention_norm1": "norm1.norm",
        "attention_norm2": "norm2",
    }
    CONTEXT_REFINER_MAP = {
        "context_refiner.0.attention_norm1": "context_refiner.0.norm1",
        "context_refiner.0.attention_norm2": "context_refiner.0.norm2",
        "context_refiner.1.attention_norm1": "context_refiner.1.norm1",
        "context_refiner.1.attention_norm2": "context_refiner.1.norm2",
    }
    FINAL_LAYER_MAP = {
        "final_layer.adaLN_modulation.1": "norm_out.linear_1",
        "final_layer.linear": "norm_out.linear_2",
    }

    def convert_lumina_attn_to_diffusers(tensor, diffusers_key):
        q_dim = 2304
        k_dim = v_dim = 768

        to_q, to_k, to_v = torch.split(tensor, [q_dim, k_dim, v_dim], dim=0)

        return {
            diffusers_key.replace("qkv", "to_q"): to_q,
            diffusers_key.replace("qkv", "to_k"): to_k,
            diffusers_key.replace("qkv", "to_v"): to_v,
        }

    for key in keys:
        diffusers_key = key
        for k, v in CONTEXT_REFINER_MAP.items():
            diffusers_key = diffusers_key.replace(k, v)
        for k, v in FINAL_LAYER_MAP.items():
            diffusers_key = diffusers_key.replace(k, v)
        for k, v in ATTENTION_NORM_MAP.items():
            diffusers_key = diffusers_key.replace(k, v)
        for k, v in LUMINA_KEY_MAP.items():
            diffusers_key = diffusers_key.replace(k, v)

        if "qkv" in diffusers_key:
            converted_state_dict.update(convert_lumina_attn_to_diffusers(checkpoint.pop(key), diffusers_key))
        else:
            converted_state_dict[diffusers_key] = checkpoint.pop(key)

    return converted_state_dict
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111


def convert_sana_transformer_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "blocks" in k))[-1] + 1  # noqa: C401

    # Positional and patch embeddings.
    checkpoint.pop("pos_embed")
    converted_state_dict["patch_embed.proj.weight"] = checkpoint.pop("x_embedder.proj.weight")
    converted_state_dict["patch_embed.proj.bias"] = checkpoint.pop("x_embedder.proj.bias")

    # Timestep embeddings.
    converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = checkpoint.pop(
        "t_embedder.mlp.0.weight"
    )
    converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias")
    converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = checkpoint.pop(
        "t_embedder.mlp.2.weight"
    )
    converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias")
    converted_state_dict["time_embed.linear.weight"] = checkpoint.pop("t_block.1.weight")
    converted_state_dict["time_embed.linear.bias"] = checkpoint.pop("t_block.1.bias")

    # Caption Projection.
    checkpoint.pop("y_embedder.y_embedding")
    converted_state_dict["caption_projection.linear_1.weight"] = checkpoint.pop("y_embedder.y_proj.fc1.weight")
    converted_state_dict["caption_projection.linear_1.bias"] = checkpoint.pop("y_embedder.y_proj.fc1.bias")
    converted_state_dict["caption_projection.linear_2.weight"] = checkpoint.pop("y_embedder.y_proj.fc2.weight")
    converted_state_dict["caption_projection.linear_2.bias"] = checkpoint.pop("y_embedder.y_proj.fc2.bias")
    converted_state_dict["caption_norm.weight"] = checkpoint.pop("attention_y_norm.weight")

    for i in range(num_layers):
        converted_state_dict[f"transformer_blocks.{i}.scale_shift_table"] = checkpoint.pop(
            f"blocks.{i}.scale_shift_table"
        )

        # Self-Attention
        sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"blocks.{i}.attn.qkv.weight"), 3, dim=0)
        converted_state_dict[f"transformer_blocks.{i}.attn1.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"transformer_blocks.{i}.attn1.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"transformer_blocks.{i}.attn1.to_v.weight"] = torch.cat([sample_v])

        # Output Projections
        converted_state_dict[f"transformer_blocks.{i}.attn1.to_out.0.weight"] = checkpoint.pop(
            f"blocks.{i}.attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.attn1.to_out.0.bias"] = checkpoint.pop(
            f"blocks.{i}.attn.proj.bias"
        )

        # Cross-Attention
        converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.weight"] = checkpoint.pop(
            f"blocks.{i}.cross_attn.q_linear.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.bias"] = checkpoint.pop(
            f"blocks.{i}.cross_attn.q_linear.bias"
        )

        linear_sample_k, linear_sample_v = torch.chunk(
            checkpoint.pop(f"blocks.{i}.cross_attn.kv_linear.weight"), 2, dim=0
        )
        linear_sample_k_bias, linear_sample_v_bias = torch.chunk(
            checkpoint.pop(f"blocks.{i}.cross_attn.kv_linear.bias"), 2, dim=0
        )
        converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.weight"] = linear_sample_k
        converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.weight"] = linear_sample_v
        converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.bias"] = linear_sample_k_bias
        converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.bias"] = linear_sample_v_bias

        # Output Projections
        converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.weight"] = checkpoint.pop(
            f"blocks.{i}.cross_attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.bias"] = checkpoint.pop(
            f"blocks.{i}.cross_attn.proj.bias"
        )

        # MLP
        converted_state_dict[f"transformer_blocks.{i}.ff.conv_inverted.weight"] = checkpoint.pop(
            f"blocks.{i}.mlp.inverted_conv.conv.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.conv_inverted.bias"] = checkpoint.pop(
            f"blocks.{i}.mlp.inverted_conv.conv.bias"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.conv_depth.weight"] = checkpoint.pop(
            f"blocks.{i}.mlp.depth_conv.conv.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.conv_depth.bias"] = checkpoint.pop(
            f"blocks.{i}.mlp.depth_conv.conv.bias"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.conv_point.weight"] = checkpoint.pop(
            f"blocks.{i}.mlp.point_conv.conv.weight"
        )

    # Final layer
    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
    converted_state_dict["scale_shift_table"] = checkpoint.pop("final_layer.scale_shift_table")

    return converted_state_dict
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152


def convert_wan_transformer_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}

    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    TRANSFORMER_KEYS_RENAME_DICT = {
        "time_embedding.0": "condition_embedder.time_embedder.linear_1",
        "time_embedding.2": "condition_embedder.time_embedder.linear_2",
        "text_embedding.0": "condition_embedder.text_embedder.linear_1",
        "text_embedding.2": "condition_embedder.text_embedder.linear_2",
        "time_projection.1": "condition_embedder.time_proj",
        "cross_attn": "attn2",
        "self_attn": "attn1",
        ".o.": ".to_out.0.",
        ".q.": ".to_q.",
        ".k.": ".to_k.",
        ".v.": ".to_v.",
        ".k_img.": ".add_k_proj.",
        ".v_img.": ".add_v_proj.",
        ".norm_k_img.": ".norm_added_k.",
        "head.modulation": "scale_shift_table",
        "head.head": "proj_out",
        "modulation": "scale_shift_table",
        "ffn.0": "ffn.net.0.proj",
        "ffn.2": "ffn.net.2",
        # Hack to swap the layer names
        # The original model calls the norms in following order: norm1, norm3, norm2
        # We convert it to: norm1, norm2, norm3
        "norm2": "norm__placeholder",
        "norm3": "norm2",
        "norm__placeholder": "norm3",
        # For the I2V model
        "img_emb.proj.0": "condition_embedder.image_embedder.norm1",
        "img_emb.proj.1": "condition_embedder.image_embedder.ff.net.0.proj",
        "img_emb.proj.3": "condition_embedder.image_embedder.ff.net.2",
        "img_emb.proj.4": "condition_embedder.image_embedder.norm2",
3153
3154
3155
        # For the VACE model
        "before_proj": "proj_in",
        "after_proj": "proj_out",
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
    }

    for key in list(checkpoint.keys()):
        new_key = key[:]
        for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)

        converted_state_dict[new_key] = checkpoint.pop(key)

    return converted_state_dict


def convert_wan_vae_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}

    # Create mappings for specific components
    middle_key_mapping = {
        # Encoder middle block
        "encoder.middle.0.residual.0.gamma": "encoder.mid_block.resnets.0.norm1.gamma",
        "encoder.middle.0.residual.2.bias": "encoder.mid_block.resnets.0.conv1.bias",
        "encoder.middle.0.residual.2.weight": "encoder.mid_block.resnets.0.conv1.weight",
        "encoder.middle.0.residual.3.gamma": "encoder.mid_block.resnets.0.norm2.gamma",
        "encoder.middle.0.residual.6.bias": "encoder.mid_block.resnets.0.conv2.bias",
        "encoder.middle.0.residual.6.weight": "encoder.mid_block.resnets.0.conv2.weight",
        "encoder.middle.2.residual.0.gamma": "encoder.mid_block.resnets.1.norm1.gamma",
        "encoder.middle.2.residual.2.bias": "encoder.mid_block.resnets.1.conv1.bias",
        "encoder.middle.2.residual.2.weight": "encoder.mid_block.resnets.1.conv1.weight",
        "encoder.middle.2.residual.3.gamma": "encoder.mid_block.resnets.1.norm2.gamma",
        "encoder.middle.2.residual.6.bias": "encoder.mid_block.resnets.1.conv2.bias",
        "encoder.middle.2.residual.6.weight": "encoder.mid_block.resnets.1.conv2.weight",
        # Decoder middle block
        "decoder.middle.0.residual.0.gamma": "decoder.mid_block.resnets.0.norm1.gamma",
        "decoder.middle.0.residual.2.bias": "decoder.mid_block.resnets.0.conv1.bias",
        "decoder.middle.0.residual.2.weight": "decoder.mid_block.resnets.0.conv1.weight",
        "decoder.middle.0.residual.3.gamma": "decoder.mid_block.resnets.0.norm2.gamma",
        "decoder.middle.0.residual.6.bias": "decoder.mid_block.resnets.0.conv2.bias",
        "decoder.middle.0.residual.6.weight": "decoder.mid_block.resnets.0.conv2.weight",
        "decoder.middle.2.residual.0.gamma": "decoder.mid_block.resnets.1.norm1.gamma",
        "decoder.middle.2.residual.2.bias": "decoder.mid_block.resnets.1.conv1.bias",
        "decoder.middle.2.residual.2.weight": "decoder.mid_block.resnets.1.conv1.weight",
        "decoder.middle.2.residual.3.gamma": "decoder.mid_block.resnets.1.norm2.gamma",
        "decoder.middle.2.residual.6.bias": "decoder.mid_block.resnets.1.conv2.bias",
        "decoder.middle.2.residual.6.weight": "decoder.mid_block.resnets.1.conv2.weight",
    }

    # Create a mapping for attention blocks
    attention_mapping = {
        # Encoder middle attention
        "encoder.middle.1.norm.gamma": "encoder.mid_block.attentions.0.norm.gamma",
        "encoder.middle.1.to_qkv.weight": "encoder.mid_block.attentions.0.to_qkv.weight",
        "encoder.middle.1.to_qkv.bias": "encoder.mid_block.attentions.0.to_qkv.bias",
        "encoder.middle.1.proj.weight": "encoder.mid_block.attentions.0.proj.weight",
        "encoder.middle.1.proj.bias": "encoder.mid_block.attentions.0.proj.bias",
        # Decoder middle attention
        "decoder.middle.1.norm.gamma": "decoder.mid_block.attentions.0.norm.gamma",
        "decoder.middle.1.to_qkv.weight": "decoder.mid_block.attentions.0.to_qkv.weight",
        "decoder.middle.1.to_qkv.bias": "decoder.mid_block.attentions.0.to_qkv.bias",
        "decoder.middle.1.proj.weight": "decoder.mid_block.attentions.0.proj.weight",
        "decoder.middle.1.proj.bias": "decoder.mid_block.attentions.0.proj.bias",
    }

    # Create a mapping for the head components
    head_mapping = {
        # Encoder head
        "encoder.head.0.gamma": "encoder.norm_out.gamma",
        "encoder.head.2.bias": "encoder.conv_out.bias",
        "encoder.head.2.weight": "encoder.conv_out.weight",
        # Decoder head
        "decoder.head.0.gamma": "decoder.norm_out.gamma",
        "decoder.head.2.bias": "decoder.conv_out.bias",
        "decoder.head.2.weight": "decoder.conv_out.weight",
    }

    # Create a mapping for the quant components
    quant_mapping = {
        "conv1.weight": "quant_conv.weight",
        "conv1.bias": "quant_conv.bias",
        "conv2.weight": "post_quant_conv.weight",
        "conv2.bias": "post_quant_conv.bias",
    }

    # Process each key in the state dict
    for key, value in checkpoint.items():
        # Handle middle block keys using the mapping
        if key in middle_key_mapping:
            new_key = middle_key_mapping[key]
            converted_state_dict[new_key] = value
        # Handle attention blocks using the mapping
        elif key in attention_mapping:
            new_key = attention_mapping[key]
            converted_state_dict[new_key] = value
        # Handle head keys using the mapping
        elif key in head_mapping:
            new_key = head_mapping[key]
            converted_state_dict[new_key] = value
        # Handle quant keys using the mapping
        elif key in quant_mapping:
            new_key = quant_mapping[key]
            converted_state_dict[new_key] = value
        # Handle encoder conv1
        elif key == "encoder.conv1.weight":
            converted_state_dict["encoder.conv_in.weight"] = value
        elif key == "encoder.conv1.bias":
            converted_state_dict["encoder.conv_in.bias"] = value
        # Handle decoder conv1
        elif key == "decoder.conv1.weight":
            converted_state_dict["decoder.conv_in.weight"] = value
        elif key == "decoder.conv1.bias":
            converted_state_dict["decoder.conv_in.bias"] = value
        # Handle encoder downsamples
        elif key.startswith("encoder.downsamples."):
            # Convert to down_blocks
            new_key = key.replace("encoder.downsamples.", "encoder.down_blocks.")

            # Convert residual block naming but keep the original structure
            if ".residual.0.gamma" in new_key:
                new_key = new_key.replace(".residual.0.gamma", ".norm1.gamma")
            elif ".residual.2.bias" in new_key:
                new_key = new_key.replace(".residual.2.bias", ".conv1.bias")
            elif ".residual.2.weight" in new_key:
                new_key = new_key.replace(".residual.2.weight", ".conv1.weight")
            elif ".residual.3.gamma" in new_key:
                new_key = new_key.replace(".residual.3.gamma", ".norm2.gamma")
            elif ".residual.6.bias" in new_key:
                new_key = new_key.replace(".residual.6.bias", ".conv2.bias")
            elif ".residual.6.weight" in new_key:
                new_key = new_key.replace(".residual.6.weight", ".conv2.weight")
            elif ".shortcut.bias" in new_key:
                new_key = new_key.replace(".shortcut.bias", ".conv_shortcut.bias")
            elif ".shortcut.weight" in new_key:
                new_key = new_key.replace(".shortcut.weight", ".conv_shortcut.weight")

            converted_state_dict[new_key] = value

        # Handle decoder upsamples
        elif key.startswith("decoder.upsamples."):
            # Convert to up_blocks
            parts = key.split(".")
            block_idx = int(parts[2])

            # Group residual blocks
            if "residual" in key:
                if block_idx in [0, 1, 2]:
                    new_block_idx = 0
                    resnet_idx = block_idx
                elif block_idx in [4, 5, 6]:
                    new_block_idx = 1
                    resnet_idx = block_idx - 4
                elif block_idx in [8, 9, 10]:
                    new_block_idx = 2
                    resnet_idx = block_idx - 8
                elif block_idx in [12, 13, 14]:
                    new_block_idx = 3
                    resnet_idx = block_idx - 12
                else:
                    # Keep as is for other blocks
                    converted_state_dict[key] = value
                    continue

                # Convert residual block naming
                if ".residual.0.gamma" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.norm1.gamma"
                elif ".residual.2.bias" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv1.bias"
                elif ".residual.2.weight" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv1.weight"
                elif ".residual.3.gamma" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.norm2.gamma"
                elif ".residual.6.bias" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv2.bias"
                elif ".residual.6.weight" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv2.weight"
                else:
                    new_key = key

                converted_state_dict[new_key] = value

            # Handle shortcut connections
            elif ".shortcut." in key:
                if block_idx == 4:
                    new_key = key.replace(".shortcut.", ".resnets.0.conv_shortcut.")
                    new_key = new_key.replace("decoder.upsamples.4", "decoder.up_blocks.1")
                else:
                    new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.")
                    new_key = new_key.replace(".shortcut.", ".conv_shortcut.")

                converted_state_dict[new_key] = value

            # Handle upsamplers
            elif ".resample." in key or ".time_conv." in key:
                if block_idx == 3:
                    new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.0.upsamplers.0")
                elif block_idx == 7:
                    new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.1.upsamplers.0")
                elif block_idx == 11:
                    new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.2.upsamplers.0")
                else:
                    new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.")

                converted_state_dict[new_key] = value
            else:
                new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.")
                converted_state_dict[new_key] = value
        else:
            # Keep other keys unchanged
            converted_state_dict[key] = value

    return converted_state_dict
3364
3365
3366
3367
3368
3369
3370
3371
3372


def convert_hidream_transformer_to_diffusers(checkpoint, **kwargs):
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    return checkpoint
Edna's avatar
Edna committed
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541


def convert_chroma_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    keys = list(checkpoint.keys())

    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1  # noqa: C401
    num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1  # noqa: C401
    num_guidance_layers = (
        list(set(int(k.split(".", 3)[2]) for k in checkpoint if "distilled_guidance_layer.layers." in k))[-1] + 1  # noqa: C401
    )
    mlp_ratio = 4.0
    inner_dim = 3072

    # in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
    # while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
    def swap_scale_shift(weight):
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        return new_weight

    # guidance
    converted_state_dict["distilled_guidance_layer.in_proj.bias"] = checkpoint.pop(
        "distilled_guidance_layer.in_proj.bias"
    )
    converted_state_dict["distilled_guidance_layer.in_proj.weight"] = checkpoint.pop(
        "distilled_guidance_layer.in_proj.weight"
    )
    converted_state_dict["distilled_guidance_layer.out_proj.bias"] = checkpoint.pop(
        "distilled_guidance_layer.out_proj.bias"
    )
    converted_state_dict["distilled_guidance_layer.out_proj.weight"] = checkpoint.pop(
        "distilled_guidance_layer.out_proj.weight"
    )
    for i in range(num_guidance_layers):
        block_prefix = f"distilled_guidance_layer.layers.{i}."
        converted_state_dict[f"{block_prefix}linear_1.bias"] = checkpoint.pop(
            f"distilled_guidance_layer.layers.{i}.in_layer.bias"
        )
        converted_state_dict[f"{block_prefix}linear_1.weight"] = checkpoint.pop(
            f"distilled_guidance_layer.layers.{i}.in_layer.weight"
        )
        converted_state_dict[f"{block_prefix}linear_2.bias"] = checkpoint.pop(
            f"distilled_guidance_layer.layers.{i}.out_layer.bias"
        )
        converted_state_dict[f"{block_prefix}linear_2.weight"] = checkpoint.pop(
            f"distilled_guidance_layer.layers.{i}.out_layer.weight"
        )
        converted_state_dict[f"distilled_guidance_layer.norms.{i}.weight"] = checkpoint.pop(
            f"distilled_guidance_layer.norms.{i}.scale"
        )

    # context_embedder
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight")
    converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias")

    # x_embedder
    converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight")
    converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias")

    # double transformer blocks
    for i in range(num_layers):
        block_prefix = f"transformer_blocks.{i}."
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0)
        context_q, context_k, context_v = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
        # qk_norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.key_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
        )
        # ff img_mlp
        converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias")
        converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight")
        converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias")
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.bias"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.bias"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.bias"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.bias"
        )

    # single transformer blocks
    for i in range(num_single_layers):
        block_prefix = f"single_transformer_blocks.{i}."
        # Q, K, V, mlp
        mlp_hidden_dim = int(inner_dim * mlp_ratio)
        split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
        q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
        q_bias, k_bias, v_bias, mlp_bias = torch.split(
            checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
        converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
        converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
        # qk norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.key_norm.scale"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight")
        converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias")

    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")

    return converted_state_dict
Aryan's avatar
Aryan committed
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654


def convert_cosmos_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {key: checkpoint.pop(key) for key in list(checkpoint.keys())}

    def remove_keys_(key: str, state_dict):
        state_dict.pop(key)

    def rename_transformer_blocks_(key: str, state_dict):
        block_index = int(key.split(".")[1].removeprefix("block"))
        new_key = key
        old_prefix = f"blocks.block{block_index}"
        new_prefix = f"transformer_blocks.{block_index}"
        new_key = new_prefix + new_key.removeprefix(old_prefix)
        state_dict[new_key] = state_dict.pop(key)

    TRANSFORMER_KEYS_RENAME_DICT_COSMOS_1_0 = {
        "t_embedder.1": "time_embed.t_embedder",
        "affline_norm": "time_embed.norm",
        ".blocks.0.block.attn": ".attn1",
        ".blocks.1.block.attn": ".attn2",
        ".blocks.2.block": ".ff",
        ".blocks.0.adaLN_modulation.1": ".norm1.linear_1",
        ".blocks.0.adaLN_modulation.2": ".norm1.linear_2",
        ".blocks.1.adaLN_modulation.1": ".norm2.linear_1",
        ".blocks.1.adaLN_modulation.2": ".norm2.linear_2",
        ".blocks.2.adaLN_modulation.1": ".norm3.linear_1",
        ".blocks.2.adaLN_modulation.2": ".norm3.linear_2",
        "to_q.0": "to_q",
        "to_q.1": "norm_q",
        "to_k.0": "to_k",
        "to_k.1": "norm_k",
        "to_v.0": "to_v",
        "layer1": "net.0.proj",
        "layer2": "net.2",
        "proj.1": "proj",
        "x_embedder": "patch_embed",
        "extra_pos_embedder": "learnable_pos_embed",
        "final_layer.adaLN_modulation.1": "norm_out.linear_1",
        "final_layer.adaLN_modulation.2": "norm_out.linear_2",
        "final_layer.linear": "proj_out",
    }

    TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_1_0 = {
        "blocks.block": rename_transformer_blocks_,
        "logvar.0.freqs": remove_keys_,
        "logvar.0.phases": remove_keys_,
        "logvar.1.weight": remove_keys_,
        "pos_embedder.seq": remove_keys_,
    }

    TRANSFORMER_KEYS_RENAME_DICT_COSMOS_2_0 = {
        "t_embedder.1": "time_embed.t_embedder",
        "t_embedding_norm": "time_embed.norm",
        "blocks": "transformer_blocks",
        "adaln_modulation_self_attn.1": "norm1.linear_1",
        "adaln_modulation_self_attn.2": "norm1.linear_2",
        "adaln_modulation_cross_attn.1": "norm2.linear_1",
        "adaln_modulation_cross_attn.2": "norm2.linear_2",
        "adaln_modulation_mlp.1": "norm3.linear_1",
        "adaln_modulation_mlp.2": "norm3.linear_2",
        "self_attn": "attn1",
        "cross_attn": "attn2",
        "q_proj": "to_q",
        "k_proj": "to_k",
        "v_proj": "to_v",
        "output_proj": "to_out.0",
        "q_norm": "norm_q",
        "k_norm": "norm_k",
        "mlp.layer1": "ff.net.0.proj",
        "mlp.layer2": "ff.net.2",
        "x_embedder.proj.1": "patch_embed.proj",
        "final_layer.adaln_modulation.1": "norm_out.linear_1",
        "final_layer.adaln_modulation.2": "norm_out.linear_2",
        "final_layer.linear": "proj_out",
    }

    TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_2_0 = {
        "accum_video_sample_counter": remove_keys_,
        "accum_image_sample_counter": remove_keys_,
        "accum_iteration": remove_keys_,
        "accum_train_in_hours": remove_keys_,
        "pos_embedder.seq": remove_keys_,
        "pos_embedder.dim_spatial_range": remove_keys_,
        "pos_embedder.dim_temporal_range": remove_keys_,
        "_extra_state": remove_keys_,
    }

    PREFIX_KEY = "net."
    if "net.blocks.block1.blocks.0.block.attn.to_q.0.weight" in checkpoint:
        TRANSFORMER_KEYS_RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT_COSMOS_1_0
        TRANSFORMER_SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_1_0
    else:
        TRANSFORMER_KEYS_RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT_COSMOS_2_0
        TRANSFORMER_SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_2_0

    state_dict_keys = list(converted_state_dict.keys())
    for key in state_dict_keys:
        new_key = key[:]
        if new_key.startswith(PREFIX_KEY):
            new_key = new_key.removeprefix(PREFIX_KEY)
        for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        converted_state_dict[new_key] = converted_state_dict.pop(key)

    state_dict_keys = list(converted_state_dict.keys())
    for key in state_dict_keys:
        for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, converted_state_dict)

    return converted_state_dict