TransferBench.cpp 113 KB
Newer Older
Gilbert Lee's avatar
Gilbert Lee committed
1
/*
2
Copyright (c) 2019-2024 Advanced Micro Devices, Inc. All rights reserved.
Gilbert Lee's avatar
Gilbert Lee committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/

// This program measures simultaneous copy performance across multiple GPUs
// on the same node
25
26
#include <numa.h>     // If not found, try installing libnuma-dev (e.g apt-get install libnuma-dev)
#include <cmath>      // If not found, try installing g++-12      (e.g apt-get install g++-12)
Gilbert Lee's avatar
Gilbert Lee committed
27
#include <numaif.h>
Gilbert Lee's avatar
Gilbert Lee committed
28
#include <random>
Gilbert Lee's avatar
Gilbert Lee committed
29
30
31
32
33
34
35
36
#include <stack>
#include <thread>

#include "TransferBench.hpp"
#include "GetClosestNumaNode.hpp"

int main(int argc, char **argv)
{
Gilbert Lee's avatar
Gilbert Lee committed
37
38
39
40
41
42
43
  // Check for NUMA library support
  if (numa_available() == -1)
  {
    printf("[ERROR] NUMA library not supported. Check to see if libnuma has been installed on this system\n");
    exit(1);
  }

Gilbert Lee's avatar
Gilbert Lee committed
44
45
46
47
48
49
50
51
52
53
54
55
  // Display usage instructions and detected topology
  if (argc <= 1)
  {
    int const outputToCsv = EnvVars::GetEnvVar("OUTPUT_TO_CSV", 0);
    if (!outputToCsv) DisplayUsage(argv[0]);
    DisplayTopology(outputToCsv);
    exit(0);
  }

  // Collect environment variables / display current run configuration
  EnvVars ev;

Gilbert Lee's avatar
Gilbert Lee committed
56
57
  // Determine number of bytes to run per Transfer
  size_t numBytesPerTransfer = argc > 2 ? atoll(argv[2]) : DEFAULT_BYTES_PER_TRANSFER;
Gilbert Lee's avatar
Gilbert Lee committed
58
59
60
61
62
63
  if (argc > 2)
  {
    // Adjust bytes if unit specified
    char units = argv[2][strlen(argv[2])-1];
    switch (units)
    {
Gilbert Lee's avatar
Gilbert Lee committed
64
65
66
    case 'K': case 'k': numBytesPerTransfer *= 1024; break;
    case 'M': case 'm': numBytesPerTransfer *= 1024*1024; break;
    case 'G': case 'g': numBytesPerTransfer *= 1024*1024*1024; break;
Gilbert Lee's avatar
Gilbert Lee committed
67
68
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
69
70
71
72
73
  if (numBytesPerTransfer % 4)
  {
    printf("[ERROR] numBytesPerTransfer (%lu) must be a multiple of 4\n", numBytesPerTransfer);
    exit(1);
  }
Gilbert Lee's avatar
Gilbert Lee committed
74

Gilbert Lee's avatar
Gilbert Lee committed
75
76
77
78
  // Check for preset tests
  // - Tests that sweep across possible sets of Transfers
  if (!strcmp(argv[1], "sweep") || !strcmp(argv[1], "rsweep"))
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
79
80
    int numGpuSubExecs = (argc > 3 ? atoi(argv[3]) : 4);
    int numCpuSubExecs = (argc > 4 ? atoi(argv[4]) : 4);
gilbertlee-amd's avatar
gilbertlee-amd committed
81

82
    ev.configMode = CFG_SWEEP;
gilbertlee-amd's avatar
gilbertlee-amd committed
83
    RunSweepPreset(ev, numBytesPerTransfer, numGpuSubExecs, numCpuSubExecs, !strcmp(argv[1], "rsweep"));
Gilbert Lee's avatar
Gilbert Lee committed
84
85
86
    exit(0);
  }
  // - Tests that benchmark peer-to-peer performance
gilbertlee-amd's avatar
gilbertlee-amd committed
87
  else if (!strcmp(argv[1], "p2p"))
Gilbert Lee's avatar
Gilbert Lee committed
88
  {
89
    ev.configMode = CFG_P2P;
gilbertlee-amd's avatar
gilbertlee-amd committed
90
    RunPeerToPeerBenchmarks(ev, numBytesPerTransfer / sizeof(float));
Gilbert Lee's avatar
Gilbert Lee committed
91
92
    exit(0);
  }
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  // - Test SubExecutor scaling
  else if (!strcmp(argv[1], "scaling"))
  {
    int maxSubExecs = (argc > 3 ? atoi(argv[3]) : 32);
    int exeIndex    = (argc > 4 ? atoi(argv[4]) : 0);

    if (exeIndex >= ev.numGpuDevices)
    {
      printf("[ERROR] Cannot execute scaling test with GPU device %d\n", exeIndex);
      exit(1);
    }
    ev.configMode = CFG_SCALE;
    RunScalingBenchmark(ev, numBytesPerTransfer / sizeof(float), exeIndex, maxSubExecs);
    exit(0);
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
108
109
110
111
112
113
114
115
116
117
118
  // - Test all2all benchmark
  else if (!strcmp(argv[1], "a2a"))
  {
    int numSubExecs = (argc > 3 ? atoi(argv[3]) : 4);

    // Force single-stream mode for all-to-all benchmark
    ev.useSingleStream = 1;
    ev.configMode = CFG_A2A;
    RunAllToAllBenchmark(ev, numBytesPerTransfer, numSubExecs);
    exit(0);
  }
119
120
121
122
123
  // Health check
  else if (!strcmp(argv[1], "healthcheck")) {
    RunHealthCheck(ev);
    exit(0);
  }
124
125
126
127
128
129
130
131
132
133
134
135
  // - Test schmoo benchmark
  else if (!strcmp(argv[1], "schmoo"))
  {
    if (ev.numGpuDevices < 2)
    {
      printf("[ERROR] Schmoo benchmark requires at least 2 GPUs\n");
      exit(1);
    }
    ev.configMode = CFG_SCHMOO;

    int localIdx    = (argc > 3 ? atoi(argv[3]) : 0);
    int remoteIdx   = (argc > 4 ? atoi(argv[4]) : 1);
136
    int maxSubExecs = (argc > 5 ? atoi(argv[5]) : 32);
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    if (localIdx >= ev.numGpuDevices || remoteIdx >= ev.numGpuDevices)
    {
      printf("[ERROR] Cannot execute schmoo test with local GPU device %d, remote GPU device %d\n", localIdx, remoteIdx);
      exit(1);
    }
    ev.DisplaySchmooEnvVars();

    for (int N = 256; N <= (1<<27); N *= 2)
    {
      int delta = std::max(1, N / ev.samplingFactor);
      int curr = (numBytesPerTransfer == 0) ? N : numBytesPerTransfer / sizeof(float);
      do
      {
        RunSchmooBenchmark(ev, curr * sizeof(float), localIdx, remoteIdx, maxSubExecs);
        if (numBytesPerTransfer != 0) exit(0);
        curr += delta;
      } while (curr < N * 2);
    }
  }
157
158
159
160
161
162
163
164
165
  else if (!strcmp(argv[1], "rwrite"))
  {
    if (ev.numGpuDevices < 2)
    {
      printf("[ERROR] Remote write benchmark requires at least 2 GPUs\n");
      exit(1);
    }
    ev.DisplayRemoteWriteEnvVars();

gilbertlee-amd's avatar
gilbertlee-amd committed
166
    int numSubExecs = (argc > 3 ? atoi(argv[3]) : 4);
167
168
    int srcIdx      = (argc > 4 ? atoi(argv[4]) : 0);
    int minGpus     = (argc > 5 ? atoi(argv[5]) : 1);
169
    int maxGpus     = (argc > 6 ? atoi(argv[6]) : ev.numGpuDevices - 1);
170
171
172
173
174
175
176
177
178
179
180
181
182

    for (int N = 256; N <= (1<<27); N *= 2)
    {
      int delta = std::max(1, N / ev.samplingFactor);
      int curr = (numBytesPerTransfer == 0) ? N : numBytesPerTransfer / sizeof(float);
      do
      {
        RunRemoteWriteBenchmark(ev, curr * sizeof(float), numSubExecs, srcIdx, minGpus, maxGpus);
        if (numBytesPerTransfer != 0) exit(0);
        curr += delta;
      } while (curr < N * 2);
    }
  }
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  else if (!strcmp(argv[1], "pcopy"))
  {
    if (ev.numGpuDevices < 2)
    {
      printf("[ERROR] Parallel copy benchmark requires at least 2 GPUs\n");
      exit(1);
    }
    ev.DisplayParallelCopyEnvVars();

    int numSubExecs = (argc > 3 ? atoi(argv[3]) : 8);
    int srcIdx      = (argc > 4 ? atoi(argv[4]) : 0);
    int minGpus     = (argc > 5 ? atoi(argv[5]) : 1);
    int maxGpus     = (argc > 6 ? atoi(argv[6]) : ev.numGpuDevices - 1);

    if (maxGpus > ev.gpuMaxHwQueues && ev.useDmaCopy)
    {
      printf("[ERROR] DMA executor %d attempting %d parallel transfers, however GPU_MAX_HW_QUEUES only set to %d\n",
             srcIdx, maxGpus, ev.gpuMaxHwQueues);
      printf("[ERROR] Aborting to avoid misleading results due to potential serialization of Transfers\n");
      exit(1);
    }

    for (int N = 256; N <= (1<<27); N *= 2)
    {
      int delta = std::max(1, N / ev.samplingFactor);
      int curr = (numBytesPerTransfer == 0) ? N : numBytesPerTransfer / sizeof(float);
      do
      {
        RunParallelCopyBenchmark(ev, curr * sizeof(float), numSubExecs, srcIdx, minGpus, maxGpus);
        if (numBytesPerTransfer != 0) exit(0);
        curr += delta;
      } while (curr < N * 2);
    }
  }
217
218
  else if (!strcmp(argv[1], "cmdline"))
  {
219
    // Print environment variables
220
221
222
223
224
225
226
    ev.DisplayEnvVars();

    // Read Transfer from command line
    std::string cmdlineTransfer;
    for (int i = 3; i < argc; i++)
      cmdlineTransfer += std::string(argv[i]) + " ";

227
    char line[MAX_LINE_LEN];
228
229
    sprintf(line, "%s", cmdlineTransfer.c_str());
    std::vector<Transfer> transfers;
230
    ParseTransfers(ev, line, transfers);
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    if (transfers.empty()) exit(0);

    // If the number of bytes is specified, use it
    if (numBytesPerTransfer != 0)
    {
      size_t N = numBytesPerTransfer / sizeof(float);
      ExecuteTransfers(ev, 1, N, transfers);
    }
    else
    {
      // Otherwise generate a range of values
      for (int N = 256; N <= (1<<27); N *= 2)
      {
        int delta = std::max(1, N / ev.samplingFactor);
        int curr = N;
        while (curr < N * 2)
        {
          ExecuteTransfers(ev, 1, curr, transfers);
          curr += delta;
        }
      }
    }
    exit(0);
  }
Gilbert Lee's avatar
Gilbert Lee committed
255

Gilbert Lee's avatar
Gilbert Lee committed
256
  // Check that Transfer configuration file can be opened
257
  ev.configMode = CFG_FILE;
Gilbert Lee's avatar
Gilbert Lee committed
258
259
260
  FILE* fp = fopen(argv[1], "r");
  if (!fp)
  {
Gilbert Lee's avatar
Gilbert Lee committed
261
    printf("[ERROR] Unable to open transfer configuration file: [%s]\n", argv[1]);
Gilbert Lee's avatar
Gilbert Lee committed
262
263
264
    exit(1);
  }

Gilbert Lee's avatar
Gilbert Lee committed
265
  // Print environment variables and CSV header
Gilbert Lee's avatar
Gilbert Lee committed
266
267
268
  ev.DisplayEnvVars();

  int testNum = 0;
269
270
  char line[MAX_LINE_LEN];
  while(fgets(line, MAX_LINE_LEN, fp))
Gilbert Lee's avatar
Gilbert Lee committed
271
272
273
274
  {
    // Check if line is a comment to be echoed to output (starts with ##)
    if (!ev.outputToCsv && line[0] == '#' && line[1] == '#') printf("%s", line);

Gilbert Lee's avatar
Gilbert Lee committed
275
276
    // Parse set of parallel Transfers to execute
    std::vector<Transfer> transfers;
277
    ParseTransfers(ev, line, transfers);
Gilbert Lee's avatar
Gilbert Lee committed
278
    if (transfers.empty()) continue;
Gilbert Lee's avatar
Gilbert Lee committed
279

gilbertlee-amd's avatar
gilbertlee-amd committed
280
281
282
283
284
285
286
287
288
289
290
    // If the number of bytes is specified, use it
    if (numBytesPerTransfer != 0)
    {
      size_t N = numBytesPerTransfer / sizeof(float);
      ExecuteTransfers(ev, ++testNum, N, transfers);
    }
    else
    {
      // Otherwise generate a range of values
      for (int N = 256; N <= (1<<27); N *= 2)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
291
        int delta = std::max(1, N / ev.samplingFactor);
gilbertlee-amd's avatar
gilbertlee-amd committed
292
293
294
        int curr = N;
        while (curr < N * 2)
        {
gilbertlee-amd's avatar
gilbertlee-amd committed
295
          ExecuteTransfers(ev, ++testNum, curr, transfers);
gilbertlee-amd's avatar
gilbertlee-amd committed
296
297
298
299
          curr += delta;
        }
      }
    }
Gilbert Lee's avatar
Gilbert Lee committed
300
301
  }
  fclose(fp);
Gilbert Lee's avatar
Gilbert Lee committed
302

Gilbert Lee's avatar
Gilbert Lee committed
303
304
  return 0;
}
Gilbert Lee's avatar
Gilbert Lee committed
305

Gilbert Lee's avatar
Gilbert Lee committed
306
void ExecuteTransfers(EnvVars const& ev,
gilbertlee-amd's avatar
gilbertlee-amd committed
307
308
309
                      int const testNum,
                      size_t const N,
                      std::vector<Transfer>& transfers,
gilbertlee-amd's avatar
gilbertlee-amd committed
310
311
                      bool verbose,
                      double* totalBandwidthCpu)
Gilbert Lee's avatar
Gilbert Lee committed
312
{
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
  // Check for any Transfers using variable number of sub-executors
  std::vector<int> varTransfers;
  std::vector<int> numUsedSubExec(ev.numGpuDevices, 0);
  std::vector<int> numVarSubExec(ev.numGpuDevices, 0);

  for (int i = 0; i < transfers.size(); i++) {
    Transfer& t = transfers[i];
    t.transferIndex = i;
    t.numBytesActual = (t.numBytes ? t.numBytes : N * sizeof(float));

    if (t.exeType == EXE_GPU_GFX) {
      if (t.numSubExecs == 0) {
        varTransfers.push_back(i);
        numVarSubExec[t.exeIndex]++;
      } else {
        numUsedSubExec[t.exeIndex] += t.numSubExecs;
      }
    } else if (t.numSubExecs == 0) {
      printf("[ERROR] Variable subexecutor count is only supported for GFX executor\n");
      exit(1);
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
  if (verbose && !ev.outputToCsv) printf("Test %d:\n", testNum);

  TestResults testResults;
  if (varTransfers.size() == 0) {
    testResults = ExecuteTransfersImpl(ev, transfers);
  } else {
    // Determine maximum number of subexecutors
    int maxNumSubExec = 0;
    if (ev.maxNumVarSubExec) {
      maxNumSubExec = ev.maxNumVarSubExec;
    } else {
      HIP_CALL(hipDeviceGetAttribute(&maxNumSubExec, hipDeviceAttributeMultiprocessorCount, 0));
      for (int device = 0; device < ev.numGpuDevices; device++) {
        int numSubExec = 0;
        HIP_CALL(hipDeviceGetAttribute(&numSubExec, hipDeviceAttributeMultiprocessorCount, device));
        int leftOverSubExec = numSubExec - numUsedSubExec[device];
        if (leftOverSubExec < numVarSubExec[device])
          maxNumSubExec = 1;
        else if (numVarSubExec[device] != 0) {
          maxNumSubExec = std::min(maxNumSubExec, leftOverSubExec / numVarSubExec[device]);
        }
      }
    }

    // Loop over subexecs
    std::vector<Transfer> bestTransfers;
    for (int numSubExec = ev.minNumVarSubExec; numSubExec <= maxNumSubExec; numSubExec++) {
      std::vector<Transfer> currTransfers = transfers;
      for (auto idx : varTransfers) {
        currTransfers[idx].numSubExecs = numSubExec;
      }
      TestResults tempResults = ExecuteTransfersImpl(ev, currTransfers);
      if (tempResults.totalBandwidthCpu > testResults.totalBandwidthCpu) {
        bestTransfers = currTransfers;
        testResults = tempResults;
      }
    }
    transfers = bestTransfers;
  }
  if (totalBandwidthCpu) *totalBandwidthCpu = testResults.totalBandwidthCpu;

  if (verbose) {
    ReportResults(ev, transfers, testResults);
  }
}

TestResults ExecuteTransfersImpl(EnvVars const& ev,
                                 std::vector<Transfer>& transfers)
{
Gilbert Lee's avatar
Gilbert Lee committed
385
386
  // Map transfers by executor
  TransferMap transferMap;
gilbertlee-amd's avatar
gilbertlee-amd committed
387
  for (int i = 0; i < transfers.size(); i++)
Gilbert Lee's avatar
Gilbert Lee committed
388
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
389
390
    Transfer& transfer = transfers[i];
    transfer.transferIndex = i;
gilbertlee-amd's avatar
gilbertlee-amd committed
391
    Executor executor(transfer.exeType, transfer.exeIndex);
Gilbert Lee's avatar
Gilbert Lee committed
392
    ExecutorInfo& executorInfo = transferMap[executor];
gilbertlee-amd's avatar
gilbertlee-amd committed
393
    executorInfo.transfers.push_back(&transfer);
Gilbert Lee's avatar
Gilbert Lee committed
394
  }
Gilbert Lee's avatar
Gilbert Lee committed
395

gilbertlee-amd's avatar
gilbertlee-amd committed
396
  // Loop over each executor and prepare sub-executors
gilbertlee-amd's avatar
gilbertlee-amd committed
397
  std::map<int, Transfer*> transferList;
Gilbert Lee's avatar
Gilbert Lee committed
398
399
400
  for (auto& exeInfoPair : transferMap)
  {
    Executor const& executor = exeInfoPair.first;
gilbertlee-amd's avatar
gilbertlee-amd committed
401
402
403
404
    ExecutorInfo& exeInfo    = exeInfoPair.second;
    ExeType const exeType    = executor.first;
    int     const exeIndex   = RemappedIndex(executor.second, IsCpuType(exeType));

Gilbert Lee's avatar
Gilbert Lee committed
405
    exeInfo.totalTime = 0.0;
gilbertlee-amd's avatar
gilbertlee-amd committed
406
    exeInfo.totalSubExecs = 0;
Gilbert Lee's avatar
Gilbert Lee committed
407
408

    // Loop over each transfer this executor is involved in
gilbertlee-amd's avatar
gilbertlee-amd committed
409
    for (Transfer* transfer : exeInfo.transfers)
Gilbert Lee's avatar
Gilbert Lee committed
410
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
411
412
413
      // Allocate source memory
      transfer->srcMem.resize(transfer->numSrcs);
      for (int iSrc = 0; iSrc < transfer->numSrcs; ++iSrc)
Gilbert Lee's avatar
Gilbert Lee committed
414
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
415
        MemType const& srcType  = transfer->srcType[iSrc];
416
        int     const  srcIndex = RemappedIndex(transfer->srcIndex[iSrc], IsCpuType(srcType));
gilbertlee-amd's avatar
gilbertlee-amd committed
417

Gilbert Lee's avatar
Gilbert Lee committed
418
        // Ensure executing GPU can access source memory
419
        if (IsGpuType(exeType) && IsGpuType(srcType) && srcIndex != exeIndex)
Gilbert Lee's avatar
Gilbert Lee committed
420
          EnablePeerAccess(exeIndex, srcIndex);
Gilbert Lee's avatar
Gilbert Lee committed
421

gilbertlee-amd's avatar
gilbertlee-amd committed
422
423
424
425
426
427
428
429
        AllocateMemory(srcType, srcIndex, transfer->numBytesActual + ev.byteOffset, (void**)&transfer->srcMem[iSrc]);
      }

      // Allocate destination memory
      transfer->dstMem.resize(transfer->numDsts);
      for (int iDst = 0; iDst < transfer->numDsts; ++iDst)
      {
        MemType const& dstType  = transfer->dstType[iDst];
430
        int     const  dstIndex = RemappedIndex(transfer->dstIndex[iDst], IsCpuType(dstType));
gilbertlee-amd's avatar
gilbertlee-amd committed
431

Gilbert Lee's avatar
Gilbert Lee committed
432
        // Ensure executing GPU can access destination memory
433
        if (IsGpuType(exeType) && IsGpuType(dstType) && dstIndex != exeIndex)
Gilbert Lee's avatar
Gilbert Lee committed
434
435
          EnablePeerAccess(exeIndex, dstIndex);

gilbertlee-amd's avatar
gilbertlee-amd committed
436
437
        AllocateMemory(dstType, dstIndex, transfer->numBytesActual + ev.byteOffset, (void**)&transfer->dstMem[iDst]);
      }
Gilbert Lee's avatar
Gilbert Lee committed
438

gilbertlee-amd's avatar
gilbertlee-amd committed
439
      exeInfo.totalSubExecs += transfer->numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
440
      transferList[transfer->transferIndex] = transfer;
Gilbert Lee's avatar
Gilbert Lee committed
441
442
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
443
444
    // Prepare additional requirement for GPU-based executors
    if (IsGpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
445
    {
446
447
      HIP_CALL(hipSetDevice(exeIndex));

gilbertlee-amd's avatar
gilbertlee-amd committed
448
449
450
451
452
453
      // Single-stream is only supported for GFX-based executors
      int const numStreamsToUse = (exeType == EXE_GPU_DMA || !ev.useSingleStream) ? exeInfo.transfers.size() : 1;
      exeInfo.streams.resize(numStreamsToUse);
      exeInfo.startEvents.resize(numStreamsToUse);
      exeInfo.stopEvents.resize(numStreamsToUse);
      for (int i = 0; i < numStreamsToUse; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
454
      {
455
456
457
458
        if (ev.cuMask.size())
        {
#if !defined(__NVCC__)
          HIP_CALL(hipExtStreamCreateWithCUMask(&exeInfo.streams[i], ev.cuMask.size(), ev.cuMask.data()));
459
460
461
#else
          printf("[ERROR] CU Masking in not supported on NVIDIA hardware\n");
          exit(-1);
462
463
464
465
466
467
#endif
        }
        else
        {
          HIP_CALL(hipStreamCreate(&exeInfo.streams[i]));
        }
Gilbert Lee's avatar
Gilbert Lee committed
468
469
470
        HIP_CALL(hipEventCreate(&exeInfo.startEvents[i]));
        HIP_CALL(hipEventCreate(&exeInfo.stopEvents[i]));
      }
Gilbert Lee's avatar
Gilbert Lee committed
471

gilbertlee-amd's avatar
gilbertlee-amd committed
472
      if (exeType == EXE_GPU_GFX)
Gilbert Lee's avatar
Gilbert Lee committed
473
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
474
475
        // Allocate one contiguous chunk of GPU memory for threadblock parameters
        // This allows support for executing one transfer per stream, or all transfers in a single stream
476
#if !defined(__NVCC__)
gilbertlee-amd's avatar
gilbertlee-amd committed
477
478
        AllocateMemory(MEM_GPU, exeIndex, exeInfo.totalSubExecs * sizeof(SubExecParam),
                       (void**)&exeInfo.subExecParamGpu);
479
#else
480
        AllocateMemory(MEM_MANAGED, exeIndex, exeInfo.totalSubExecs * sizeof(SubExecParam),
481
482
                       (void**)&exeInfo.subExecParamGpu);
#endif
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

        // Check for sufficient subExecutors
        int numDeviceCUs = 0;
        HIP_CALL(hipDeviceGetAttribute(&numDeviceCUs, hipDeviceAttributeMultiprocessorCount, exeIndex));
        if (exeInfo.totalSubExecs > numDeviceCUs)
        {
          printf("[WARN] GFX executor %d requesting %d total subexecutors, however only has %d.  Some Transfers may be serialized\n",
                 exeIndex, exeInfo.totalSubExecs, numDeviceCUs);
        }
      }

      // Check for targeted DMA
      if (exeType == EXE_GPU_DMA)
      {
        bool useRandomDma = false;
        bool useTargetDma = false;

        // Check for sufficient hardware queues
#if !defined(__NVCC_)
        if (exeInfo.transfers.size() > ev.gpuMaxHwQueues)
        {
          printf("[WARN] DMA executor %d attempting %lu parallel transfers, however GPU_MAX_HW_QUEUES only set to %d\n",
                 exeIndex, exeInfo.transfers.size(), ev.gpuMaxHwQueues);
        }
#endif

        for (Transfer* transfer : exeInfo.transfers)
        {
          if (transfer->exeSubIndex != -1)
          {
            useTargetDma = true;

#if defined(__NVCC__)
            printf("[ERROR] DMA executor subindex not supported on NVIDIA hardware\n");
            exit(-1);
#else
            if (transfer->numSrcs != 1 || transfer->numDsts != 1)
            {
              printf("[ERROR] DMA Transfer must have at exactly one source and one destination");
              exit(1);
            }

            // Collect HSA agent information

            hsa_amd_pointer_info_t info;
            info.size = sizeof(info);

            HSA_CHECK(hsa_amd_pointer_info(transfer->dstMem[0], &info, NULL, NULL, NULL));
            transfer->dstAgent = info.agentOwner;

            HSA_CHECK(hsa_amd_pointer_info(transfer->srcMem[0], &info, NULL, NULL, NULL));
            transfer->srcAgent = info.agentOwner;

            // Create HSA completion signal
            HSA_CHECK(hsa_signal_create(1, 0, NULL, &transfer->signal));

            // Check for valid engine Id
            if (transfer->exeSubIndex < -1 || transfer->exeSubIndex >= 32)
            {
              printf("[ERROR] DMA executor subindex must be between 0 and 31\n");
              exit(1);
            }

            // Check that engine Id exists between agents
            uint32_t engineIdMask = 0;
            HSA_CHECK(hsa_amd_memory_copy_engine_status(transfer->dstAgent,
                                                        transfer->srcAgent,
                                                        &engineIdMask));
            transfer->sdmaEngineId = (hsa_amd_sdma_engine_id_t)(1U << transfer->exeSubIndex);
            if (!(transfer->sdmaEngineId & engineIdMask))
            {
              printf("[ERROR] DMA executor %d.%d does not exist or cannot copy between source %s to destination %s\n",
                     transfer->exeIndex, transfer->exeSubIndex,
                     transfer->SrcToStr().c_str(),
                     transfer->DstToStr().c_str());
              exit(1);
            }
#endif
          }
          else
          {
            useRandomDma = true;
          }
        }
        if (useRandomDma && useTargetDma)
        {
          printf("[WARN] Mixing targeted and untargetted DMA execution on GPU %d may result in resource conflicts\n",
            exeIndex);
        }
Gilbert Lee's avatar
Gilbert Lee committed
572
573
574
      }
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
575

gilbertlee-amd's avatar
gilbertlee-amd committed
576
577

  // Prepare input memory and block parameters for current N
578
  bool isSrcCorrect = true;
gilbertlee-amd's avatar
gilbertlee-amd committed
579
  for (auto& exeInfoPair : transferMap)
Gilbert Lee's avatar
Gilbert Lee committed
580
  {
581
582
583
584
585
    Executor const& executor = exeInfoPair.first;
    ExecutorInfo& exeInfo    = exeInfoPair.second;
    ExeType const exeType    = executor.first;
    int     const exeIndex   = RemappedIndex(executor.second, IsCpuType(exeType));

gilbertlee-amd's avatar
gilbertlee-amd committed
586
587
    exeInfo.totalBytes = 0;
    for (int i = 0; i < exeInfo.transfers.size(); ++i)
Gilbert Lee's avatar
Gilbert Lee committed
588
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
589
590
      // Prepare subarrays each threadblock works on and fill src memory with patterned data
      Transfer* transfer = exeInfo.transfers[i];
gilbertlee-amd's avatar
gilbertlee-amd committed
591
      transfer->PrepareSubExecParams(ev);
592
      isSrcCorrect &= transfer->PrepareSrc(ev);
gilbertlee-amd's avatar
gilbertlee-amd committed
593
      exeInfo.totalBytes += transfer->numBytesActual;
594
595
596
597
598
599
    }

    // Copy block parameters to GPU for GPU executors
    if (exeType == EXE_GPU_GFX)
    {
      std::vector<SubExecParam> tempSubExecParam;
Gilbert Lee's avatar
Gilbert Lee committed
600

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
      if (!ev.useSingleStream || (ev.blockOrder == ORDER_SEQUENTIAL))
      {
        // Assign Transfers to sequentual threadblocks
        int transferOffset = 0;
        for (Transfer* transfer : exeInfo.transfers)
        {
          transfer->subExecParamGpuPtr = exeInfo.subExecParamGpu + transferOffset;

          transfer->subExecIdx.clear();
          for (int subExecIdx = 0; subExecIdx < transfer->subExecParam.size(); subExecIdx++)
          {
            transfer->subExecIdx.push_back(transferOffset + subExecIdx);
            tempSubExecParam.push_back(transfer->subExecParam[subExecIdx]);
          }
          transferOffset += transfer->numSubExecs;
        }
      }
      else if (ev.blockOrder == ORDER_INTERLEAVED)
      {
        // Interleave threadblocks of different Transfers
        exeInfo.transfers[0]->subExecParamGpuPtr = exeInfo.subExecParamGpu;
        for (int subExecIdx = 0; tempSubExecParam.size() < exeInfo.totalSubExecs; ++subExecIdx)
        {
          for (Transfer* transfer : exeInfo.transfers)
          {
            if (subExecIdx < transfer->numSubExecs)
            {
              transfer->subExecIdx.push_back(tempSubExecParam.size());
              tempSubExecParam.push_back(transfer->subExecParam[subExecIdx]);
            }
          }
        }
      }
      else if (ev.blockOrder == ORDER_RANDOM)
Gilbert Lee's avatar
Gilbert Lee committed
635
      {
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        std::vector<std::pair<int,int>> indices;
        exeInfo.transfers[0]->subExecParamGpuPtr = exeInfo.subExecParamGpu;

        // Build up a list of (transfer,subExecParam) indices, then randomly sort them
        for (int i = 0; i < exeInfo.transfers.size(); i++)
        {
          Transfer* transfer = exeInfo.transfers[i];
          for (int subExecIdx = 0; subExecIdx < transfer->numSubExecs; subExecIdx++)
            indices.push_back(std::make_pair(i, subExecIdx));
        }
        std::shuffle(indices.begin(), indices.end(), *ev.generator);

        // Build randomized threadblock list
        for (auto p : indices)
        {
          Transfer* transfer = exeInfo.transfers[p.first];
          transfer->subExecIdx.push_back(tempSubExecParam.size());
          tempSubExecParam.push_back(transfer->subExecParam[p.second]);
        }
Gilbert Lee's avatar
Gilbert Lee committed
655
      }
656
657
658
659
660
661
662

      HIP_CALL(hipSetDevice(exeIndex));
      HIP_CALL(hipMemcpy(exeInfo.subExecParamGpu,
                         tempSubExecParam.data(),
                         tempSubExecParam.size() * sizeof(SubExecParam),
                         hipMemcpyDefault));
      HIP_CALL(hipDeviceSynchronize());
Gilbert Lee's avatar
Gilbert Lee committed
663
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
664
  }
Gilbert Lee's avatar
Gilbert Lee committed
665

gilbertlee-amd's avatar
gilbertlee-amd committed
666
667
668
669
  // Launch kernels (warmup iterations are not counted)
  double totalCpuTime = 0;
  size_t numTimedIterations = 0;
  std::stack<std::thread> threads;
670
  for (int iteration = -ev.numWarmups; isSrcCorrect; iteration++)
gilbertlee-amd's avatar
gilbertlee-amd committed
671
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
672
    if (ev.numIterations > 0 && iteration    >= ev.numIterations) break;
gilbertlee-amd's avatar
gilbertlee-amd committed
673
    if (ev.numIterations < 0 && totalCpuTime > -ev.numIterations) break;
Gilbert Lee's avatar
Gilbert Lee committed
674

gilbertlee-amd's avatar
gilbertlee-amd committed
675
    // Pause before starting first timed iteration in interactive mode
676
    if (ev.useInteractive && iteration == 0)
Gilbert Lee's avatar
Gilbert Lee committed
677
    {
678
679
680
681
      printf("Memory prepared:\n");

      for (Transfer& transfer : transfers)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
682
683
684
685
686
        printf("Transfer %03d:\n", transfer.transferIndex);
        for (int iSrc = 0; iSrc < transfer.numSrcs; ++iSrc)
          printf("  SRC %0d: %p\n", iSrc, transfer.srcMem[iSrc]);
        for (int iDst = 0; iDst < transfer.numDsts; ++iDst)
          printf("  DST %0d: %p\n", iDst, transfer.dstMem[iDst]);
687
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
688
      printf("Hit <Enter> to continue: ");
689
690
691
692
693
      if (scanf("%*c") != 0)
      {
        printf("[ERROR] Unexpected input\n");
        exit(1);
      }
Gilbert Lee's avatar
Gilbert Lee committed
694
695
      printf("\n");
    }
Gilbert Lee's avatar
Gilbert Lee committed
696

gilbertlee-amd's avatar
gilbertlee-amd committed
697
698
699
700
701
    // Start CPU timing for this iteration
    auto cpuStart = std::chrono::high_resolution_clock::now();

    // Execute all Transfers in parallel
    for (auto& exeInfoPair : transferMap)
702
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
703
      ExecutorInfo& exeInfo = exeInfoPair.second;
gilbertlee-amd's avatar
gilbertlee-amd committed
704
705
706
      ExeType       exeType = exeInfoPair.first.first;
      int const numTransfersToRun = (exeType == EXE_GPU_GFX && ev.useSingleStream) ? 1 : exeInfo.transfers.size();

gilbertlee-amd's avatar
gilbertlee-amd committed
707
708
      for (int i = 0; i < numTransfersToRun; ++i)
        threads.push(std::thread(RunTransfer, std::ref(ev), iteration, std::ref(exeInfo), i));
709
    }
Gilbert Lee's avatar
Gilbert Lee committed
710

gilbertlee-amd's avatar
gilbertlee-amd committed
711
712
713
714
715
716
717
    // Wait for all threads to finish
    int const numTransfers = threads.size();
    for (int i = 0; i < numTransfers; i++)
    {
      threads.top().join();
      threads.pop();
    }
Gilbert Lee's avatar
Gilbert Lee committed
718

gilbertlee-amd's avatar
gilbertlee-amd committed
719
720
721
722
    // Stop CPU timing for this iteration
    auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
    double deltaSec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();

723
724
725
726
727
728
729
730
731
    if (ev.alwaysValidate)
    {
      for (auto transferPair : transferList)
      {
        Transfer* transfer = transferPair.second;
        transfer->ValidateDst(ev);
      }
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
732
    if (iteration >= 0)
Gilbert Lee's avatar
Gilbert Lee committed
733
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
734
735
736
737
      ++numTimedIterations;
      totalCpuTime += deltaSec;
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
738

gilbertlee-amd's avatar
gilbertlee-amd committed
739
  // Pause for interactive mode
740
  if (isSrcCorrect && ev.useInteractive)
gilbertlee-amd's avatar
gilbertlee-amd committed
741
742
  {
    printf("Transfers complete. Hit <Enter> to continue: ");
743
744
745
746
747
    if (scanf("%*c") != 0)
    {
      printf("[ERROR] Unexpected input\n");
      exit(1);
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
748
749
    printf("\n");
  }
Gilbert Lee's avatar
Gilbert Lee committed
750

gilbertlee-amd's avatar
gilbertlee-amd committed
751
752
753
754
755
756
  // Validate that each transfer has transferred correctly
  size_t totalBytesTransferred = 0;
  int const numTransfers = transferList.size();
  for (auto transferPair : transferList)
  {
    Transfer* transfer = transferPair.second;
gilbertlee-amd's avatar
gilbertlee-amd committed
757
758
    transfer->ValidateDst(ev);
    totalBytesTransferred += transfer->numBytesActual;
gilbertlee-amd's avatar
gilbertlee-amd committed
759
  }
Gilbert Lee's avatar
Gilbert Lee committed
760

761
762
763
764
765
766
  // Record results
  TestResults testResults;
  testResults.numTimedIterations = numTimedIterations;
  testResults.totalBytesTransferred = totalBytesTransferred;
  testResults.totalDurationMsec = totalCpuTime / (1.0 * numTimedIterations * ev.numSubIterations) * 1000;
  testResults.totalBandwidthCpu = (totalBytesTransferred / 1.0E6) / testResults.totalDurationMsec;
Gilbert Lee's avatar
Gilbert Lee committed
767

768
  double maxExeDurationMsec = 0.0;
769
  if (!isSrcCorrect) goto cleanup;
770

771
772
773
774
775
776
  for (auto& exeInfoPair : transferMap)
  {
    ExecutorInfo  exeInfo  = exeInfoPair.second;
    ExeType const exeType  = exeInfoPair.first.first;
    int     const exeIndex = exeInfoPair.first.second;
    ExeResult& exeResult   = testResults.exeResults[std::make_pair(exeType, exeIndex)];
gilbertlee-amd's avatar
gilbertlee-amd committed
777

778
779
780
781
    // Compute total time for non GPU executors
    if (exeType != EXE_GPU_GFX || ev.useSingleStream == 0)
    {
      exeInfo.totalTime = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
782
      for (auto const& transfer : exeInfo.transfers)
783
        exeInfo.totalTime = std::max(exeInfo.totalTime, transfer->transferTime);
Gilbert Lee's avatar
Gilbert Lee committed
784
    }
785

786
787
788
789
790
    exeResult.totalBytes      = exeInfo.totalBytes;
    exeResult.durationMsec    = exeInfo.totalTime / (1.0 * numTimedIterations * ev.numSubIterations);
    exeResult.bandwidthGbs    = (exeInfo.totalBytes / 1.0E9) / exeResult.durationMsec * 1000.0f;
    exeResult.sumBandwidthGbs = 0;
    maxExeDurationMsec        = std::max(maxExeDurationMsec, exeResult.durationMsec);
Gilbert Lee's avatar
Gilbert Lee committed
791

792
    for (auto& transfer: exeInfo.transfers)
Gilbert Lee's avatar
Gilbert Lee committed
793
    {
794
795
796
797
798
      exeResult.transferIdx.push_back(transfer->transferIndex);
      transfer->transferTime /= (1.0 * numTimedIterations * ev.numSubIterations);
      transfer->transferBandwidth = (transfer->numBytesActual / 1.0E9) / transfer->transferTime * 1000.0f;
      transfer->executorBandwidth = exeResult.bandwidthGbs;
      exeResult.sumBandwidthGbs += transfer->transferBandwidth;
Gilbert Lee's avatar
Gilbert Lee committed
799
800
    }
  }
801
  testResults.overheadMsec = testResults.totalDurationMsec - maxExeDurationMsec;
Gilbert Lee's avatar
Gilbert Lee committed
802

Gilbert Lee's avatar
Gilbert Lee committed
803
  // Release GPU memory
804
cleanup:
Gilbert Lee's avatar
Gilbert Lee committed
805
806
  for (auto exeInfoPair : transferMap)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
807
808
809
810
    ExecutorInfo& exeInfo  = exeInfoPair.second;
    ExeType const exeType  = exeInfoPair.first.first;
    int     const exeIndex = RemappedIndex(exeInfoPair.first.second, IsCpuType(exeType));

Gilbert Lee's avatar
Gilbert Lee committed
811
812
    for (auto& transfer : exeInfo.transfers)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
813
814
815
816
817
818
819
820
821
822
823
      for (int iSrc = 0; iSrc < transfer->numSrcs; ++iSrc)
      {
        MemType const& srcType = transfer->srcType[iSrc];
        DeallocateMemory(srcType, transfer->srcMem[iSrc], transfer->numBytesActual + ev.byteOffset);
      }
      for (int iDst = 0; iDst < transfer->numDsts; ++iDst)
      {
        MemType const& dstType = transfer->dstType[iDst];
        DeallocateMemory(dstType, transfer->dstMem[iDst], transfer->numBytesActual + ev.byteOffset);
      }
      transfer->subExecParam.clear();
824
825
826
827
828
829
830

      if (exeType == EXE_GPU_DMA && transfer->exeSubIndex != -1)
      {
#if !defined(__NVCC__)
        HSA_CHECK(hsa_signal_destroy(transfer->signal));
#endif
      }
Gilbert Lee's avatar
Gilbert Lee committed
831
832
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
833
    if (IsGpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
834
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
835
836
      int const numStreams = (int)exeInfo.streams.size();
      for (int i = 0; i < numStreams; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
837
      {
Gilbert Lee's avatar
Gilbert Lee committed
838
839
840
        HIP_CALL(hipEventDestroy(exeInfo.startEvents[i]));
        HIP_CALL(hipEventDestroy(exeInfo.stopEvents[i]));
        HIP_CALL(hipStreamDestroy(exeInfo.streams[i]));
Gilbert Lee's avatar
Gilbert Lee committed
841
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
842
843
844

      if (exeType == EXE_GPU_GFX)
      {
845
#if !defined(__NVCC__)
gilbertlee-amd's avatar
gilbertlee-amd committed
846
        DeallocateMemory(MEM_GPU, exeInfo.subExecParamGpu);
847
#else
848
        DeallocateMemory(MEM_MANAGED, exeInfo.subExecParamGpu);
849
#endif
gilbertlee-amd's avatar
gilbertlee-amd committed
850
      }
Gilbert Lee's avatar
Gilbert Lee committed
851
852
    }
  }
853
854

  return testResults;
Gilbert Lee's avatar
Gilbert Lee committed
855
856
857
858
}

void DisplayUsage(char const* cmdName)
{
Gilbert Lee's avatar
Gilbert Lee committed
859
  printf("TransferBench v%s\n", TB_VERSION);
Gilbert Lee's avatar
Gilbert Lee committed
860
861
862
863
864
865
866
867
868
869
870
871
872
  printf("========================================\n");

  if (numa_available() == -1)
  {
    printf("[ERROR] NUMA library not supported. Check to see if libnuma has been installed on this system\n");
    exit(1);
  }
  int numGpuDevices;
  HIP_CALL(hipGetDeviceCount(&numGpuDevices));
  int const numCpuDevices = numa_num_configured_nodes();

  printf("Usage: %s config <N>\n", cmdName);
  printf("  config: Either:\n");
Gilbert Lee's avatar
Gilbert Lee committed
873
  printf("          - Filename of configFile containing Transfers to execute (see example.cfg for format)\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
874
  printf("          - Name of preset config:\n");
875
876
877
  printf("              a2a          - GPU All-To-All benchmark\n");
  printf("                             - 3rd optional arg: # of SubExecs to use\n");
  printf("              cmdline      - Read Transfers from command line arguments (after N)\n");
878
  printf("              healthcheck  - Simple bandwidth health check (MI300 series only)\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
879
  printf("              p2p          - Peer-to-peer benchmark tests\n");
880
881
882
883
884
  printf("              rwrite/pcopy - Parallel writes/copies from single GPU to other GPUs\n");
  printf("                             - 3rd optional arg: # GPU SubExecs per Transfer\n");
  printf("                             - 4th optional arg: Root GPU index\n");
  printf("                             - 5th optional arg: Min number of other GPUs to transfer to\n");
  printf("                             - 6th optional arg: Max number of other GPUs to transfer to\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
885
  printf("              sweep/rsweep - Sweep/random sweep across possible sets of Transfers\n");
886
887
  printf("                             - 3rd optional arg: # GPU SubExecs per Transfer\n");
  printf("                             - 4th optional arg: # CPU SubExecs per Transfer\n");
888
  printf("              scaling      - GPU GFX SubExec scaling copy test\n");
889
890
  printf("                             - 3th optional arg: Max # of SubExecs to use\n");
  printf("                             - 4rd optional arg: GPU index to use as executor\n");
891
  printf("              schmoo       - Local/RemoteRead/Write/Copy between two GPUs\n");
Gilbert Lee's avatar
Gilbert Lee committed
892
  printf("  N     : (Optional) Number of bytes to copy per Transfer.\n");
Gilbert Lee's avatar
Gilbert Lee committed
893
  printf("          If not specified, defaults to %lu bytes. Must be a multiple of 4 bytes\n",
Gilbert Lee's avatar
Gilbert Lee committed
894
         DEFAULT_BYTES_PER_TRANSFER);
Gilbert Lee's avatar
Gilbert Lee committed
895
896
897
898
899
900
901
  printf("          If 0 is specified, a range of Ns will be benchmarked\n");
  printf("          May append a suffix ('K', 'M', 'G') for kilobytes / megabytes / gigabytes\n");
  printf("\n");

  EnvVars::DisplayUsage();
}

gilbertlee-amd's avatar
gilbertlee-amd committed
902
int RemappedIndex(int const origIdx, bool const isCpuType)
Gilbert Lee's avatar
Gilbert Lee committed
903
{
904
905
  static std::vector<int> remappingCpu;
  static std::vector<int> remappingGpu;
Gilbert Lee's avatar
Gilbert Lee committed
906

907
908
909
910
911
912
913
914
  // Build CPU remapping on first use
  // Skip numa nodes that are not configured
  if (remappingCpu.empty())
  {
    for (int node = 0; node <= numa_max_node(); node++)
      if (numa_bitmask_isbitset(numa_get_mems_allowed(), node))
        remappingCpu.push_back(node);
  }
Gilbert Lee's avatar
Gilbert Lee committed
915

916
917
  // Build remappingGpu on first use
  if (remappingGpu.empty())
Gilbert Lee's avatar
Gilbert Lee committed
918
919
920
  {
    int numGpuDevices;
    HIP_CALL(hipGetDeviceCount(&numGpuDevices));
921
    remappingGpu.resize(numGpuDevices);
Gilbert Lee's avatar
Gilbert Lee committed
922
923
924
925

    int const usePcieIndexing = getenv("USE_PCIE_INDEX") ? atoi(getenv("USE_PCIE_INDEX")) : 0;
    if (!usePcieIndexing)
    {
926
      // For HIP-based indexing no remappingGpu is necessary
Gilbert Lee's avatar
Gilbert Lee committed
927
      for (int i = 0; i < numGpuDevices; ++i)
928
        remappingGpu[i] = i;
Gilbert Lee's avatar
Gilbert Lee committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    }
    else
    {
      // Collect PCIe address for each GPU
      std::vector<std::pair<std::string, int>> mapping;
      char pciBusId[20];
      for (int i = 0; i < numGpuDevices; ++i)
      {
        HIP_CALL(hipDeviceGetPCIBusId(pciBusId, 20, i));
        mapping.push_back(std::make_pair(pciBusId, i));
      }
      // Sort GPUs by PCIe address then use that as mapping
      std::sort(mapping.begin(), mapping.end());
      for (int i = 0; i < numGpuDevices; ++i)
943
        remappingGpu[i] = mapping[i].second;
Gilbert Lee's avatar
Gilbert Lee committed
944
945
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
946
  return isCpuType ? remappingCpu[origIdx] : remappingGpu[origIdx];
Gilbert Lee's avatar
Gilbert Lee committed
947
948
949
950
}

void DisplayTopology(bool const outputToCsv)
{
951

952
  int numCpuDevices = numa_num_configured_nodes();
Gilbert Lee's avatar
Gilbert Lee committed
953
954
955
956
957
  int numGpuDevices;
  HIP_CALL(hipGetDeviceCount(&numGpuDevices));

  if (outputToCsv)
  {
958
    printf("NumCpus,%d\n", numCpuDevices);
Gilbert Lee's avatar
Gilbert Lee committed
959
    printf("NumGpus,%d\n", numGpuDevices);
960
961
962
  }
  else
  {
963
964
    printf("\nDetected topology: %d configured CPU NUMA node(s) [%d total]   %d GPU device(s)\n",
           numa_num_configured_nodes(), numa_max_node() + 1, numGpuDevices);
965
966
967
968
969
970
971
972
  }

  // Print out detected CPU topology
  if (outputToCsv)
  {
    printf("NUMA");
    for (int j = 0; j < numCpuDevices; j++)
      printf(",NUMA%02d", j);
973
    printf(",# CPUs,ClosestGPUs,ActualNode\n");
974
975
976
  }
  else
  {
977
    printf("            |");
978
    for (int j = 0; j < numCpuDevices; j++)
979
980
981
982
      printf("NUMA %02d|", j);
    printf(" #Cpus | Closest GPU(s)\n");

    printf("------------+");
983
    for (int j = 0; j <= numCpuDevices; j++)
984
985
      printf("-------+");
    printf("---------------\n");
986
987
988
989
  }

  for (int i = 0; i < numCpuDevices; i++)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
990
    int nodeI = RemappedIndex(i, true);
991
    printf("NUMA %02d (%02d)%s", i, nodeI, outputToCsv ? "," : "|");
992
993
    for (int j = 0; j < numCpuDevices; j++)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
994
      int nodeJ = RemappedIndex(j, true);
995
      int numaDist = numa_distance(nodeI, nodeJ);
996
      if (outputToCsv)
gilbertlee-amd's avatar
gilbertlee-amd committed
997
        printf("%d,", numaDist);
998
      else
999
        printf(" %5d |", numaDist);
1000
1001
1002
1003
    }

    int numCpus = 0;
    for (int j = 0; j < numa_num_configured_cpus(); j++)
1004
      if (numa_node_of_cpu(j) == nodeI) numCpus++;
1005
1006
1007
    if (outputToCsv)
      printf("%d,", numCpus);
    else
1008
      printf(" %5d | ", numCpus);
1009

1010
#if !defined(__NVCC__)
1011
1012
1013
    bool isFirst = true;
    for (int j = 0; j < numGpuDevices; j++)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1014
      if (GetClosestNumaNode(RemappedIndex(j, false)) == i)
1015
1016
      {
        if (isFirst) isFirst = false;
gilbertlee-amd's avatar
gilbertlee-amd committed
1017
1018
        else printf(",");
        printf("%d", j);
1019
1020
      }
    }
1021
#endif
1022
1023
1024
1025
    printf("\n");
  }
  printf("\n");

1026
#if defined(__NVCC__)
1027
1028
1029
1030
1031
1032
1033
1034

  for (int i = 0; i < numGpuDevices; i++)
  {
    hipDeviceProp_t prop;
    HIP_CALL(hipGetDeviceProperties(&prop, i));
    printf(" GPU %02d | %s\n", i, prop.name);
  }

1035
1036
  // No further topology detection done for NVIDIA platforms
  return;
1037
1038
1039
1040
#else
    // Figure out DMA engines per GPU
  std::vector<std::set<int>> dmaEngineIdsPerDevice(numGpuDevices);
  {
1041
1042
    std::vector<hsa_agent_t> gpuAgentList;
    std::vector<hsa_agent_t> allAgentList;
1043
1044
    hsa_amd_pointer_info_t info;
    info.size = sizeof(info);
1045

1046
1047
1048
    for (int deviceId = 0; deviceId < numGpuDevices; deviceId++)
    {
      HIP_CALL(hipSetDevice(deviceId));
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
      int32_t* tempGpuBuffer;
      HIP_CALL(hipMalloc((void**)&tempGpuBuffer, 1024));
      HSA_CHECK(hsa_amd_pointer_info(tempGpuBuffer, &info, NULL, NULL, NULL));
      gpuAgentList.push_back(info.agentOwner);
      allAgentList.push_back(info.agentOwner);
      HIP_CALL(hipFree(tempGpuBuffer));
    }
    for (int deviceId = 0; deviceId < numCpuDevices; deviceId++)
    {
      int32_t* tempCpuBuffer;
      AllocateMemory(MEM_CPU, deviceId, 1024, (void**)&tempCpuBuffer);
      HSA_CHECK(hsa_amd_pointer_info(tempCpuBuffer, &info, NULL, NULL, NULL));
      allAgentList.push_back(info.agentOwner);
      DeallocateMemory(MEM_CPU, tempCpuBuffer, 1024);
1063
1064
1065
1066
1067
    }

    for (int srcDevice = 0; srcDevice < numGpuDevices; srcDevice++)
    {
      dmaEngineIdsPerDevice[srcDevice].clear();
1068
      for (int dstDevice = 0; dstDevice < allAgentList.size(); dstDevice++)
1069
1070
1071
      {
        if (srcDevice == dstDevice) continue;
        uint32_t engineIdMask = 0;
1072
1073
        if (hsa_amd_memory_copy_engine_status(allAgentList[dstDevice],
                                              gpuAgentList[srcDevice],
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
                                              &engineIdMask) != HSA_STATUS_SUCCESS)
          continue;
        for (int engineId = 0; engineId < 32; engineId++)
        {
          if (engineIdMask & (1U << engineId))
            dmaEngineIdsPerDevice[srcDevice].insert(engineId);
        }
      }
    }
  }
1084

1085
1086
1087
  // Print out detected GPU topology
  if (outputToCsv)
  {
Gilbert Lee's avatar
Gilbert Lee committed
1088
1089
1090
    printf("GPU");
    for (int j = 0; j < numGpuDevices; j++)
      printf(",GPU %02d", j);
1091
    printf(",PCIe Bus ID,ClosestNUMA,DMA engines\n");
Gilbert Lee's avatar
Gilbert Lee committed
1092
1093
1094
  }
  else
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
    printf("        |");
    for (int j = 0; j < numGpuDevices; j++)
    {
      hipDeviceProp_t prop;
      HIP_CALL(hipGetDeviceProperties(&prop, j));
      std::string fullName = prop.gcnArchName;
      std::string archName = fullName.substr(0, fullName.find(':'));
      printf(" %6s |", archName.c_str());
    }
    printf("\n");
Gilbert Lee's avatar
Gilbert Lee committed
1105
1106
1107
    printf("        |");
    for (int j = 0; j < numGpuDevices; j++)
      printf(" GPU %02d |", j);
1108
    printf(" PCIe Bus ID  | #CUs | Closest NUMA | DMA engines\n");
Gilbert Lee's avatar
Gilbert Lee committed
1109
1110
    for (int j = 0; j <= numGpuDevices; j++)
      printf("--------+");
1111
    printf("--------------+------+-------------+------------\n");
Gilbert Lee's avatar
Gilbert Lee committed
1112
1113
1114
1115
1116
  }

  char pciBusId[20];
  for (int i = 0; i < numGpuDevices; i++)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1117
    int const deviceIdx = RemappedIndex(i, false);
Gilbert Lee's avatar
Gilbert Lee committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
    printf("%sGPU %02d%s", outputToCsv ? "" : " ", i, outputToCsv ? "," : " |");
    for (int j = 0; j < numGpuDevices; j++)
    {
      if (i == j)
      {
        if (outputToCsv)
          printf("-,");
        else
          printf("    -   |");
      }
      else
      {
        uint32_t linkType, hopCount;
gilbertlee-amd's avatar
gilbertlee-amd committed
1131
1132
        HIP_CALL(hipExtGetLinkTypeAndHopCount(deviceIdx,
                                              RemappedIndex(j, false),
Gilbert Lee's avatar
Gilbert Lee committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
                                              &linkType, &hopCount));
        printf("%s%s-%d%s",
               outputToCsv ? "" : " ",
               linkType == HSA_AMD_LINK_INFO_TYPE_HYPERTRANSPORT ? "  HT" :
               linkType == HSA_AMD_LINK_INFO_TYPE_QPI            ? " QPI" :
               linkType == HSA_AMD_LINK_INFO_TYPE_PCIE           ? "PCIE" :
               linkType == HSA_AMD_LINK_INFO_TYPE_INFINBAND      ? "INFB" :
               linkType == HSA_AMD_LINK_INFO_TYPE_XGMI           ? "XGMI" : "????",
               hopCount, outputToCsv ? "," : " |");
      }
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1144
1145
1146
1147
1148
    HIP_CALL(hipDeviceGetPCIBusId(pciBusId, 20, deviceIdx));

    int numDeviceCUs = 0;
    HIP_CALL(hipDeviceGetAttribute(&numDeviceCUs, hipDeviceAttributeMultiprocessorCount, deviceIdx));

Gilbert Lee's avatar
Gilbert Lee committed
1149
    if (outputToCsv)
1150
      printf("%s,%d,%d,", pciBusId, numDeviceCUs, GetClosestNumaNode(deviceIdx));
Gilbert Lee's avatar
Gilbert Lee committed
1151
    else
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
    {
      printf(" %11s | %4d | %-12d |", pciBusId, numDeviceCUs, GetClosestNumaNode(deviceIdx));

      bool isFirst = true;
      for (auto x : dmaEngineIdsPerDevice[deviceIdx])
      {
        if (isFirst) isFirst = false; else printf(",");
        printf("%d", x);
      }
      printf("\n");
    }
Gilbert Lee's avatar
Gilbert Lee committed
1163
  }
1164
#endif
Gilbert Lee's avatar
Gilbert Lee committed
1165
1166
}

1167
void ParseMemType(EnvVars const& ev, std::string const& token,
gilbertlee-amd's avatar
gilbertlee-amd committed
1168
                  std::vector<MemType>& memTypes, std::vector<int>& memIndices)
Gilbert Lee's avatar
Gilbert Lee committed
1169
1170
{
  char typeChar;
gilbertlee-amd's avatar
gilbertlee-amd committed
1171
1172
  int offset = 0, devIndex, inc;
  bool found = false;
Gilbert Lee's avatar
Gilbert Lee committed
1173

gilbertlee-amd's avatar
gilbertlee-amd committed
1174
1175
1176
  memTypes.clear();
  memIndices.clear();
  while (sscanf(token.c_str() + offset, " %c %d%n", &typeChar, &devIndex, &inc) == 2)
Gilbert Lee's avatar
Gilbert Lee committed
1177
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1178
1179
1180
    offset += inc;
    MemType memType = CharToMemType(typeChar);

1181
    if (IsCpuType(memType) && (devIndex < 0 || devIndex >= ev.numCpuDevices))
Gilbert Lee's avatar
Gilbert Lee committed
1182
    {
1183
      printf("[ERROR] CPU index must be between 0 and %d (instead of %d)\n", ev.numCpuDevices-1, devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1184
1185
      exit(1);
    }
1186
    if (IsGpuType(memType) && (devIndex < 0 || devIndex >= ev.numGpuDevices))
Gilbert Lee's avatar
Gilbert Lee committed
1187
    {
1188
      printf("[ERROR] GPU index must be between 0 and %d (instead of %d)\n", ev.numGpuDevices-1, devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1189
1190
      exit(1);
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

    found = true;
    if (memType != MEM_NULL)
    {
      memTypes.push_back(memType);
      memIndices.push_back(devIndex);
    }
  }
  if (!found)
  {
    printf("[ERROR] Unable to parse memory type token %s.  Expected one of %s followed by an index\n",
           token.c_str(), MemTypeStr);
    exit(1);
  }
}

1207
1208
void ParseExeType(EnvVars const& ev, std::string const& token,
                  ExeType &exeType, int& exeIndex, int& exeSubIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
1209
1210
{
  char typeChar;
1211
1212
1213
  exeSubIndex = -1;
  int numTokensParsed = sscanf(token.c_str(), " %c%d.%d", &typeChar, &exeIndex, &exeSubIndex);
  if (numTokensParsed < 2)
gilbertlee-amd's avatar
gilbertlee-amd committed
1214
1215
1216
1217
1218
1219
1220
  {
    printf("[ERROR] Unable to parse valid executor token (%s).  Exepected one of %s followed by an index\n",
           token.c_str(), ExeTypeStr);
    exit(1);
  }
  exeType = CharToExeType(typeChar);

1221
  if (IsCpuType(exeType) && (exeIndex < 0 || exeIndex >= ev.numCpuDevices))
gilbertlee-amd's avatar
gilbertlee-amd committed
1222
  {
1223
    printf("[ERROR] CPU index must be between 0 and %d (instead of %d)\n", ev.numCpuDevices-1, exeIndex);
gilbertlee-amd's avatar
gilbertlee-amd committed
1224
1225
    exit(1);
  }
1226
  if (IsGpuType(exeType) && (exeIndex < 0 || exeIndex >= ev.numGpuDevices))
gilbertlee-amd's avatar
gilbertlee-amd committed
1227
  {
1228
    printf("[ERROR] GPU index must be between 0 and %d (instead of %d)\n", ev.numGpuDevices-1, exeIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1229
1230
    exit(1);
  }
1231
1232
1233
1234
1235
1236
1237
1238
1239
  if (exeType == EXE_GPU_GFX && exeSubIndex != -1)
  {
    int const idx = RemappedIndex(exeIndex, false);
    if (ev.xccIdsPerDevice[idx].count(exeSubIndex) == 0)
    {
      printf("[ERROR] GPU %d does not have subIndex %d\n", exeIndex, exeSubIndex);
      exit(1);
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
1240
1241
}

Gilbert Lee's avatar
Gilbert Lee committed
1242
// Helper function to parse a list of Transfer definitions
1243
void ParseTransfers(EnvVars const& ev, char* line, std::vector<Transfer>& transfers)
Gilbert Lee's avatar
Gilbert Lee committed
1244
1245
1246
1247
1248
{
  // Replace any round brackets or '->' with spaces,
  for (int i = 1; line[i]; i++)
    if (line[i] == '(' || line[i] == ')' || line[i] == '-' || line[i] == '>' ) line[i] = ' ';

Gilbert Lee's avatar
Gilbert Lee committed
1249
  transfers.clear();
Gilbert Lee's avatar
Gilbert Lee committed
1250

Gilbert Lee's avatar
Gilbert Lee committed
1251
  int numTransfers = 0;
Gilbert Lee's avatar
Gilbert Lee committed
1252
  std::istringstream iss(line);
Gilbert Lee's avatar
Gilbert Lee committed
1253
  iss >> numTransfers;
Gilbert Lee's avatar
Gilbert Lee committed
1254
1255
1256
1257
1258
  if (iss.fail()) return;

  std::string exeMem;
  std::string srcMem;
  std::string dstMem;
Gilbert Lee's avatar
Gilbert Lee committed
1259

gilbertlee-amd's avatar
gilbertlee-amd committed
1260
  // If numTransfers < 0, read 5-tuple (srcMem, exeMem, dstMem, #CUs, #Bytes)
Gilbert Lee's avatar
Gilbert Lee committed
1261
  // otherwise read triples (srcMem, exeMem, dstMem)
gilbertlee-amd's avatar
gilbertlee-amd committed
1262
  bool const advancedMode = (numTransfers < 0);
Gilbert Lee's avatar
Gilbert Lee committed
1263
1264
  numTransfers = abs(numTransfers);

gilbertlee-amd's avatar
gilbertlee-amd committed
1265
  int numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
1266
  if (!advancedMode)
Gilbert Lee's avatar
Gilbert Lee committed
1267
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1268
    iss >> numSubExecs;
1269
    if (numSubExecs < 0 || iss.fail())
Gilbert Lee's avatar
Gilbert Lee committed
1270
    {
1271
      printf("Parsing error: Number of blocks to use (%d) must be non-negative\n", numSubExecs);
Gilbert Lee's avatar
Gilbert Lee committed
1272
1273
1274
1275
      exit(1);
    }
  }

gilbertlee-amd's avatar
gilbertlee-amd committed
1276
  size_t numBytes = 0;
Gilbert Lee's avatar
Gilbert Lee committed
1277
1278
1279
  for (int i = 0; i < numTransfers; i++)
  {
    Transfer transfer;
gilbertlee-amd's avatar
gilbertlee-amd committed
1280
    transfer.numBytes = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
1281
    transfer.numBytesActual = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
1282
    if (!advancedMode)
Gilbert Lee's avatar
Gilbert Lee committed
1283
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
      iss >> srcMem >> exeMem >> dstMem;
      if (iss.fail())
      {
        printf("Parsing error: Unable to read valid Transfer %d (SRC EXE DST) triplet\n", i+1);
        exit(1);
      }
    }
    else
    {
      std::string numBytesToken;
gilbertlee-amd's avatar
gilbertlee-amd committed
1294
      iss >> srcMem >> exeMem >> dstMem >> numSubExecs >> numBytesToken;
gilbertlee-amd's avatar
gilbertlee-amd committed
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
      if (iss.fail())
      {
        printf("Parsing error: Unable to read valid Transfer %d (SRC EXE DST #CU #Bytes) tuple\n", i+1);
        exit(1);
      }
      if (sscanf(numBytesToken.c_str(), "%lu", &numBytes) != 1)
      {
        printf("Parsing error: '%s' is not a valid expression of numBytes for Transfer %d\n", numBytesToken.c_str(), i+1);
        exit(1);
      }
      char units = numBytesToken.back();
gilbertlee-amd's avatar
gilbertlee-amd committed
1306
      switch (toupper(units))
gilbertlee-amd's avatar
gilbertlee-amd committed
1307
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1308
1309
1310
      case 'K': numBytes *= 1024; break;
      case 'M': numBytes *= 1024*1024; break;
      case 'G': numBytes *= 1024*1024*1024; break;
gilbertlee-amd's avatar
gilbertlee-amd committed
1311
      }
Gilbert Lee's avatar
Gilbert Lee committed
1312
    }
Gilbert Lee's avatar
Gilbert Lee committed
1313

1314
1315
1316
    ParseMemType(ev, srcMem, transfer.srcType, transfer.srcIndex);
    ParseMemType(ev, dstMem, transfer.dstType, transfer.dstIndex);
    ParseExeType(ev, exeMem, transfer.exeType, transfer.exeIndex, transfer.exeSubIndex);
gilbertlee-amd's avatar
gilbertlee-amd committed
1317
1318
1319
1320
1321
1322
1323
1324
1325

    transfer.numSrcs = (int)transfer.srcType.size();
    transfer.numDsts = (int)transfer.dstType.size();
    if (transfer.numSrcs == 0 && transfer.numDsts == 0)
    {
      printf("[ERROR] Transfer must have at least one src or dst\n");
      exit(1);
    }

1326
    if (transfer.exeType == EXE_GPU_DMA && (transfer.numSrcs != 1 || transfer.numDsts != 1))
gilbertlee-amd's avatar
gilbertlee-amd committed
1327
    {
1328
      printf("[ERROR] GPU DMA executor can only be used for single source + single dst copies\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
1329
1330
1331
1332
      exit(1);
    }

    transfer.numSubExecs = numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
1333
    transfer.numBytes = numBytes;
Gilbert Lee's avatar
Gilbert Lee committed
1334
    transfers.push_back(transfer);
Gilbert Lee's avatar
Gilbert Lee committed
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
  }
}

void EnablePeerAccess(int const deviceId, int const peerDeviceId)
{
  int canAccess;
  HIP_CALL(hipDeviceCanAccessPeer(&canAccess, deviceId, peerDeviceId));
  if (!canAccess)
  {
    printf("[ERROR] Unable to enable peer access from GPU devices %d to %d\n", peerDeviceId, deviceId);
    exit(1);
  }
  HIP_CALL(hipSetDevice(deviceId));
Gilbert Lee's avatar
Gilbert Lee committed
1348
1349
1350
1351
1352
1353
1354
  hipError_t error = hipDeviceEnablePeerAccess(peerDeviceId, 0);
  if (error != hipSuccess && error != hipErrorPeerAccessAlreadyEnabled)
  {
    printf("[ERROR] Unable to enable peer to peer access from %d to %d (%s)\n",
           deviceId, peerDeviceId, hipGetErrorString(error));
    exit(1);
  }
Gilbert Lee's avatar
Gilbert Lee committed
1355
1356
1357
1358
1359
1360
1361
1362
1363
}

void AllocateMemory(MemType memType, int devIndex, size_t numBytes, void** memPtr)
{
  if (numBytes == 0)
  {
    printf("[ERROR] Unable to allocate 0 bytes\n");
    exit(1);
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1364
  *memPtr = nullptr;
gilbertlee-amd's avatar
gilbertlee-amd committed
1365
  if (IsCpuType(memType))
Gilbert Lee's avatar
Gilbert Lee committed
1366
1367
  {
    // Set numa policy prior to call to hipHostMalloc
1368
    numa_set_preferred(devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1369
1370
1371
1372

    // Allocate host-pinned memory (should respect NUMA mem policy)
    if (memType == MEM_CPU_FINE)
    {
1373
1374
1375
1376
#if defined (__NVCC__)
      printf("[ERROR] Fine-grained CPU memory not supported on NVIDIA platform\n");
      exit(1);
#else
Gilbert Lee's avatar
Gilbert Lee committed
1377
      HIP_CALL(hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser));
1378
#endif
Gilbert Lee's avatar
Gilbert Lee committed
1379
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1380
    else if (memType == MEM_CPU)
Gilbert Lee's avatar
Gilbert Lee committed
1381
    {
1382
1383
1384
#if defined (__NVCC__)
      if (hipHostMalloc((void **)memPtr, numBytes, 0) != hipSuccess)
#else
1385
      if (hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser | hipHostMallocNonCoherent) != hipSuccess)
1386
#endif
1387
1388
1389
1390
      {
        printf("[ERROR] Unable to allocate non-coherent host memory on NUMA node %d\n", devIndex);
        exit(1);
      }
Gilbert Lee's avatar
Gilbert Lee committed
1391
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1392
1393
1394
1395
    else if (memType == MEM_CPU_UNPINNED)
    {
      *memPtr = numa_alloc_onnode(numBytes, devIndex);
    }
Gilbert Lee's avatar
Gilbert Lee committed
1396
1397

    // Check that the allocated pages are actually on the correct NUMA node
gilbertlee-amd's avatar
gilbertlee-amd committed
1398
    memset(*memPtr, 0, numBytes);
1399

gilbertlee-amd's avatar
gilbertlee-amd committed
1400
    CheckPages((char*)*memPtr, numBytes, devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1401
1402

    // Reset to default numa mem policy
1403
    numa_set_preferred(-1);
Gilbert Lee's avatar
Gilbert Lee committed
1404
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1405
  else if (IsGpuType(memType))
Gilbert Lee's avatar
Gilbert Lee committed
1406
  {
1407
1408
1409
1410
1411
1412
1413
1414
    if (memType == MEM_GPU)
    {
      // Allocate GPU memory on appropriate device
      HIP_CALL(hipSetDevice(devIndex));
      HIP_CALL(hipMalloc((void**)memPtr, numBytes));
    }
    else if (memType == MEM_GPU_FINE)
    {
1415
#if defined (__NVCC__)
1416
1417
      printf("[ERROR] Fine-grained GPU memory not supported on NVIDIA platform\n");
      exit(1);
1418
#else
1419
      HIP_CALL(hipSetDevice(devIndex));
1420
      int flag = hipDeviceMallocUncached;
gilbertlee-amd's avatar
gilbertlee-amd committed
1421
      HIP_CALL(hipExtMallocWithFlags((void**)memPtr, numBytes, flag));
1422
#endif
1423
    }
1424
1425
1426
1427
1428
    else if (memType == MEM_MANAGED)
    {
      HIP_CALL(hipSetDevice(devIndex));
      HIP_CALL(hipMallocManaged((void**)memPtr, numBytes));
    }
1429
    HIP_CALL(hipMemset(*memPtr, 0, numBytes));
gilbertlee-amd's avatar
gilbertlee-amd committed
1430
    HIP_CALL(hipDeviceSynchronize());
Gilbert Lee's avatar
Gilbert Lee committed
1431
1432
1433
1434
1435
1436
1437
1438
  }
  else
  {
    printf("[ERROR] Unsupported memory type %d\n", memType);
    exit(1);
  }
}

gilbertlee-amd's avatar
gilbertlee-amd committed
1439
void DeallocateMemory(MemType memType, void* memPtr, size_t const bytes)
Gilbert Lee's avatar
Gilbert Lee committed
1440
1441
1442
{
  if (memType == MEM_CPU || memType == MEM_CPU_FINE)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1443
1444
1445
1446
1447
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null CPU pointer for %lu bytes.  Skipping hipHostFree\n", bytes);
      return;
    }
Gilbert Lee's avatar
Gilbert Lee committed
1448
1449
    HIP_CALL(hipHostFree(memPtr));
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1450
1451
  else if (memType == MEM_CPU_UNPINNED)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1452
1453
1454
1455
1456
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null unpinned CPU pointer for %lu bytes.  Skipping numa_free\n", bytes);
      return;
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1457
1458
    numa_free(memPtr, bytes);
  }
Gilbert Lee's avatar
Gilbert Lee committed
1459
1460
  else if (memType == MEM_GPU || memType == MEM_GPU_FINE)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1461
1462
1463
1464
1465
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null GPU pointer for %lu bytes. Skipping hipFree\n", bytes);
      return;
    }
Gilbert Lee's avatar
Gilbert Lee committed
1466
1467
    HIP_CALL(hipFree(memPtr));
  }
1468
1469
1470
1471
1472
1473
1474
1475
1476
  else if (memType == MEM_MANAGED)
  {
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null managed pointer for %lu bytes. Skipping hipMFree\n", bytes);
      return;
    }
    HIP_CALL(hipFree(memPtr));
  }
Gilbert Lee's avatar
Gilbert Lee committed
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
}

void CheckPages(char* array, size_t numBytes, int targetId)
{
  unsigned long const pageSize = getpagesize();
  unsigned long const numPages = (numBytes + pageSize - 1) / pageSize;

  std::vector<void *> pages(numPages);
  std::vector<int> status(numPages);

  pages[0] = array;
  for (int i = 1; i < numPages; i++)
  {
    pages[i] = (char*)pages[i-1] + pageSize;
  }

  long const retCode = move_pages(0, numPages, pages.data(), NULL, status.data(), 0);
  if (retCode)
  {
    printf("[ERROR] Unable to collect page info\n");
    exit(1);
  }

  size_t mistakeCount = 0;
  for (int i = 0; i < numPages; i++)
  {
    if (status[i] < 0)
    {
      printf("[ERROR] Unexpected page status %d for page %d\n", status[i], i);
      exit(1);
    }
    if (status[i] != targetId) mistakeCount++;
  }
  if (mistakeCount > 0)
  {
    printf("[ERROR] %lu out of %lu pages for memory allocation were not on NUMA node %d\n", mistakeCount, numPages, targetId);
    exit(1);
  }
}

1517
1518
uint32_t GetId(uint32_t hwId)
{
1519
1520
1521
#if defined(__NVCC_)
  return hwId;
#else
1522
  // Based on instinct-mi200-cdna2-instruction-set-architecture.pdf
1523
1524
1525
  int const shId = (hwId >> 12) &  1;
  int const cuId = (hwId >>  8) & 15;
  int const seId = (hwId >> 13) &  3;
1526
  return (shId << 5) + (cuId << 2) + seId;
1527
#endif
1528
1529
}

1530
void RunTransfer(EnvVars const& ev, int const iteration,
Gilbert Lee's avatar
Gilbert Lee committed
1531
                 ExecutorInfo& exeInfo, int const transferIdx)
Gilbert Lee's avatar
Gilbert Lee committed
1532
{
gilbertlee-amd's avatar
gilbertlee-amd committed
1533
  Transfer* transfer = exeInfo.transfers[transferIdx];
Gilbert Lee's avatar
Gilbert Lee committed
1534

gilbertlee-amd's avatar
gilbertlee-amd committed
1535
  if (transfer->exeType == EXE_GPU_GFX)
Gilbert Lee's avatar
Gilbert Lee committed
1536
1537
  {
    // Switch to executing GPU
gilbertlee-amd's avatar
gilbertlee-amd committed
1538
    int const exeIndex = RemappedIndex(transfer->exeIndex, false);
Gilbert Lee's avatar
Gilbert Lee committed
1539
1540
    HIP_CALL(hipSetDevice(exeIndex));

Gilbert Lee's avatar
Gilbert Lee committed
1541
1542
1543
    hipStream_t& stream     = exeInfo.streams[transferIdx];
    hipEvent_t&  startEvent = exeInfo.startEvents[transferIdx];
    hipEvent_t&  stopEvent  = exeInfo.stopEvents[transferIdx];
Gilbert Lee's avatar
Gilbert Lee committed
1544

gilbertlee-amd's avatar
gilbertlee-amd committed
1545
1546
1547
1548
    // Figure out how many threadblocks to use.
    // In single stream mode, all the threadblocks for this GPU are launched
    // Otherwise, just launch the threadblocks associated with this single Transfer
    int const numBlocksToRun = ev.useSingleStream ? exeInfo.totalSubExecs : transfer->numSubExecs;
1549
    int const numXCCs = (ev.useXccFilter ? ev.xccIdsPerDevice[exeIndex].size() : 1);
1550
1551
    dim3 const gridSize(numXCCs, numBlocksToRun, 1);
    dim3 const blockSize(ev.gfxBlockSize, 1, 1);
1552

1553
1554
#if defined(__NVCC__)
    HIP_CALL(hipEventRecord(startEvent, stream));
1555
    GpuKernelTable[ev.gfxBlockSize/64 - 1][ev.gfxUnroll - 1]
1556
      <<<gridSize, blockSize, ev.sharedMemBytes, stream>>>(transfer->subExecParamGpuPtr, ev.gfxWaveOrder, ev.numSubIterations);
1557
1558
    HIP_CALL(hipEventRecord(stopEvent, stream));
#else
1559
1560
    hipExtLaunchKernelGGL(GpuKernelTable[ev.gfxBlockSize/64 - 1][ev.gfxUnroll - 1],
                          gridSize, blockSize,
gilbertlee-amd's avatar
gilbertlee-amd committed
1561
1562
                          ev.sharedMemBytes, stream,
                          startEvent, stopEvent,
1563
                          0, transfer->subExecParamGpuPtr, ev.gfxWaveOrder, ev.numSubIterations);
1564
#endif
Gilbert Lee's avatar
Gilbert Lee committed
1565
1566
    // Synchronize per iteration, unless in single sync mode, in which case
    // synchronize during last warmup / last actual iteration
Gilbert Lee's avatar
Gilbert Lee committed
1567
    HIP_CALL(hipStreamSynchronize(stream));
Gilbert Lee's avatar
Gilbert Lee committed
1568
1569
1570
1571

    if (iteration >= 0)
    {
      // Record GPU timing
Gilbert Lee's avatar
Gilbert Lee committed
1572
1573
      float gpuDeltaMsec;
      HIP_CALL(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
Gilbert Lee's avatar
Gilbert Lee committed
1574

Gilbert Lee's avatar
Gilbert Lee committed
1575
1576
      if (ev.useSingleStream)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1577
        // Figure out individual timings for Transfers that were all launched together
gilbertlee-amd's avatar
gilbertlee-amd committed
1578
        for (Transfer* currTransfer : exeInfo.transfers)
Gilbert Lee's avatar
Gilbert Lee committed
1579
        {
1580
1581
1582
          long long minStartCycle = std::numeric_limits<long long>::max();
          long long maxStopCycle  = std::numeric_limits<long long>::min();

gilbertlee-amd's avatar
gilbertlee-amd committed
1583
          std::set<std::pair<int,int>> CUs;
1584
          for (auto subExecIdx : currTransfer->subExecIdx)
Gilbert Lee's avatar
Gilbert Lee committed
1585
          {
1586
1587
1588
            minStartCycle = std::min(minStartCycle, exeInfo.subExecParamGpu[subExecIdx].startCycle);
            maxStopCycle  = std::max(maxStopCycle,  exeInfo.subExecParamGpu[subExecIdx].stopCycle);
            if (ev.showIterations)
gilbertlee-amd's avatar
gilbertlee-amd committed
1589
1590
              CUs.insert(std::make_pair(exeInfo.subExecParamGpu[subExecIdx].xccId,
                                        GetId(exeInfo.subExecParamGpu[subExecIdx].hwId)));
Gilbert Lee's avatar
Gilbert Lee committed
1591
          }
1592
          int const wallClockRate = ev.wallClockPerDeviceMhz[exeIndex];
Gilbert Lee's avatar
Gilbert Lee committed
1593
          double iterationTimeMs = (maxStopCycle - minStartCycle) / (double)(wallClockRate);
gilbertlee-amd's avatar
gilbertlee-amd committed
1594
          currTransfer->transferTime += iterationTimeMs;
1595
          if (ev.showIterations)
1596
          {
1597
            currTransfer->perIterationTime.push_back(iterationTimeMs);
1598
1599
            currTransfer->perIterationCUs.push_back(CUs);
          }
Gilbert Lee's avatar
Gilbert Lee committed
1600
        }
Gilbert Lee's avatar
Gilbert Lee committed
1601
1602
1603
1604
        exeInfo.totalTime += gpuDeltaMsec;
      }
      else
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1605
        transfer->transferTime += gpuDeltaMsec;
1606
        if (ev.showIterations)
1607
        {
1608
          transfer->perIterationTime.push_back(gpuDeltaMsec);
gilbertlee-amd's avatar
gilbertlee-amd committed
1609
          std::set<std::pair<int,int>> CUs;
1610
          for (int i = 0; i < transfer->numSubExecs; i++)
gilbertlee-amd's avatar
gilbertlee-amd committed
1611
1612
            CUs.insert(std::make_pair(transfer->subExecParamGpuPtr[i].xccId,
                                      GetId(transfer->subExecParamGpuPtr[i].hwId)));
1613
1614
          transfer->perIterationCUs.push_back(CUs);
        }
Gilbert Lee's avatar
Gilbert Lee committed
1615
1616
1617
      }
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1618
1619
1620
1621
  else if (transfer->exeType == EXE_GPU_DMA)
  {
    int const exeIndex = RemappedIndex(transfer->exeIndex, false);

1622
    if (transfer->exeSubIndex == -1)
gilbertlee-amd's avatar
gilbertlee-amd committed
1623
    {
1624
1625
1626
1627
1628
      // Switch to executing GPU
      HIP_CALL(hipSetDevice(exeIndex));
      hipStream_t& stream     = exeInfo.streams[transferIdx];
      hipEvent_t&  startEvent = exeInfo.startEvents[transferIdx];
      hipEvent_t&  stopEvent  = exeInfo.stopEvents[transferIdx];
gilbertlee-amd's avatar
gilbertlee-amd committed
1629

1630
      int subIteration = 0;
1631
      HIP_CALL(hipEventRecord(startEvent, stream));
1632
      do {
1633
1634
1635
        HIP_CALL(hipMemcpyAsync(transfer->dstMem[0], transfer->srcMem[0],
                                transfer->numBytesActual, hipMemcpyDefault,
                                stream));
1636
      } while (++subIteration != ev.numSubIterations);
1637
1638
1639
1640
1641
1642
1643
1644
      HIP_CALL(hipEventRecord(stopEvent, stream));
      HIP_CALL(hipStreamSynchronize(stream));

      if (iteration >= 0)
      {
        // Record GPU timing
        float gpuDeltaMsec;
        HIP_CALL(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
1645
        //gpuDeltaMsec /= (1.0 * ev.numSubIterations);
1646
1647
1648
1649
1650
1651
        transfer->transferTime += gpuDeltaMsec;
        if (ev.showIterations)
          transfer->perIterationTime.push_back(gpuDeltaMsec);
      }
    }
    else
gilbertlee-amd's avatar
gilbertlee-amd committed
1652
    {
1653
1654
1655
1656
1657
#if defined(__NVCC__)
      printf("[ERROR] CUDA does not support targeting specific DMA engines\n");
      exit(1);
#else
      // Target specific DMA engine
1658
      auto cpuStart = std::chrono::high_resolution_clock::now();
1659

1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
      int subIterations = 0;
      do {
        // Atomically set signal to 1
        HSA_CALL(hsa_signal_store_screlease(transfer->signal, 1));

        HSA_CALL(hsa_amd_memory_async_copy_on_engine(transfer->dstMem[0], transfer->dstAgent,
                                                     transfer->srcMem[0], transfer->srcAgent,
                                                     transfer->numBytesActual, 0, NULL,
                                                     transfer->signal,
                                                     transfer->sdmaEngineId, true));
        // Wait for SDMA transfer to complete
        // NOTE: "A wait operation can spuriously resume at any time sooner than the timeout
        //        (for example, due to system or other external factors) even when the
        //         condition has not been met.)
        while(hsa_signal_wait_scacquire(transfer->signal,
                                        HSA_SIGNAL_CONDITION_LT, 1, UINT64_MAX,
                                        HSA_WAIT_STATE_ACTIVE) >= 1);
      } while (++subIterations < ev.numSubIterations);
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688

      if (iteration >= 0)
      {
        // Record GPU timing
        auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
        double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
        transfer->transferTime += deltaMsec;
        if (ev.showIterations)
          transfer->perIterationTime.push_back(deltaMsec);
      }
#endif
gilbertlee-amd's avatar
gilbertlee-amd committed
1689
1690
1691
    }
  }
  else if (transfer->exeType == EXE_CPU) // CPU execution agent
Gilbert Lee's avatar
Gilbert Lee committed
1692
1693
  {
    // Force this thread and all child threads onto correct NUMA node
gilbertlee-amd's avatar
gilbertlee-amd committed
1694
    int const exeIndex = RemappedIndex(transfer->exeIndex, true);
1695
    if (numa_run_on_node(exeIndex))
Gilbert Lee's avatar
Gilbert Lee committed
1696
    {
1697
      printf("[ERROR] Unable to set CPU to NUMA node %d\n", exeIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1698
1699
1700
1701
1702
      exit(1);
    }

    std::vector<std::thread> childThreads;

1703
    int subIteration = 0;
Gilbert Lee's avatar
Gilbert Lee committed
1704
    auto cpuStart = std::chrono::high_resolution_clock::now();
1705
1706
1707
1708
    do {
      // Launch each subExecutor in child-threads to perform memcopies
      for (int i = 0; i < transfer->numSubExecs; ++i)
        childThreads.push_back(std::thread(CpuReduceKernel, std::ref(transfer->subExecParam[i])));
Gilbert Lee's avatar
Gilbert Lee committed
1709

1710
1711
1712
1713
1714
      // Wait for child-threads to finish
      for (int i = 0; i < transfer->numSubExecs; ++i)
        childThreads[i].join();
      childThreads.clear();
    } while (++subIteration != ev.numSubIterations);
Gilbert Lee's avatar
Gilbert Lee committed
1715
1716
1717
1718
1719

    auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;

    // Record time if not a warmup iteration
    if (iteration >= 0)
1720
1721
1722
1723
1724
1725
    {
      double const delta = (std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0);
      transfer->transferTime += delta;
      if (ev.showIterations)
        transfer->perIterationTime.push_back(delta);
    }
Gilbert Lee's avatar
Gilbert Lee committed
1726
1727
1728
  }
}

gilbertlee-amd's avatar
gilbertlee-amd committed
1729
void RunPeerToPeerBenchmarks(EnvVars const& ev, size_t N)
Gilbert Lee's avatar
Gilbert Lee committed
1730
{
gilbertlee-amd's avatar
gilbertlee-amd committed
1731
1732
  ev.DisplayP2PBenchmarkEnvVars();

1733
1734
1735
  char const separator = ev.outputToCsv ? ',' : ' ';
  printf("Bytes Per Direction%c%lu\n", separator, N * sizeof(float));

Gilbert Lee's avatar
Gilbert Lee committed
1736
  // Collect the number of available CPUs/GPUs on this machine
gilbertlee-amd's avatar
gilbertlee-amd committed
1737
1738
  int const numCpus    = ev.numCpuDevices;
  int const numGpus    = ev.numGpuDevices;
Gilbert Lee's avatar
Gilbert Lee committed
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
  int const numDevices = numCpus + numGpus;

  // Enable peer to peer for each GPU
  for (int i = 0; i < numGpus; i++)
    for (int j = 0; j < numGpus; j++)
      if (i != j) EnablePeerAccess(i, j);

  // Perform unidirectional / bidirectional
  for (int isBidirectional = 0; isBidirectional <= 1; isBidirectional++)
  {
1749
1750
1751
    if (ev.p2pMode == 1 && isBidirectional == 1 ||
        ev.p2pMode == 2 && isBidirectional == 0) continue;

1752
1753
1754
1755
1756
    printf("%sdirectional copy peak bandwidth GB/s [%s read / %s write] (GPU-Executor: %s)\n", isBidirectional ? "Bi" : "Uni",
           ev.useRemoteRead ? "Remote" : "Local",
           ev.useRemoteRead ? "Local" : "Remote",
           ev.useDmaCopy    ? "DMA"   : "GFX");

Gilbert Lee's avatar
Gilbert Lee committed
1757
    // Print header
1758
    if (isBidirectional)
Gilbert Lee's avatar
Gilbert Lee committed
1759
    {
1760
1761
1762
1763
1764
1765
      printf("%12s", "SRC\\DST");
    }
    else
    {
      if (ev.useRemoteRead)
        printf("%12s", "SRC\\EXE+DST");
1766
      else
1767
1768
1769
1770
1771
1772
1773
1774
        printf("%12s", "SRC+EXE\\DST");
    }
    if (ev.outputToCsv) printf(",");
    for (int i = 0; i < numCpus; i++)
    {
      printf("%7s %02d", "CPU", i);
      if (ev.outputToCsv) printf(",");
    }
1775
    if (numCpus > 0) printf("   ");
1776
1777
1778
1779
    for (int i = 0; i < numGpus; i++)
    {
      printf("%7s %02d", "GPU", i);
      if (ev.outputToCsv) printf(",");
Gilbert Lee's avatar
Gilbert Lee committed
1780
    }
1781
1782
    printf("\n");

1783
1784
1785
    double avgBwSum[2][2] = {};
    int    avgCount[2][2] = {};

1786
    ExeType const gpuExeType = ev.useDmaCopy ? EXE_GPU_DMA : EXE_GPU_GFX;
Gilbert Lee's avatar
Gilbert Lee committed
1787
1788
1789
    // Loop over all possible src/dst pairs
    for (int src = 0; src < numDevices; src++)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1790
1791
      MemType const srcType  = (src < numCpus ? MEM_CPU : MEM_GPU);
      int     const srcIndex = (srcType == MEM_CPU ? src : src - numCpus);
1792
1793
1794
      MemType const srcTypeActual = ((ev.useFineGrain && srcType == MEM_CPU) ? MEM_CPU_FINE :
                                     (ev.useFineGrain && srcType == MEM_GPU) ? MEM_GPU_FINE :
                                                                               srcType);
1795
1796
1797
1798
      std::vector<std::vector<double>> avgBandwidth(isBidirectional + 1);
      std::vector<std::vector<double>> minBandwidth(isBidirectional + 1);
      std::vector<std::vector<double>> maxBandwidth(isBidirectional + 1);
      std::vector<std::vector<double>> stdDev(isBidirectional + 1);
gilbertlee-amd's avatar
gilbertlee-amd committed
1799

1800
      if (src == numCpus && src != 0) printf("\n");
Gilbert Lee's avatar
Gilbert Lee committed
1801
1802
      for (int dst = 0; dst < numDevices; dst++)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1803
1804
        MemType const dstType  = (dst < numCpus ? MEM_CPU : MEM_GPU);
        int     const dstIndex = (dstType == MEM_CPU ? dst : dst - numCpus);
1805
1806
1807
        MemType const dstTypeActual = ((ev.useFineGrain && dstType == MEM_CPU) ? MEM_CPU_FINE :
                                       (ev.useFineGrain && dstType == MEM_GPU) ? MEM_GPU_FINE :
                                                                                 dstType);
1808
1809
1810
1811
1812
        // Prepare Transfers
        std::vector<Transfer> transfers(isBidirectional + 1);

        // SRC -> DST
        transfers[0].numBytes = N * sizeof(float);
1813
1814
        transfers[0].srcType.push_back(srcTypeActual);
        transfers[0].dstType.push_back(dstTypeActual);
1815
1816
1817
1818
1819
        transfers[0].srcIndex.push_back(srcIndex);
        transfers[0].dstIndex.push_back(dstIndex);
        transfers[0].numSrcs = transfers[0].numDsts = 1;
        transfers[0].exeType = IsGpuType(ev.useRemoteRead ? dstType : srcType) ? gpuExeType : EXE_CPU;
        transfers[0].exeIndex = (ev.useRemoteRead ? dstIndex : srcIndex);
1820
        transfers[0].exeSubIndex = -1;
1821
1822
1823
1824
1825
1826
1827
        transfers[0].numSubExecs = IsGpuType(transfers[0].exeType) ? ev.numGpuSubExecs : ev.numCpuSubExecs;

        // DST -> SRC
        if (isBidirectional)
        {
          transfers[1].numBytes = N * sizeof(float);
          transfers[1].numSrcs = transfers[1].numDsts = 1;
1828
1829
          transfers[1].srcType.push_back(dstTypeActual);
          transfers[1].dstType.push_back(srcTypeActual);
1830
1831
1832
1833
          transfers[1].srcIndex.push_back(dstIndex);
          transfers[1].dstIndex.push_back(srcIndex);
          transfers[1].exeType = IsGpuType(ev.useRemoteRead ? srcType : dstType) ? gpuExeType : EXE_CPU;
          transfers[1].exeIndex = (ev.useRemoteRead ? srcIndex : dstIndex);
1834
          transfers[1].exeSubIndex = -1;
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
          transfers[1].numSubExecs = IsGpuType(transfers[1].exeType) ? ev.numGpuSubExecs : ev.numCpuSubExecs;
        }

        bool skipTest = false;

        // Abort if executing on NUMA node with no CPUs
        for (int i = 0; i <= isBidirectional; i++)
        {
          if (transfers[i].exeType == EXE_CPU && ev.numCpusPerNuma[transfers[i].exeIndex] == 0)
          {
            skipTest = true;
            break;
          }

#if defined(__NVCC__)
          // NVIDIA platform cannot access GPU memory directly from CPU executors
          if (transfers[i].exeType == EXE_CPU && (IsGpuType(srcType) || IsGpuType(dstType)))
          {
            skipTest = true;
            break;
          }
#endif
        }

        if (isBidirectional && srcType == dstType && srcIndex == dstIndex) skipTest = true;

        if (!skipTest)
        {
          ExecuteTransfers(ev, 0, N, transfers, false);

          for (int dir = 0; dir <= isBidirectional; dir++)
          {
1867
            double const avgTime = transfers[dir].transferTime;
1868
1869
1870
            double const avgBw   = (transfers[dir].numBytesActual / 1.0E9) / avgTime * 1000.0f;
            avgBandwidth[dir].push_back(avgBw);

1871
1872
1873
1874
1875
1876
            if (!(srcType == dstType && srcIndex == dstIndex))
            {
              avgBwSum[srcType][dstType] += avgBw;
              avgCount[srcType][dstType]++;
            }

1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
            if (ev.showIterations)
            {
              double minTime = transfers[dir].perIterationTime[0];
              double maxTime = transfers[dir].perIterationTime[0];
              double varSum  = 0;
              for (int i = 0; i < transfers[dir].perIterationTime.size(); i++)
              {
                minTime = std::min(minTime, transfers[dir].perIterationTime[i]);
                maxTime = std::max(maxTime, transfers[dir].perIterationTime[i]);
                double const bw  = (transfers[dir].numBytesActual / 1.0E9) / transfers[dir].perIterationTime[i] * 1000.0f;
                double const delta = (avgBw - bw);
                varSum += delta * delta;
              }
              double const minBw = (transfers[dir].numBytesActual / 1.0E9) / maxTime * 1000.0f;
              double const maxBw = (transfers[dir].numBytesActual / 1.0E9) / minTime * 1000.0f;
              double const stdev = sqrt(varSum / transfers[dir].perIterationTime.size());
              minBandwidth[dir].push_back(minBw);
              maxBandwidth[dir].push_back(maxBw);
              stdDev[dir].push_back(stdev);
            }
          }
        }
        else
Gilbert Lee's avatar
Gilbert Lee committed
1900
        {
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
          for (int dir = 0; dir <= isBidirectional; dir++)
          {
            avgBandwidth[dir].push_back(0);
            minBandwidth[dir].push_back(0);
            maxBandwidth[dir].push_back(0);
            stdDev[dir].push_back(-1.0);
          }
        }
      }

      for (int dir = 0; dir <= isBidirectional; dir++)
      {
        printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, dir ? "<- " : " ->");
        if (ev.outputToCsv) printf(",");

        for (int dst = 0; dst < numDevices; dst++)
        {
1918
          if (dst == numCpus && dst != 0) printf("   ");
1919
1920
1921
          double const avgBw = avgBandwidth[dir][dst];

          if (avgBw == 0.0)
Gilbert Lee's avatar
Gilbert Lee committed
1922
1923
            printf("%10s", "N/A");
          else
1924
1925
            printf("%10.2f", avgBw);
          if (ev.outputToCsv) printf(",");
Gilbert Lee's avatar
Gilbert Lee committed
1926
        }
1927
1928
1929
        printf("\n");

        if (ev.showIterations)
Gilbert Lee's avatar
Gilbert Lee committed
1930
        {
1931
1932
1933
1934
1935
1936
          // minBw
          printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "min");
          if (ev.outputToCsv) printf(",");
          for (int i = 0; i < numDevices; i++)
          {
            double const minBw = minBandwidth[dir][i];
1937
            if (i == numCpus && i != 0) printf("   ");
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
            if (minBw == 0.0)
              printf("%10s", "N/A");
            else
              printf("%10.2f", minBw);
            if (ev.outputToCsv) printf(",");
          }
          printf("\n");

          // maxBw
          printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "max");
          if (ev.outputToCsv) printf(",");
          for (int i = 0; i < numDevices; i++)
          {
            double const maxBw = maxBandwidth[dir][i];
1952
            if (i == numCpus && i != 0) printf("   ");
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
            if (maxBw == 0.0)
              printf("%10s", "N/A");
            else
              printf("%10.2f", maxBw);
            if (ev.outputToCsv) printf(",");
          }
          printf("\n");

          // stddev
          printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, " sd");
          if (ev.outputToCsv) printf(",");
          for (int i = 0; i < numDevices; i++)
          {
            double const sd = stdDev[dir][i];
1967
            if (i == numCpus && i != 0) printf("   ");
1968
1969
1970
1971
1972
1973
1974
            if (sd == -1.0)
              printf("%10s", "N/A");
            else
              printf("%10.2f", sd);
            if (ev.outputToCsv) printf(",");
          }
          printf("\n");
Gilbert Lee's avatar
Gilbert Lee committed
1975
1976
1977
        }
        fflush(stdout);
      }
1978
1979
1980
1981
1982
1983
1984
1985

      if (isBidirectional)
      {
        printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "<->");
        if (ev.outputToCsv) printf(",");
        for (int dst = 0; dst < numDevices; dst++)
        {
          double const sumBw = avgBandwidth[0][dst] + avgBandwidth[1][dst];
1986
          if (dst == numCpus && dst != 0) printf("   ");
1987
1988
1989
1990
1991
1992
          if (sumBw == 0.0)
            printf("%10s", "N/A");
          else
            printf("%10.2f", sumBw);
          if (ev.outputToCsv) printf(",");
        }
1993
1994
        printf("\n");
        if (src < numDevices - 1) printf("\n");
1995
      }
Gilbert Lee's avatar
Gilbert Lee committed
1996
    }
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

    if (!ev.outputToCsv)
    {
      printf("                         ");
      for (int srcType : {MEM_CPU, MEM_GPU})
        for (int dstType : {MEM_CPU, MEM_GPU})
          printf("  %cPU->%cPU", srcType == MEM_CPU ? 'C' : 'G', dstType == MEM_CPU ? 'C' : 'G');
      printf("\n");

      printf("Averages (During %s):",  isBidirectional ? " BiDir" : "UniDir");
      for (int srcType : {MEM_CPU, MEM_GPU})
        for (int dstType : {MEM_CPU, MEM_GPU})
        {
          if (avgCount[srcType][dstType])
            printf("%10.2f", avgBwSum[srcType][dstType] / avgCount[srcType][dstType]);
          else
            printf("%10s", "N/A");
        }
      printf("\n\n");
    }
Gilbert Lee's avatar
Gilbert Lee committed
2017
2018
2019
  }
}

2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
void RunScalingBenchmark(EnvVars const& ev, size_t N, int const exeIndex, int const maxSubExecs)
{
  ev.DisplayEnvVars();

  // Collect the number of available CPUs/GPUs on this machine
  int const numCpus    = ev.numCpuDevices;
  int const numGpus    = ev.numGpuDevices;
  int const numDevices = numCpus + numGpus;

  // Enable peer to peer for each GPU
  for (int i = 0; i < numGpus; i++)
    for (int j = 0; j < numGpus; j++)
      if (i != j) EnablePeerAccess(i, j);

  char separator = (ev.outputToCsv ? ',' : ' ');

  std::vector<Transfer> transfers(1);
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
  Transfer& t = transfers[0];
  t.numBytes = N * sizeof(float);
  t.numSrcs  = 1;
  t.numDsts  = 1;
  t.exeType  = EXE_GPU_GFX;
  t.exeIndex = exeIndex;
  t.exeSubIndex = -1;
  t.srcType.resize(1, MEM_GPU);
  t.dstType.resize(1, MEM_GPU);
  t.srcIndex.resize(1);
  t.dstIndex.resize(1);
2048
2049
2050

  printf("GPU-GFX Scaling benchmark:\n");
  printf("==========================\n");
2051
  printf("- Copying %lu bytes from GPU %d to other devices\n", t.numBytes, exeIndex);
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
  printf("- All numbers reported as GB/sec\n\n");

  printf("NumCUs");
  for (int i = 0; i < numDevices; i++)
    printf("%c  %s%02d     ", separator, i < numCpus ? "CPU" : "GPU", i < numCpus ? i : i - numCpus);
  printf("\n");

  std::vector<std::pair<double, int>> bestResult(numDevices);
  for (int numSubExec = 1; numSubExec <= maxSubExecs; numSubExec++)
  {
2062
    t.numSubExecs = numSubExec;
2063
2064
2065
2066
    printf("%4d  ", numSubExec);

    for (int i = 0; i < numDevices; i++)
    {
2067
2068
      t.dstType[0]  = i < numCpus ? MEM_CPU : MEM_GPU;
      t.dstIndex[0] = i < numCpus ? i : i - numCpus;
2069
2070

      ExecuteTransfers(ev, 0, N, transfers, false);
2071
      printf("%c%7.2f     ", separator, t.transferBandwidth);
2072

2073
      if (t.transferBandwidth > bestResult[i].first)
2074
      {
2075
        bestResult[i].first  = t.transferBandwidth;
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
        bestResult[i].second = numSubExec;
      }
    }
    printf("\n");
  }

  printf(" Best ");
  for (int i = 0; i < numDevices; i++)
  {
    printf("%c%7.2f(%3d)", separator, bestResult[i].first, bestResult[i].second);
  }
  printf("\n");
}

gilbertlee-amd's avatar
gilbertlee-amd committed
2090
2091
void RunAllToAllBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int const numSubExecs)
{
2092
  ev.DisplayA2AEnvVars();
gilbertlee-amd's avatar
gilbertlee-amd committed
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106

  // Collect the number of GPU devices to use
  int const numGpus = ev.numGpuDevices;

  // Enable peer to peer for each GPU
  for (int i = 0; i < numGpus; i++)
    for (int j = 0; j < numGpus; j++)
      if (i != j) EnablePeerAccess(i, j);

  char separator = (ev.outputToCsv ? ',' : ' ');

  Transfer transfer;
  transfer.numBytes    = numBytesPerTransfer;
  transfer.numSubExecs = numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
2107
2108
  transfer.numSrcs     = ev.a2aMode == 2 ? 0 : 1;
  transfer.numDsts     = ev.a2aMode == 1 ? 0 : 1;
gilbertlee-amd's avatar
gilbertlee-amd committed
2109
  transfer.exeType     = EXE_GPU_GFX;
2110
  transfer.exeSubIndex = -1;
2111
2112
  transfer.srcType.resize(1, ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
  transfer.dstType.resize(1, ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
gilbertlee-amd's avatar
gilbertlee-amd committed
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
  transfer.srcIndex.resize(1);
  transfer.dstIndex.resize(1);

  std::vector<Transfer> transfers;
  for (int i = 0; i < numGpus; i++)
  {
    transfer.srcIndex[0] = i;
    for (int j = 0; j < numGpus; j++)
    {
      transfer.dstIndex[0] = j;
2123
2124
      transfer.exeIndex    = (ev.useRemoteRead ? j : i);

2125
2126
2127
2128
      if (ev.a2aDirect)
      {
        if (i == j) continue;

2129
#if !defined(__NVCC__)
2130
2131
2132
2133
2134
2135
2136
        uint32_t linkType, hopCount;
        HIP_CALL(hipExtGetLinkTypeAndHopCount(RemappedIndex(i, false),
                                              RemappedIndex(j, false),
                                              &linkType, &hopCount));
        if (hopCount != 1) continue;
#endif
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
2137
2138
2139
2140
2141
2142
      transfers.push_back(transfer);
    }
  }

  printf("GPU-GFX All-To-All benchmark:\n");
  printf("==========================\n");
2143
2144
2145
  printf("- Copying %lu bytes between %s pairs of GPUs using %d CUs (%lu Transfers)\n",
         numBytesPerTransfer, ev.a2aDirect ? "directly connected" : "all", numSubExecs, transfers.size());
  if (transfers.size() == 0) return;
gilbertlee-amd's avatar
gilbertlee-amd committed
2146
2147

  double totalBandwidthCpu = 0;
2148
  ExecuteTransfers(ev, 0, numBytesPerTransfer / sizeof(float), transfers, !ev.hideEnv, &totalBandwidthCpu);
gilbertlee-amd's avatar
gilbertlee-amd committed
2149
2150
2151

  printf("\nSummary:\n");
  printf("==========================================================\n");
2152
  printf("SRC\\DST ");
gilbertlee-amd's avatar
gilbertlee-amd committed
2153
  for (int dst = 0; dst < numGpus; dst++)
2154
2155
    printf("%cGPU %02d    ", separator, dst);
  printf("   %cSTotal     %cActual\n", separator, separator);
2156
2157
2158
2159
2160
2161
2162

  std::map<std::pair<int, int>, int> reIndex;
  for (int i = 0; i < transfers.size(); i++)
  {
    Transfer const& t = transfers[i];
    reIndex[std::make_pair(t.srcIndex[0], t.dstIndex[0])] = i;
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
2163

2164
  double totalBandwidthGpu = 0.0;
2165
2166
  double minExecutorBandwidth = std::numeric_limits<double>::max();
  double maxExecutorBandwidth = 0.0;
2167
  std::vector<double> colTotalBandwidth(numGpus+1, 0.0);
gilbertlee-amd's avatar
gilbertlee-amd committed
2168
2169
  for (int src = 0; src < numGpus; src++)
  {
2170
    double rowTotalBandwidth = 0;
2171
    double executorBandwidth = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
2172
2173
2174
    printf("GPU %02d", src);
    for (int dst = 0; dst < numGpus; dst++)
    {
2175
2176
2177
      if (reIndex.count(std::make_pair(src, dst)))
      {
        Transfer const& transfer = transfers[reIndex[std::make_pair(src,dst)]];
2178
2179
2180
2181
2182
        colTotalBandwidth[dst]  += transfer.transferBandwidth;
        rowTotalBandwidth       += transfer.transferBandwidth;
        totalBandwidthGpu       += transfer.transferBandwidth;
        executorBandwidth        = std::max(executorBandwidth, transfer.executorBandwidth);
        printf("%c%8.3f  ", separator, transfer.transferBandwidth);
2183
2184
2185
      }
      else
      {
2186
        printf("%c%8s  ", separator, "N/A");
2187
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
2188
    }
2189
2190
2191
    printf("   %c%8.3f   %c%8.3f\n", separator, rowTotalBandwidth, separator, executorBandwidth);
    minExecutorBandwidth = std::min(minExecutorBandwidth, executorBandwidth);
    maxExecutorBandwidth = std::max(maxExecutorBandwidth, executorBandwidth);
2192
    colTotalBandwidth[numGpus] += rowTotalBandwidth;
gilbertlee-amd's avatar
gilbertlee-amd committed
2193
  }
2194
2195
2196
  printf("\nRTotal");
  for (int dst = 0; dst < numGpus; dst++)
  {
2197
    printf("%c%8.3f  ", separator, colTotalBandwidth[dst]);
2198
  }
2199
2200
  printf("   %c%8.3f   %c%8.3f   %c%8.3f\n", separator, colTotalBandwidth[numGpus],
         separator, minExecutorBandwidth, separator, maxExecutorBandwidth);
2201
2202
  printf("\n");

2203
2204
2205
  printf("Average   bandwidth (GPU Timed): %8.3f GB/s\n", totalBandwidthGpu / transfers.size());
  printf("Aggregate bandwidth (GPU Timed): %8.3f GB/s\n", totalBandwidthGpu);
  printf("Aggregate bandwidth (CPU Timed): %8.3f GB/s\n", totalBandwidthCpu);
gilbertlee-amd's avatar
gilbertlee-amd committed
2206
2207
}

gilbertlee-amd's avatar
gilbertlee-amd committed
2208
void Transfer::PrepareSubExecParams(EnvVars const& ev)
Gilbert Lee's avatar
Gilbert Lee committed
2209
{
gilbertlee-amd's avatar
gilbertlee-amd committed
2210
2211
2212
2213
2214
2215
2216
  // Each subExecutor needs to know src/dst pointers and how many elements to transfer
  // Figure out the sub-array each subExecutor works on for this Transfer
  // - Partition N as evenly as possible, but try to keep subarray sizes as multiples of BLOCK_BYTES bytes,
  //   except the very last one, for alignment reasons
  size_t const N              = this->numBytesActual / sizeof(float);
  int    const initOffset     = ev.byteOffset / sizeof(float);
  int    const targetMultiple = ev.blockBytes / sizeof(float);
Gilbert Lee's avatar
Gilbert Lee committed
2217

gilbertlee-amd's avatar
gilbertlee-amd committed
2218
  // In some cases, there may not be enough data for all subExectors
2219
  int const maxSubExecToUse = std::min((size_t)(N + targetMultiple - 1) / targetMultiple, (size_t)this->numSubExecs);
gilbertlee-amd's avatar
gilbertlee-amd committed
2220
2221
  this->subExecParam.clear();
  this->subExecParam.resize(this->numSubExecs);
Gilbert Lee's avatar
Gilbert Lee committed
2222
2223

  size_t assigned = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
2224
2225
  for (int i = 0; i < this->numSubExecs; ++i)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2226
2227
2228
    SubExecParam& p  = this->subExecParam[i];
    p.numSrcs        = this->numSrcs;
    p.numDsts        = this->numDsts;
gilbertlee-amd's avatar
gilbertlee-amd committed
2229

gilbertlee-amd's avatar
gilbertlee-amd committed
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
    if (ev.gfxSingleTeam && this->exeType == EXE_GPU_GFX)
    {
      p.N           = N;
      p.teamSize    = this->numSubExecs;
      p.teamIdx     = i;
      for (int iSrc = 0; iSrc < this->numSrcs; ++iSrc) p.src[iSrc] = this->srcMem[iSrc] + initOffset;
      for (int iDst = 0; iDst < this->numDsts; ++iDst) p.dst[iDst] = this->dstMem[iDst] + initOffset;
    }
    else
    {
      int    const subExecLeft = std::max(0, maxSubExecToUse - i);
      size_t const leftover    = N - assigned;
      size_t const roundedN    = (leftover + targetMultiple - 1) / targetMultiple;
gilbertlee-amd's avatar
gilbertlee-amd committed
2243

gilbertlee-amd's avatar
gilbertlee-amd committed
2244
2245
2246
2247
2248
2249
2250
2251
      p.N           = subExecLeft ? std::min(leftover, ((roundedN / subExecLeft) * targetMultiple)) : 0;
      p.teamSize    = 1;
      p.teamIdx     = 0;
      for (int iSrc = 0; iSrc < this->numSrcs; ++iSrc) p.src[iSrc] = this->srcMem[iSrc] + initOffset + assigned;
      for (int iDst = 0; iDst < this->numDsts; ++iDst) p.dst[iDst] = this->dstMem[iDst] + initOffset + assigned;

      assigned += p.N;
    }
2252

gilbertlee-amd's avatar
gilbertlee-amd committed
2253
    p.preferredXccId = -1;
2254
    if (ev.useXccFilter && this->exeType == EXE_GPU_GFX)
2255
    {
2256
2257
2258
2259
2260
2261
2262
2263
      std::uniform_int_distribution<int> distribution(0, ev.xccIdsPerDevice[this->exeIndex].size() - 1);

      // Use this tranfer's executor subIndex if set
      if (this->exeSubIndex != -1)
      {
        p.preferredXccId = this->exeSubIndex;
      }
      else if (this->numDsts >= 1 && IsGpuType(this->dstType[0]))
2264
2265
2266
      {
        p.preferredXccId = ev.prefXccTable[this->exeIndex][this->dstIndex[0]];
      }
2267
2268
2269
2270
2271

      if (p.preferredXccId == -1)
      {
        p.preferredXccId = distribution(*ev.generator);
      }
2272
2273
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
2274
2275
2276
2277
2278
    if (ev.enableDebug)
    {
      printf("Transfer %02d SE:%02d: %10lu floats: %10lu to %10lu\n",
             this->transferIndex, i, p.N, assigned, assigned + p.N);
    }
Gilbert Lee's avatar
Gilbert Lee committed
2279

gilbertlee-amd's avatar
gilbertlee-amd committed
2280
2281
    p.startCycle = 0;
    p.stopCycle  = 0;
Gilbert Lee's avatar
Gilbert Lee committed
2282
2283
  }

Gilbert Lee's avatar
Gilbert Lee committed
2284
  this->transferTime = 0.0;
2285
  this->perIterationTime.clear();
Gilbert Lee's avatar
Gilbert Lee committed
2286
2287
}

gilbertlee-amd's avatar
gilbertlee-amd committed
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
void Transfer::PrepareReference(EnvVars const& ev, std::vector<float>& buffer, int bufferIdx)
{
  size_t N = buffer.size();
  if (bufferIdx >= 0)
  {
    size_t patternLen = ev.fillPattern.size();
    if (patternLen > 0)
    {
      for (size_t i = 0; i < N; ++i)
        buffer[i] = ev.fillPattern[i % patternLen];
    }
    else
    {
      for (size_t i = 0; i < N; ++i)
2302
        buffer[i] = PrepSrcValue(bufferIdx, i);
gilbertlee-amd's avatar
gilbertlee-amd committed
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
    }
  }
  else // Destination buffer
  {
    if (this->numSrcs == 0)
    {
      // Note: 0x75757575 = 13323083.0
      memset(buffer.data(), MEMSET_CHAR, N * sizeof(float));
    }
    else
    {
      PrepareReference(ev, buffer, 0);

      if (this->numSrcs > 1)
      {
        std::vector<float> temp(N);
        for (int srcIdx = 1; srcIdx < this->numSrcs; ++srcIdx)
        {
          PrepareReference(ev, temp, srcIdx);
          for (int i = 0; i < N; ++i)
          {
            buffer[i] += temp[i];
          }
        }
      }
    }
  }
}

2332
bool Transfer::PrepareSrc(EnvVars const& ev)
gilbertlee-amd's avatar
gilbertlee-amd committed
2333
{
2334
  if (this->numSrcs == 0) return true;
gilbertlee-amd's avatar
gilbertlee-amd committed
2335
2336
2337
2338
2339
2340
  size_t const N = this->numBytesActual / sizeof(float);
  int const initOffset = ev.byteOffset / sizeof(float);

  std::vector<float> reference(N);
  for (int srcIdx = 0; srcIdx < this->numSrcs; ++srcIdx)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2341
    float* srcPtr = this->srcMem[srcIdx] + initOffset;
2342
    PrepareReference(ev, reference, srcIdx);
gilbertlee-amd's avatar
gilbertlee-amd committed
2343
2344
2345

    // Initialize source memory array with reference pattern
    if (IsGpuType(this->srcType[srcIdx]))
2346
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2347
2348
2349
      int const deviceIdx = RemappedIndex(this->srcIndex[srcIdx], false);
      HIP_CALL(hipSetDevice(deviceIdx));
      if (ev.usePrepSrcKernel)
gilbertlee-amd's avatar
gilbertlee-amd committed
2350
        PrepSrcDataKernel<<<32, ev.gfxBlockSize>>>(srcPtr, N, srcIdx);
gilbertlee-amd's avatar
gilbertlee-amd committed
2351
2352
      else
        HIP_CALL(hipMemcpy(srcPtr, reference.data(), this->numBytesActual, hipMemcpyDefault));
2353
2354
      HIP_CALL(hipDeviceSynchronize());
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
2355
    else if (IsCpuType(this->srcType[srcIdx]))
2356
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2357
      memcpy(srcPtr, reference.data(), this->numBytesActual);
2358
    }
2359
2360

    // Perform check just to make sure that data has been copied properly
gilbertlee-amd's avatar
gilbertlee-amd committed
2361
    float* srcCheckPtr = srcPtr;
2362
    std::vector<float> srcCopy(N);
gilbertlee-amd's avatar
gilbertlee-amd committed
2363
2364
2365
2366
2367
2368
2369
2370
2371
    if (IsGpuType(this->srcType[srcIdx]))
    {
      if (!ev.validateDirect)
      {
        HIP_CALL(hipMemcpy(srcCopy.data(), srcPtr, this->numBytesActual, hipMemcpyDefault));
        HIP_CALL(hipDeviceSynchronize());
        srcCheckPtr = srcCopy.data();
      }
    }
2372
2373
2374

    for (size_t i = 0; i < N; ++i)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2375
      if (reference[i] != srcCheckPtr[i])
2376
2377
      {
        printf("\n[ERROR] Unexpected mismatch at index %lu of source array %d:\n", i, srcIdx);
2378
2379
2380
#if !defined(__NVCC__)
        float const val = this->srcMem[srcIdx][initOffset + i];
        printf("[ERROR] SRC %02d   value: %10.5f [%08X] Direct: %10.5f [%08X]\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
2381
               srcIdx, srcCheckPtr[i], *(unsigned int*)&srcCheckPtr[i], val, *(unsigned int*)&val);
2382
#else
gilbertlee-amd's avatar
gilbertlee-amd committed
2383
        printf("[ERROR] SRC %02d   value: %10.5f [%08X]\n", srcIdx, srcCheckPtr[i], *(unsigned int*)&srcCheckPtr[i]);
2384
#endif
2385
2386
2387
2388
2389
2390
2391
        printf("[ERROR] EXPECTED value: %10.5f [%08X]\n", reference[i], *(unsigned int*)&reference[i]);
        printf("[ERROR] Failed Transfer details: #%d: %s -> [%c%d:%d] -> %s\n",
               this->transferIndex,
               this->SrcToStr().c_str(),
               ExeTypeStr[this->exeType], this->exeIndex,
               this->numSubExecs,
               this->DstToStr().c_str());
2392
2393
        printf("[ERROR] Possible cause is misconfigured IOMMU (AMD Instinct cards require amd_iommu=on and iommu=pt)\n");
        printf("[ERROR] Please see https://community.amd.com/t5/knowledge-base/iommu-advisory-for-amd-instinct/ta-p/484601 for more details\n");
2394
2395
        if (!ev.continueOnError)
          exit(1);
2396
        return false;
2397
2398
      }
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
2399
  }
2400
  return true;
gilbertlee-amd's avatar
gilbertlee-amd committed
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
}

void Transfer::ValidateDst(EnvVars const& ev)
{
  if (this->numDsts == 0) return;
  size_t const N = this->numBytesActual / sizeof(float);
  int const initOffset = ev.byteOffset / sizeof(float);

  std::vector<float> reference(N);
  PrepareReference(ev, reference, -1);

  std::vector<float> hostBuffer(N);
  for (int dstIdx = 0; dstIdx < this->numDsts; ++dstIdx)
  {
    float* output;
2416
    if (IsCpuType(this->dstType[dstIdx]) || ev.validateDirect)
gilbertlee-amd's avatar
gilbertlee-amd committed
2417
2418
2419
2420
2421
    {
      output = this->dstMem[dstIdx] + initOffset;
    }
    else
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2422
2423
      int const deviceIdx = RemappedIndex(this->dstIndex[dstIdx], false);
      HIP_CALL(hipSetDevice(deviceIdx));
gilbertlee-amd's avatar
gilbertlee-amd committed
2424
      HIP_CALL(hipMemcpy(hostBuffer.data(), this->dstMem[dstIdx] + initOffset, this->numBytesActual, hipMemcpyDefault));
gilbertlee-amd's avatar
gilbertlee-amd committed
2425
      HIP_CALL(hipDeviceSynchronize());
gilbertlee-amd's avatar
gilbertlee-amd committed
2426
2427
2428
2429
2430
2431
2432
      output = hostBuffer.data();
    }

    for (size_t i = 0; i < N; ++i)
    {
      if (reference[i] != output[i])
      {
2433
2434
2435
2436
2437
        printf("\n[ERROR] Unexpected mismatch at index %lu of destination array %d:\n", i, dstIdx);
        for (int srcIdx = 0; srcIdx < this->numSrcs; ++srcIdx)
        {
          float srcVal;
          HIP_CALL(hipMemcpy(&srcVal, this->srcMem[srcIdx] + initOffset + i, sizeof(float), hipMemcpyDefault));
2438
2439
2440
2441
2442
#if !defined(__NVCC__)
          float val = this->srcMem[srcIdx][initOffset + i];
          printf("[ERROR] SRC %02dD  value: %10.5f [%08X] Direct: %10.5f [%08X]\n",
                 srcIdx, srcVal, *(unsigned int*)&srcVal, val, *(unsigned int*)&val);
#else
2443
          printf("[ERROR] SRC %02d   value: %10.5f [%08X]\n", srcIdx, srcVal, *(unsigned int*)&srcVal);
2444
#endif
2445
        }
2446
        printf("[ERROR] EXPECTED value: %10.5f [%08X]\n", reference[i], *(unsigned int*)&reference[i]);
2447
2448
2449
2450
2451
#if !defined(__NVCC__)
        float dstVal = this->dstMem[dstIdx][initOffset + i];
        printf("[ERROR] DST %02d   value: %10.5f [%08X] Direct: %10.5f [%08X]\n",
               dstIdx, output[i], *(unsigned int*)&output[i], dstVal, *(unsigned int*)&dstVal);
#else
2452
        printf("[ERROR] DST %02d   value: %10.5f [%08X]\n", dstIdx, output[i], *(unsigned int*)&output[i]);
2453
#endif
gilbertlee-amd's avatar
gilbertlee-amd committed
2454
2455
2456
2457
2458
2459
        printf("[ERROR] Failed Transfer details: #%d: %s -> [%c%d:%d] -> %s\n",
               this->transferIndex,
               this->SrcToStr().c_str(),
               ExeTypeStr[this->exeType], this->exeIndex,
               this->numSubExecs,
               this->DstToStr().c_str());
2460
2461
        if (!ev.continueOnError)
          exit(1);
2462
2463
        else
          break;
gilbertlee-amd's avatar
gilbertlee-amd committed
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
      }
    }
  }
}

std::string Transfer::SrcToStr() const
{
  if (numSrcs == 0) return "N";
  std::stringstream ss;
  for (int i = 0; i < numSrcs; ++i)
    ss << MemTypeStr[srcType[i]] << srcIndex[i];
  return ss.str();
}

std::string Transfer::DstToStr() const
{
  if (numDsts == 0) return "N";
  std::stringstream ss;
  for (int i = 0; i < numDsts; ++i)
    ss << MemTypeStr[dstType[i]] << dstIndex[i];
  return ss.str();
}

2487
2488
void RunSchmooBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int const localIdx, int const remoteIdx, int const maxSubExecs)
{
2489
  char memType = ev.useFineGrain ? 'F' : 'G';
2490
  printf("Bytes to transfer: %lu Local GPU: %d Remote GPU: %d\n", numBytesPerTransfer, localIdx, remoteIdx);
2491
2492
  printf("       | Local Read  | Local Write | Local Copy  | Remote Read | Remote Write| Remote Copy |\n");
  printf("  #CUs |%c%02d->G%02d->N00|N00->G%02d->%c%02d|%c%02d->G%02d->%c%02d|%c%02d->G%02d->N00|N00->G%02d->%c%02d|%c%02d->G%02d->%c%02d|\n",
2493
2494
2495
2496
2497
2498
         memType, localIdx, localIdx,
         localIdx, memType, localIdx,
         memType, localIdx, localIdx, memType, localIdx,
         memType, remoteIdx, localIdx,
         localIdx, memType, remoteIdx,
         memType, localIdx, localIdx, memType, remoteIdx);
2499
  printf("|------|-------------|-------------|-------------|-------------|-------------|-------------|\n");
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587

  std::vector<Transfer> transfers(1);
  Transfer& t   = transfers[0];
  t.exeType     = EXE_GPU_GFX;
  t.exeIndex    = localIdx;
  t.exeSubIndex = -1;
  t.numBytes    = numBytesPerTransfer;

  for (int numCUs = 1; numCUs <= maxSubExecs; numCUs++)
  {
    t.numSubExecs = numCUs;

    // Local Read
    t.numSrcs = 1;
    t.numDsts = 0;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = localIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const localRead = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Local Write
    t.numSrcs = 0;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = localIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const localWrite = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Local Copy
    t.numSrcs = 1;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = localIdx;
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = localIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const localCopy = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Remote Read
    t.numSrcs = 1;
    t.numDsts = 0;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = remoteIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const remoteRead = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Remote Write
    t.numSrcs = 0;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = remoteIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const remoteWrite = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Remote Copy
    t.numSrcs = 1;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = localIdx;
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = remoteIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const remoteCopy = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

2588
    printf("   %3d   %11.3f   %11.3f   %11.3f   %11.3f   %11.3f   %11.3f  \n",
2589
2590
2591
2592
           numCUs, localRead, localWrite, localCopy, remoteRead, remoteWrite, remoteCopy);
  }
}

2593
2594
void RunRemoteWriteBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int numSubExecs, int const srcIdx, int minGpus, int maxGpus)
{
2595
2596
  printf("Bytes to %s: %lu from GPU %d using %d CUs [Sweeping %d to %d parallel writes]\n",
         ev.useRemoteRead ? "read" : "write", numBytesPerTransfer, srcIdx, numSubExecs, minGpus, maxGpus);
2597

gilbertlee-amd's avatar
gilbertlee-amd committed
2598
2599
  char sep = (ev.outputToCsv ? ',' : ' ');

2600
2601
2602
  for (int i = 0; i < ev.numGpuDevices; i++)
  {
    if (i == srcIdx) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
2603
    printf("   GPU %-3d  %c", i, sep);
2604
2605
  }
  printf("\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
2606
  if (!ev.outputToCsv)
2607
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2608
2609
2610
2611
2612
    for (int i = 0; i < ev.numGpuDevices-1; i++)
    {
      printf("-------------");
    }
    printf("\n");
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
  }

  for (int p = minGpus; p <= maxGpus; p++)
  {
    for (int bitmask = 0; bitmask < (1<<ev.numGpuDevices); bitmask++)
    {
      if (bitmask & (1<<srcIdx)) continue;
      if (__builtin_popcount(bitmask) == p)
      {
        std::vector<Transfer> transfers;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
          {
            Transfer t;
            t.exeType     = EXE_GPU_GFX;
            t.exeSubIndex = -1;
            t.numSubExecs = numSubExecs;
            t.numBytes    = numBytesPerTransfer;
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652

            if (ev.useRemoteRead)
            {
              t.numSrcs  = 1;
              t.numDsts  = 0;
              t.exeIndex = i;
              t.srcType.resize(1);
              t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
              t.srcIndex.resize(1);
              t.srcIndex[0] = srcIdx;
            }
            else
            {
              t.numSrcs     = 0;
              t.numDsts     = 1;
              t.exeIndex    = srcIdx;
              t.dstType.resize(1);
              t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
              t.dstIndex.resize(1);
              t.dstIndex[0] = i;
            }
2653
2654
2655
2656
2657
2658
2659
2660
2661
            transfers.push_back(t);
          }
        }
        ExecuteTransfers(ev, 0, 0, transfers, false);

        int counter = 0;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
gilbertlee-amd's avatar
gilbertlee-amd committed
2662
            printf("  %8.3f  %c", transfers[counter++].transferBandwidth, sep);
2663
          else if (i != srcIdx)
gilbertlee-amd's avatar
gilbertlee-amd committed
2664
            printf("            %c", sep);
2665
2666
        }

gilbertlee-amd's avatar
gilbertlee-amd committed
2667
        printf(" %d %d", p, numSubExecs);
2668
2669
        for (auto i = 0; i < transfers.size(); i++)
        {
2670
2671
          printf(" (%s %c%d %s)",
                 transfers[i].SrcToStr().c_str(),
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
                 ExeTypeStr[transfers[i].exeType], transfers[i].exeIndex,
                 transfers[i].DstToStr().c_str());
        }
        printf("\n");
      }
    }
  }
}

void RunParallelCopyBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int numSubExecs, int const srcIdx, int minGpus, int maxGpus)
{
  if (ev.useDmaCopy)
    printf("Bytes to copy: %lu from GPU %d using DMA [Sweeping %d to %d parallel writes]\n",
           numBytesPerTransfer, srcIdx, minGpus, maxGpus);
  else
    printf("Bytes to copy: %lu from GPU %d using GFX (%d CUs) [Sweeping %d to %d parallel writes]\n",
           numBytesPerTransfer, srcIdx, numSubExecs, minGpus, maxGpus);

  char sep = (ev.outputToCsv ? ',' : ' ');

  for (int i = 0; i < ev.numGpuDevices; i++)
  {
    if (i == srcIdx) continue;
    printf("   GPU %-3d  %c", i, sep);
  }
  printf("\n");
  if (!ev.outputToCsv)
  {
    for (int i = 0; i < ev.numGpuDevices-1; i++)
    {
      printf("-------------");
    }
    printf("\n");
  }

  for (int p = minGpus; p <= maxGpus; p++)
  {
    for (int bitmask = 0; bitmask < (1<<ev.numGpuDevices); bitmask++)
    {
      if (bitmask & (1<<srcIdx)) continue;
      if (__builtin_popcount(bitmask) == p)
      {
        std::vector<Transfer> transfers;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
          {
            Transfer t;
            t.exeType     = ev.useDmaCopy ? EXE_GPU_DMA : EXE_GPU_GFX;
            t.exeSubIndex = -1;
            t.numSubExecs = ev.useDmaCopy ? 1 : numSubExecs;
            t.numBytes    = numBytesPerTransfer;

            t.numSrcs     = 1;
            t.numDsts     = 1;
            t.exeIndex    = srcIdx;
            t.srcType.resize(1);
            t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
            t.srcIndex.resize(1);
            t.srcIndex[0] = srcIdx;
            t.dstType.resize(1);
            t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
            t.dstIndex.resize(1);
            t.dstIndex[0] = i;

            transfers.push_back(t);
          }
        }
        ExecuteTransfers(ev, 0, 0, transfers, false);

        int counter = 0;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
            printf("  %8.3f  %c", transfers[counter++].transferBandwidth, sep);
          else if (i != srcIdx)
            printf("            %c", sep);
        }

        printf(" %d %d", p, numSubExecs);
        for (auto i = 0; i < transfers.size(); i++)
        {
          printf(" (%s %c%d %s)",
                 transfers[i].SrcToStr().c_str(),
                 ExeTypeStr[transfers[i].exeType], transfers[i].exeIndex,
2757
                 transfers[i].DstToStr().c_str());
2758
2759
2760
2761
2762
2763
        }
        printf("\n");
      }
    }
  }
}
2764

gilbertlee-amd's avatar
gilbertlee-amd committed
2765
void RunSweepPreset(EnvVars const& ev, size_t const numBytesPerTransfer, int const numGpuSubExecs, int const numCpuSubExecs, bool const isRandom)
Gilbert Lee's avatar
Gilbert Lee committed
2766
2767
2768
2769
{
  ev.DisplaySweepEnvVars();

  // Compute how many possible Transfers are permitted (unique SRC/EXE/DST triplets)
gilbertlee-amd's avatar
gilbertlee-amd committed
2770
  std::vector<std::pair<ExeType, int>> exeList;
Gilbert Lee's avatar
Gilbert Lee committed
2771
2772
  for (auto exe : ev.sweepExe)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2773
2774
    ExeType const exeType = CharToExeType(exe);
    if (IsGpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
2775
    {
2776
      for (int exeIndex = 0; exeIndex < ev.numGpuDevices; ++exeIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
2777
        exeList.push_back(std::make_pair(exeType, exeIndex));
Gilbert Lee's avatar
Gilbert Lee committed
2778
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
2779
    else if (IsCpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
2780
    {
2781
2782
2783
2784
      for (int exeIndex = 0; exeIndex < ev.numCpuDevices; ++exeIndex)
      {
        // Skip NUMA nodes that have no CPUs (e.g. CXL)
        if (ev.numCpusPerNuma[exeIndex] == 0) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
2785
        exeList.push_back(std::make_pair(exeType, exeIndex));
2786
      }
Gilbert Lee's avatar
Gilbert Lee committed
2787
2788
    }
  }
2789
  int numExes = exeList.size();
Gilbert Lee's avatar
Gilbert Lee committed
2790
2791
2792
2793

  std::vector<std::pair<MemType, int>> srcList;
  for (auto src : ev.sweepSrc)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2794
2795
    MemType const srcType = CharToMemType(src);
    int const numDevices = IsGpuType(srcType) ? ev.numGpuDevices : ev.numCpuDevices;
2796

Gilbert Lee's avatar
Gilbert Lee committed
2797
    for (int srcIndex = 0; srcIndex < numDevices; ++srcIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
2798
      srcList.push_back(std::make_pair(srcType, srcIndex));
Gilbert Lee's avatar
Gilbert Lee committed
2799
2800
2801
2802
2803
2804
2805
  }
  int numSrcs = srcList.size();


  std::vector<std::pair<MemType, int>> dstList;
  for (auto dst : ev.sweepDst)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2806
2807
    MemType const dstType = CharToMemType(dst);
    int const numDevices = IsGpuType(dstType) ? ev.numGpuDevices : ev.numCpuDevices;
Gilbert Lee's avatar
Gilbert Lee committed
2808
2809

    for (int dstIndex = 0; dstIndex < numDevices; ++dstIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
2810
      dstList.push_back(std::make_pair(dstType, dstIndex));
Gilbert Lee's avatar
Gilbert Lee committed
2811
2812
2813
  }
  int numDsts = dstList.size();

2814
2815
  // Build array of possibilities, respecting any additional restrictions (e.g. XGMI hop count)
  struct TransferInfo
Gilbert Lee's avatar
Gilbert Lee committed
2816
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2817
2818
2819
    MemType srcType; int srcIndex;
    ExeType exeType; int exeIndex;
    MemType dstType; int dstIndex;
2820
2821
2822
2823
2824
2825
2826
2827
  };

  // If either XGMI minimum is non-zero, or XGMI maximum is specified and non-zero then both links must be XGMI
  bool const useXgmiOnly = (ev.sweepXgmiMin > 0 || ev.sweepXgmiMax > 0);

  std::vector<TransferInfo> possibleTransfers;
  TransferInfo tinfo;
  for (int i = 0; i < numExes; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
2828
  {
2829
2830
    // Skip CPU executors if XGMI link must be used
    if (useXgmiOnly && !IsGpuType(exeList[i].first)) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
2831
2832
    tinfo.exeType  = exeList[i].first;
    tinfo.exeIndex = exeList[i].second;
2833

gilbertlee-amd's avatar
gilbertlee-amd committed
2834
    bool isXgmiSrc  = false;
2835
2836
2837
2838
2839
2840
2841
    int  numHopsSrc = 0;
    for (int j = 0; j < numSrcs; ++j)
    {
      if (IsGpuType(exeList[i].first) && IsGpuType(srcList[j].first))
      {
        if (exeList[i].second != srcList[j].second)
        {
2842
2843
2844
#if defined(__NVCC__)
          isXgmiSrc = false;
#else
2845
          uint32_t exeToSrcLinkType, exeToSrcHopCount;
gilbertlee-amd's avatar
gilbertlee-amd committed
2846
2847
          HIP_CALL(hipExtGetLinkTypeAndHopCount(RemappedIndex(exeList[i].second, false),
                                                RemappedIndex(srcList[j].second, false),
2848
2849
2850
2851
                                                &exeToSrcLinkType,
                                                &exeToSrcHopCount));
          isXgmiSrc = (exeToSrcLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
          if (isXgmiSrc) numHopsSrc = exeToSrcHopCount;
2852
#endif
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
        }
        else
        {
          isXgmiSrc = true;
          numHopsSrc = 0;
        }

        // Skip this SRC if it is not XGMI but only XGMI links may be used
        if (useXgmiOnly && !isXgmiSrc) continue;

        // Skip this SRC if XGMI distance is already past limit
        if (ev.sweepXgmiMax >= 0 && isXgmiSrc && numHopsSrc > ev.sweepXgmiMax) continue;
      }
      else if (useXgmiOnly) continue;

gilbertlee-amd's avatar
gilbertlee-amd committed
2868
2869
      tinfo.srcType  = srcList[j].first;
      tinfo.srcIndex = srcList[j].second;
2870
2871
2872
2873
2874
2875
2876
2877
2878

      bool isXgmiDst = false;
      int  numHopsDst = 0;
      for (int k = 0; k < numDsts; ++k)
      {
        if (IsGpuType(exeList[i].first) && IsGpuType(dstList[k].first))
        {
          if (exeList[i].second != dstList[k].second)
          {
2879
2880
2881
#if defined(__NVCC__)
            isXgmiSrc = false;
#else
2882
            uint32_t exeToDstLinkType, exeToDstHopCount;
gilbertlee-amd's avatar
gilbertlee-amd committed
2883
2884
            HIP_CALL(hipExtGetLinkTypeAndHopCount(RemappedIndex(exeList[i].second, false),
                                                  RemappedIndex(dstList[k].second, false),
2885
2886
2887
2888
                                                  &exeToDstLinkType,
                                                  &exeToDstHopCount));
            isXgmiDst = (exeToDstLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
            if (isXgmiDst) numHopsDst = exeToDstHopCount;
2889
#endif
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
          }
          else
          {
            isXgmiDst = true;
            numHopsDst = 0;
          }
        }

        // Skip this DST if it is not XGMI but only XGMI links may be used
        if (useXgmiOnly && !isXgmiDst) continue;

        // Skip this DST if total XGMI distance (SRC + DST) is less than min limit
        if (ev.sweepXgmiMin > 0 && (numHopsSrc + numHopsDst < ev.sweepXgmiMin)) continue;

        // Skip this DST if total XGMI distance (SRC + DST) is greater than max limit
        if (ev.sweepXgmiMax >= 0 && (numHopsSrc + numHopsDst) > ev.sweepXgmiMax) continue;

2907
2908
2909
2910
2911
2912
#if defined(__NVCC__)
        // Skip CPU executors on GPU memory on NVIDIA platform
        if (IsCpuType(exeList[i].first) && (IsGpuType(dstList[j].first) || IsGpuType(dstList[k].first)))
          continue;
#endif

gilbertlee-amd's avatar
gilbertlee-amd committed
2913
2914
        tinfo.dstType  = dstList[k].first;
        tinfo.dstIndex = dstList[k].second;
2915
2916
2917
2918

        possibleTransfers.push_back(tinfo);
      }
    }
Gilbert Lee's avatar
Gilbert Lee committed
2919
2920
  }

2921
2922
2923
  int const numPossible = (int)possibleTransfers.size();
  int maxParallelTransfers = (ev.sweepMax == 0 ? numPossible : ev.sweepMax);

Gilbert Lee's avatar
Gilbert Lee committed
2924
2925
2926
2927
2928
2929
  if (ev.sweepMin > numPossible)
  {
    printf("No valid test configurations exist\n");
    return;
  }

2930
2931
2932
2933
2934
2935
  if (ev.outputToCsv)
  {
    printf("\nTest#,Transfer#,NumBytes,Src,Exe,Dst,CUs,BW(GB/s),Time(ms),"
           "ExeToSrcLinkType,ExeToDstLinkType,SrcAddr,DstAddr\n");
  }

Gilbert Lee's avatar
Gilbert Lee committed
2936
2937
  int numTestsRun = 0;
  int M = ev.sweepMin;
gilbertlee-amd's avatar
gilbertlee-amd committed
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
  std::uniform_int_distribution<int> randSize(1, numBytesPerTransfer / sizeof(float));
  std::uniform_int_distribution<int> distribution(ev.sweepMin, maxParallelTransfers);

  // Log sweep to configuration file
  FILE *fp = fopen("lastSweep.cfg", "w");
  if (!fp)
  {
    printf("[ERROR] Unable to open lastSweep.cfg.  Check permissions\n");
    exit(1);
  }

Gilbert Lee's avatar
Gilbert Lee committed
2949
2950
2951
2952
2953
2954
2955
2956
2957
  // Create bitmask of numPossible triplets, of which M will be chosen
  std::string bitmask(M, 1);  bitmask.resize(numPossible, 0);
  auto cpuStart = std::chrono::high_resolution_clock::now();
  while (1)
  {
    if (isRandom)
    {
      // Pick random number of simultaneous transfers to execute
      // NOTE: This currently skews distribution due to some #s having more possibilities than others
gilbertlee-amd's avatar
gilbertlee-amd committed
2958
      M = distribution(*ev.generator);
Gilbert Lee's avatar
Gilbert Lee committed
2959
2960
2961
2962

      // Generate a random bitmask
      for (int i = 0; i < numPossible; i++)
        bitmask[i] = (i < M) ? 1 : 0;
2963
      std::shuffle(bitmask.begin(), bitmask.end(), *ev.generator);
Gilbert Lee's avatar
Gilbert Lee committed
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
    }

    // Convert bitmask to list of Transfers
    std::vector<Transfer> transfers;
    for (int value = 0; value < numPossible; ++value)
    {
      if (bitmask[value])
      {
        // Convert integer value to (SRC->EXE->DST) triplet
        Transfer transfer;
gilbertlee-amd's avatar
gilbertlee-amd committed
2974
2975
2976
2977
2978
        transfer.numSrcs        = 1;
        transfer.numDsts        = 1;
        transfer.srcType        = {possibleTransfers[value].srcType};
        transfer.srcIndex       = {possibleTransfers[value].srcIndex};
        transfer.exeType        = possibleTransfers[value].exeType;
2979
        transfer.exeIndex       = possibleTransfers[value].exeIndex;
2980
        transfer.exeSubIndex    = -1;
gilbertlee-amd's avatar
gilbertlee-amd committed
2981
2982
2983
        transfer.dstType        = {possibleTransfers[value].dstType};
        transfer.dstIndex       = {possibleTransfers[value].dstIndex};
        transfer.numSubExecs    = IsGpuType(transfer.exeType) ? numGpuSubExecs : numCpuSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
2984
        transfer.numBytes       = ev.sweepRandBytes ? randSize(*ev.generator) * sizeof(float) : 0;
Gilbert Lee's avatar
Gilbert Lee committed
2985
2986
2987
2988
        transfers.push_back(transfer);
      }
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
2989
2990
    LogTransfers(fp, ++numTestsRun, transfers);
    ExecuteTransfers(ev, numTestsRun, numBytesPerTransfer / sizeof(float), transfers);
Gilbert Lee's avatar
Gilbert Lee committed
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021

    // Check for test limit
    if (numTestsRun == ev.sweepTestLimit)
    {
      printf("Test limit reached\n");
      break;
    }

    // Check for time limit
    auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
    double totalCpuTime = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();
    if (ev.sweepTimeLimit && totalCpuTime > ev.sweepTimeLimit)
    {
      printf("Time limit exceeded\n");
      break;
    }

    // Increment bitmask if not random sweep
    if (!isRandom && !std::prev_permutation(bitmask.begin(), bitmask.end()))
    {
      M++;
      // Check for completion
      if (M > maxParallelTransfers)
      {
        printf("Sweep complete\n");
        break;
      }
      for (int i = 0; i < numPossible; i++)
        bitmask[i] = (i < M) ? 1 : 0;
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
  fclose(fp);
}

void LogTransfers(FILE *fp, int const testNum, std::vector<Transfer> const& transfers)
{
  fprintf(fp, "# Test %d\n", testNum);
  fprintf(fp, "%d", -1 * (int)transfers.size());
  for (auto const& transfer : transfers)
  {
    fprintf(fp, " (%c%d->%c%d->%c%d %d %lu)",
gilbertlee-amd's avatar
gilbertlee-amd committed
3032
3033
3034
3035
            MemTypeStr[transfer.srcType[0]], transfer.srcIndex[0],
            ExeTypeStr[transfer.exeType],    transfer.exeIndex,
            MemTypeStr[transfer.dstType[0]], transfer.dstIndex[0],
            transfer.numSubExecs,
gilbertlee-amd's avatar
gilbertlee-amd committed
3036
3037
3038
3039
            transfer.numBytes);
  }
  fprintf(fp, "\n");
  fflush(fp);
Gilbert Lee's avatar
Gilbert Lee committed
3040
}
gilbertlee-amd's avatar
gilbertlee-amd committed
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051

std::string PtrVectorToStr(std::vector<float*> const& strVector, int const initOffset)
{
  std::stringstream ss;
  for (int i = 0; i < strVector.size(); ++i)
  {
    if (i) ss << " ";
    ss << (strVector[i] + initOffset);
  }
  return ss.str();
}
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364

void ReportResults(EnvVars const& ev, std::vector<Transfer> const& transfers, TestResults const results)
{
  char sep = ev.outputToCsv ? ',' : '|';
  size_t numTimedIterations = results.numTimedIterations;

  // Loop over each executor
  for (auto exeInfoPair : results.exeResults) {
    ExeResult const& exeResult = exeInfoPair.second;
    ExeType exeType  = exeInfoPair.first.first;
    int     exeIndex = exeInfoPair.first.second;

    printf(" Executor: %3s %02d %c %7.3f GB/s %c %8.3f ms %c %12lu bytes %c %-7.3f GB/s (sum)\n",
           ExeTypeName[exeType], exeIndex, sep, exeResult.bandwidthGbs, sep,
           exeResult.durationMsec, sep, exeResult.totalBytes, sep, exeResult.sumBandwidthGbs);

    for (int idx : exeResult.transferIdx) {
      Transfer const& t = transfers[idx];

      char exeSubIndexStr[32] = "";
      if (ev.useXccFilter || t.exeType == EXE_GPU_DMA) {
        if (t.exeSubIndex == -1)
          sprintf(exeSubIndexStr, ".*");
        else
          sprintf(exeSubIndexStr, ".%d", t.exeSubIndex);
      }
      printf("     Transfer %02d  %c %7.3f GB/s %c %8.3f ms %c %12lu bytes %c %s -> %s%02d%s:%03d -> %s\n",
             t.transferIndex, sep,
             t.transferBandwidth, sep,
             t.transferTime, sep,
             t.numBytesActual, sep,
             t.SrcToStr().c_str(),
             ExeTypeName[t.exeType], t.exeIndex,
             exeSubIndexStr,
             t.numSubExecs,
             t.DstToStr().c_str());

      // Show per-iteration timing information
      if (ev.showIterations) {

        std::set<std::pair<double, int>> times;
        double stdDevTime = 0;
        double stdDevBw = 0;
        for (int i = 0; i < numTimedIterations; i++) {
          times.insert(std::make_pair(t.perIterationTime[i], i+1));
          double const varTime = fabs(t.transferTime - t.perIterationTime[i]);
          stdDevTime += varTime * varTime;

          double iterBandwidthGbs = (t.numBytesActual / 1.0E9) / t.perIterationTime[i] * 1000.0f;
          double const varBw = fabs(iterBandwidthGbs - t.transferBandwidth);
          stdDevBw += varBw * varBw;
        }
        stdDevTime = sqrt(stdDevTime / numTimedIterations);
        stdDevBw = sqrt(stdDevBw / numTimedIterations);

        for (auto time : times) {
          double iterDurationMsec = time.first;
          double iterBandwidthGbs = (t.numBytesActual / 1.0E9) / iterDurationMsec * 1000.0f;
          printf("      Iter %03d    %c %7.3f GB/s %c %8.3f ms %c", time.second, sep, iterBandwidthGbs, sep, iterDurationMsec, sep);

          std::set<int> usedXccs;
          if (time.second - 1 < t.perIterationCUs.size()) {
            printf(" CUs:");
            for (auto x : t.perIterationCUs[time.second - 1]) {
              printf(" %02d:%02d", x.first, x.second);
              usedXccs.insert(x.first);
            }
          }
          printf(" XCCs:");
          for (auto x : usedXccs)
            printf(" %02d", x);
          printf("\n");
        }
        printf("      StandardDev %c %7.3f GB/s %c %8.3f ms %c\n", sep, stdDevBw, sep, stdDevTime, sep);
      }
    }
  }

  printf(" Aggregate (CPU)  %c %7.3f GB/s %c %8.3f ms %c %12lu bytes %c Overhead: %.3f ms\n", sep,
         results.totalBandwidthCpu, sep, results.totalDurationMsec, sep, results.totalBytesTransferred, sep, results.overheadMsec);
}

void RunHealthCheck(EnvVars ev)
{
  // Check for supported platforms
#if defined(__NVCC__)
  printf("[WARN] healthcheck preset not supported on NVIDIA hardware\n");
  return;
#else

  bool hasFail = false;

  // Force use of single stream
  ev.useSingleStream = 1;

  for (int gpuId = 0; gpuId < ev.numGpuDevices; gpuId++) {
    hipDeviceProp_t prop;
    HIP_CALL(hipGetDeviceProperties(&prop, gpuId));
    std::string fullName = prop.gcnArchName;
    std::string archName = fullName.substr(0, fullName.find(':'));
    if (!(archName == "gfx940" || archName == "gfx941" || archName == "gfx942"))
    {
      printf("[WARN] healthcheck preset is currently only supported on MI300 series hardware\n");
      exit(1);
    }
  }

  // Pass limits
  double udirLimit = getenv("LIMIT_UDIR") ? atof(getenv("LIMIT_UDIR")) : (int)(48 * 0.95);
  double bdirLimit = getenv("LIMIT_BDIR") ? atof(getenv("LIMIT_BDIR")) : (int)(96 * 0.95);
  double a2aLimit  = getenv("LIMIT_A2A")  ? atof(getenv("LIMIT_A2A"))  : (int)(45 * 0.95);

  // Run CPU to GPU

  // Run unidirectional read from CPU to GPU
  printf("Testing unidirectional reads from CPU ");
  {
    std::vector<std::pair<int, double>> fails;
    for (int gpuId = 0; gpuId < ev.numGpuDevices; gpuId++) {
      printf("."); fflush(stdout);
      std::vector<Transfer> transfers(1);
      Transfer& t = transfers[0];
      t.exeType     = EXE_GPU_GFX;
      t.exeIndex    = gpuId;
      t.numBytes    = 64*1024*1024;
      t.numBytesActual = 64*1024*1024;
      t.numSrcs     = 1;
      t.srcType.push_back(MEM_CPU);
      t.srcIndex.push_back(GetClosestNumaNode(gpuId));
      t.numDsts     = 0;
      t.dstType.clear();
      t.dstIndex.clear();

    // Loop over number of CUs to use
      bool passed = false;
      double bestResult = 0;
      for (int cu = 7; cu <= 10; cu++) {
        t.numSubExecs = cu;
        TestResults tesResults = ExecuteTransfersImpl(ev, transfers);
        bestResult = std::max(bestResult, t.transferBandwidth);
        if (t.transferBandwidth >= udirLimit) {
          passed = true;
          break;
      }
      }
      if (!passed) fails.push_back(std::make_pair(gpuId, bestResult));
    }
    if (fails.size() == 0) {
      printf("PASS\n");
    } else {
      hasFail = true;
      printf("FAIL (%lu test(s))\n", fails.size());
      for (auto p : fails) {
        printf(" GPU %02d: Measured: %6.2f GB/s      Criteria: %6.2f GB/s\n", p.first, p.second, udirLimit);
      }
    }
  }

  // Run unidirectional write from GPU to CPU
  printf("Testing unidirectional writes to  CPU ");
  {
    std::vector<std::pair<int, double>> fails;
    for (int gpuId = 0; gpuId < ev.numGpuDevices; gpuId++) {
      printf("."); fflush(stdout);
      std::vector<Transfer> transfers(1);
      Transfer& t = transfers[0];
      t.exeType     = EXE_GPU_GFX;
      t.exeIndex    = gpuId;
      t.numBytes    = 64*1024*1024;
      t.numBytesActual = 64*1024*1024;
      t.numDsts     = 1;
      t.dstType.push_back(MEM_CPU);
      t.dstIndex.push_back(GetClosestNumaNode(gpuId));
      t.numSrcs     = 0;
      t.srcType.clear();
      t.srcIndex.clear();

      // Loop over number of CUs to use
      bool passed = false;
      double bestResult = 0;
      for (int cu = 7; cu <= 10; cu++) {
        t.numSubExecs = cu;

        TestResults tesResults = ExecuteTransfersImpl(ev, transfers);
        bestResult = std::max(bestResult, t.transferBandwidth);
        if (t.transferBandwidth >= udirLimit) {
          passed = true;
          break;
        }
      }
      if (!passed) fails.push_back(std::make_pair(gpuId, bestResult));
    }
    if (fails.size() == 0) {
      printf("PASS\n");
    } else {
      hasFail = true;
      printf("FAIL (%lu test(s))\n", fails.size());
      for (auto p : fails) {
        printf(" GPU %02d: Measured: %6.2f GB/s      Criteria: %6.2f GB/s\n", p.first, p.second, udirLimit);
      }
    }
  }

  // Run bidirectional tests
  printf("Testing bidirectional  reads + writes ");
  {
    std::vector<std::pair<int, double>> fails;
    for (int gpuId = 0; gpuId < ev.numGpuDevices; gpuId++) {
      printf("."); fflush(stdout);
      std::vector<Transfer> transfers(2);
      Transfer& t0 = transfers[0];
      Transfer& t1 = transfers[1];

      t0.exeType     = EXE_GPU_GFX;
      t0.exeIndex    = gpuId;
      t0.numBytes    = 64*1024*1024;
      t0.numBytesActual = 64*1024*1024;
      t0.numSrcs     = 1;
      t0.srcType.push_back(MEM_CPU);
      t0.srcIndex.push_back(GetClosestNumaNode(gpuId));
      t0.numDsts     = 0;
      t0.dstType.clear();
      t0.dstIndex.clear();

      t1.exeType     = EXE_GPU_GFX;
      t1.exeIndex    = gpuId;
      t1.numBytes    = 64*1024*1024;
      t1.numBytesActual = 64*1024*1024;
      t1.numDsts     = 1;
      t1.dstType.push_back(MEM_CPU);
      t1.dstIndex.push_back(GetClosestNumaNode(gpuId));
      t1.numSrcs     = 0;
      t1.srcType.clear();
      t1.srcIndex.clear();

      // Loop over number of CUs to use
      bool passed = false;
      double bestResult = 0;
      for (int cu = 7; cu <= 10; cu++) {
        t0.numSubExecs = cu;
        t1.numSubExecs = cu;

        TestResults tesResults = ExecuteTransfersImpl(ev, transfers);
        double sum = t0.transferBandwidth + t1.transferBandwidth;
        bestResult = std::max(bestResult, sum);
        if (sum >= bdirLimit) {
          passed = true;
          break;
        }
      }
      if (!passed) fails.push_back(std::make_pair(gpuId, bestResult));
    }
    if (fails.size() == 0) {
      printf("PASS\n");
    } else {
      hasFail = true;
      printf("FAIL (%lu test(s))\n", fails.size());
      for (auto p : fails) {
        printf(" GPU %02d: Measured: %6.2f GB/s      Criteria: %6.2f GB/s\n", p.first, p.second, bdirLimit);
      }
    }
  }

  // Run XGMI tests:
  printf("Testing all-to-all XGMI copies        "); fflush(stdout);
  {
    ev.gfxUnroll = 2;
    std::vector<Transfer> transfers;
    for (int i = 0; i < ev.numGpuDevices; i++) {
      for (int j = 0; j < ev.numGpuDevices; j++) {
        if (i == j) continue;
        Transfer t;
        t.exeType = EXE_GPU_GFX;
        t.exeIndex = i;
        t.numBytes = t.numBytesActual = 64*1024*1024;
        t.numSrcs = 1;
        t.numDsts = 1;
        t.numSubExecs = 8;
        t.srcType.push_back(MEM_GPU_FINE);
        t.dstType.push_back(MEM_GPU_FINE);
        t.srcIndex.push_back(i);
        t.dstIndex.push_back(j);
        transfers.push_back(t);
      }
    }
    TestResults tesResults = ExecuteTransfersImpl(ev, transfers);
    std::vector<std::pair<std::pair<int,int>, double>> fails;
    int transferIdx = 0;
    for (int i = 0; i < ev.numGpuDevices; i++) {
      printf("."); fflush(stdout);
      for (int j = 0; j < ev.numGpuDevices; j++) {
        if (i == j) continue;
        Transfer const& t = transfers[transferIdx];
        if (t.transferBandwidth < a2aLimit) {
          fails.push_back(std::make_pair(std::make_pair(i,j), t.transferBandwidth));
        }
        transferIdx++;
      }
    }
    if (fails.size() == 0) {
      printf("PASS\n");
    } else {
      hasFail = true;
      printf("FAIL (%lu test(s))\n", fails.size());
      for (auto p : fails) {
        printf(" GPU %02d to GPU %02d: %6.2f GB/s      Criteria: %6.2f GB/s\n", p.first.first, p.first.second, p.second, a2aLimit);
      }
    }
  }

  exit(hasFail ? 1 : 0);
#endif
}