TransferBench.cpp 107 KB
Newer Older
Gilbert Lee's avatar
Gilbert Lee committed
1
/*
2
Copyright (c) 2019-2024 Advanced Micro Devices, Inc. All rights reserved.
Gilbert Lee's avatar
Gilbert Lee committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/

// This program measures simultaneous copy performance across multiple GPUs
// on the same node
25
26
#include <numa.h>     // If not found, try installing libnuma-dev (e.g apt-get install libnuma-dev)
#include <cmath>      // If not found, try installing g++-12      (e.g apt-get install g++-12)
Gilbert Lee's avatar
Gilbert Lee committed
27
#include <numaif.h>
Gilbert Lee's avatar
Gilbert Lee committed
28
#include <random>
Gilbert Lee's avatar
Gilbert Lee committed
29
30
31
32
33
34
35
36
#include <stack>
#include <thread>

#include "TransferBench.hpp"
#include "GetClosestNumaNode.hpp"

int main(int argc, char **argv)
{
Gilbert Lee's avatar
Gilbert Lee committed
37
38
39
40
41
42
43
  // Check for NUMA library support
  if (numa_available() == -1)
  {
    printf("[ERROR] NUMA library not supported. Check to see if libnuma has been installed on this system\n");
    exit(1);
  }

Gilbert Lee's avatar
Gilbert Lee committed
44
45
46
47
48
49
50
51
52
53
54
55
  // Display usage instructions and detected topology
  if (argc <= 1)
  {
    int const outputToCsv = EnvVars::GetEnvVar("OUTPUT_TO_CSV", 0);
    if (!outputToCsv) DisplayUsage(argv[0]);
    DisplayTopology(outputToCsv);
    exit(0);
  }

  // Collect environment variables / display current run configuration
  EnvVars ev;

Gilbert Lee's avatar
Gilbert Lee committed
56
57
  // Determine number of bytes to run per Transfer
  size_t numBytesPerTransfer = argc > 2 ? atoll(argv[2]) : DEFAULT_BYTES_PER_TRANSFER;
Gilbert Lee's avatar
Gilbert Lee committed
58
59
60
61
62
63
  if (argc > 2)
  {
    // Adjust bytes if unit specified
    char units = argv[2][strlen(argv[2])-1];
    switch (units)
    {
Gilbert Lee's avatar
Gilbert Lee committed
64
65
66
    case 'K': case 'k': numBytesPerTransfer *= 1024; break;
    case 'M': case 'm': numBytesPerTransfer *= 1024*1024; break;
    case 'G': case 'g': numBytesPerTransfer *= 1024*1024*1024; break;
Gilbert Lee's avatar
Gilbert Lee committed
67
68
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
69
70
71
72
73
  if (numBytesPerTransfer % 4)
  {
    printf("[ERROR] numBytesPerTransfer (%lu) must be a multiple of 4\n", numBytesPerTransfer);
    exit(1);
  }
Gilbert Lee's avatar
Gilbert Lee committed
74

Gilbert Lee's avatar
Gilbert Lee committed
75
76
77
78
  // Check for preset tests
  // - Tests that sweep across possible sets of Transfers
  if (!strcmp(argv[1], "sweep") || !strcmp(argv[1], "rsweep"))
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
79
80
    int numGpuSubExecs = (argc > 3 ? atoi(argv[3]) : 4);
    int numCpuSubExecs = (argc > 4 ? atoi(argv[4]) : 4);
gilbertlee-amd's avatar
gilbertlee-amd committed
81

82
    ev.configMode = CFG_SWEEP;
gilbertlee-amd's avatar
gilbertlee-amd committed
83
    RunSweepPreset(ev, numBytesPerTransfer, numGpuSubExecs, numCpuSubExecs, !strcmp(argv[1], "rsweep"));
Gilbert Lee's avatar
Gilbert Lee committed
84
85
86
    exit(0);
  }
  // - Tests that benchmark peer-to-peer performance
gilbertlee-amd's avatar
gilbertlee-amd committed
87
  else if (!strcmp(argv[1], "p2p"))
Gilbert Lee's avatar
Gilbert Lee committed
88
  {
89
    ev.configMode = CFG_P2P;
gilbertlee-amd's avatar
gilbertlee-amd committed
90
    RunPeerToPeerBenchmarks(ev, numBytesPerTransfer / sizeof(float));
Gilbert Lee's avatar
Gilbert Lee committed
91
92
    exit(0);
  }
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  // - Test SubExecutor scaling
  else if (!strcmp(argv[1], "scaling"))
  {
    int maxSubExecs = (argc > 3 ? atoi(argv[3]) : 32);
    int exeIndex    = (argc > 4 ? atoi(argv[4]) : 0);

    if (exeIndex >= ev.numGpuDevices)
    {
      printf("[ERROR] Cannot execute scaling test with GPU device %d\n", exeIndex);
      exit(1);
    }
    ev.configMode = CFG_SCALE;
    RunScalingBenchmark(ev, numBytesPerTransfer / sizeof(float), exeIndex, maxSubExecs);
    exit(0);
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
108
109
110
111
112
113
114
115
116
117
118
  // - Test all2all benchmark
  else if (!strcmp(argv[1], "a2a"))
  {
    int numSubExecs = (argc > 3 ? atoi(argv[3]) : 4);

    // Force single-stream mode for all-to-all benchmark
    ev.useSingleStream = 1;
    ev.configMode = CFG_A2A;
    RunAllToAllBenchmark(ev, numBytesPerTransfer, numSubExecs);
    exit(0);
  }
119
120
121
122
123
124
125
126
127
128
129
130
  // - Test schmoo benchmark
  else if (!strcmp(argv[1], "schmoo"))
  {
    if (ev.numGpuDevices < 2)
    {
      printf("[ERROR] Schmoo benchmark requires at least 2 GPUs\n");
      exit(1);
    }
    ev.configMode = CFG_SCHMOO;

    int localIdx    = (argc > 3 ? atoi(argv[3]) : 0);
    int remoteIdx   = (argc > 4 ? atoi(argv[4]) : 1);
131
    int maxSubExecs = (argc > 5 ? atoi(argv[5]) : 32);
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

    if (localIdx >= ev.numGpuDevices || remoteIdx >= ev.numGpuDevices)
    {
      printf("[ERROR] Cannot execute schmoo test with local GPU device %d, remote GPU device %d\n", localIdx, remoteIdx);
      exit(1);
    }
    ev.DisplaySchmooEnvVars();

    for (int N = 256; N <= (1<<27); N *= 2)
    {
      int delta = std::max(1, N / ev.samplingFactor);
      int curr = (numBytesPerTransfer == 0) ? N : numBytesPerTransfer / sizeof(float);
      do
      {
        RunSchmooBenchmark(ev, curr * sizeof(float), localIdx, remoteIdx, maxSubExecs);
        if (numBytesPerTransfer != 0) exit(0);
        curr += delta;
      } while (curr < N * 2);
    }
  }
152
153
154
155
156
157
158
159
160
  else if (!strcmp(argv[1], "rwrite"))
  {
    if (ev.numGpuDevices < 2)
    {
      printf("[ERROR] Remote write benchmark requires at least 2 GPUs\n");
      exit(1);
    }
    ev.DisplayRemoteWriteEnvVars();

gilbertlee-amd's avatar
gilbertlee-amd committed
161
    int numSubExecs = (argc > 3 ? atoi(argv[3]) : 4);
162
163
    int srcIdx      = (argc > 4 ? atoi(argv[4]) : 0);
    int minGpus     = (argc > 5 ? atoi(argv[5]) : 1);
164
    int maxGpus     = (argc > 6 ? atoi(argv[6]) : ev.numGpuDevices - 1);
165
166
167
168
169
170
171
172
173
174
175
176
177

    for (int N = 256; N <= (1<<27); N *= 2)
    {
      int delta = std::max(1, N / ev.samplingFactor);
      int curr = (numBytesPerTransfer == 0) ? N : numBytesPerTransfer / sizeof(float);
      do
      {
        RunRemoteWriteBenchmark(ev, curr * sizeof(float), numSubExecs, srcIdx, minGpus, maxGpus);
        if (numBytesPerTransfer != 0) exit(0);
        curr += delta;
      } while (curr < N * 2);
    }
  }
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
  else if (!strcmp(argv[1], "pcopy"))
  {
    if (ev.numGpuDevices < 2)
    {
      printf("[ERROR] Parallel copy benchmark requires at least 2 GPUs\n");
      exit(1);
    }
    ev.DisplayParallelCopyEnvVars();

    int numSubExecs = (argc > 3 ? atoi(argv[3]) : 8);
    int srcIdx      = (argc > 4 ? atoi(argv[4]) : 0);
    int minGpus     = (argc > 5 ? atoi(argv[5]) : 1);
    int maxGpus     = (argc > 6 ? atoi(argv[6]) : ev.numGpuDevices - 1);

    if (maxGpus > ev.gpuMaxHwQueues && ev.useDmaCopy)
    {
      printf("[ERROR] DMA executor %d attempting %d parallel transfers, however GPU_MAX_HW_QUEUES only set to %d\n",
             srcIdx, maxGpus, ev.gpuMaxHwQueues);
      printf("[ERROR] Aborting to avoid misleading results due to potential serialization of Transfers\n");
      exit(1);
    }

    for (int N = 256; N <= (1<<27); N *= 2)
    {
      int delta = std::max(1, N / ev.samplingFactor);
      int curr = (numBytesPerTransfer == 0) ? N : numBytesPerTransfer / sizeof(float);
      do
      {
        RunParallelCopyBenchmark(ev, curr * sizeof(float), numSubExecs, srcIdx, minGpus, maxGpus);
        if (numBytesPerTransfer != 0) exit(0);
        curr += delta;
      } while (curr < N * 2);
    }
  }
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  else if (!strcmp(argv[1], "cmdline"))
  {
    // Print environment variables and CSV header
    ev.DisplayEnvVars();
    if (ev.outputToCsv)
    {
      printf("Test#,Transfer#,NumBytes,Src,Exe,Dst,CUs,BW(GB/s),Time(ms),SrcAddr,DstAddr\n");
    }

    // Read Transfer from command line
    std::string cmdlineTransfer;
    for (int i = 3; i < argc; i++)
      cmdlineTransfer += std::string(argv[i]) + " ";

226
    char line[MAX_LINE_LEN];
227
228
    sprintf(line, "%s", cmdlineTransfer.c_str());
    std::vector<Transfer> transfers;
229
    ParseTransfers(ev, line, transfers);
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    if (transfers.empty()) exit(0);

    // If the number of bytes is specified, use it
    if (numBytesPerTransfer != 0)
    {
      size_t N = numBytesPerTransfer / sizeof(float);
      ExecuteTransfers(ev, 1, N, transfers);
    }
    else
    {
      // Otherwise generate a range of values
      for (int N = 256; N <= (1<<27); N *= 2)
      {
        int delta = std::max(1, N / ev.samplingFactor);
        int curr = N;
        while (curr < N * 2)
        {
          ExecuteTransfers(ev, 1, curr, transfers);
          curr += delta;
        }
      }
    }
    exit(0);
  }
Gilbert Lee's avatar
Gilbert Lee committed
254

Gilbert Lee's avatar
Gilbert Lee committed
255
  // Check that Transfer configuration file can be opened
256
  ev.configMode = CFG_FILE;
Gilbert Lee's avatar
Gilbert Lee committed
257
258
259
  FILE* fp = fopen(argv[1], "r");
  if (!fp)
  {
Gilbert Lee's avatar
Gilbert Lee committed
260
    printf("[ERROR] Unable to open transfer configuration file: [%s]\n", argv[1]);
Gilbert Lee's avatar
Gilbert Lee committed
261
262
263
    exit(1);
  }

Gilbert Lee's avatar
Gilbert Lee committed
264
  // Print environment variables and CSV header
Gilbert Lee's avatar
Gilbert Lee committed
265
266
267
  ev.DisplayEnvVars();
  if (ev.outputToCsv)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
268
    printf("Test#,Transfer#,NumBytes,Src,Exe,Dst,CUs,BW(GB/s),Time(ms),SrcAddr,DstAddr\n");
Gilbert Lee's avatar
Gilbert Lee committed
269
270
271
  }

  int testNum = 0;
272
273
  char line[MAX_LINE_LEN];
  while(fgets(line, MAX_LINE_LEN, fp))
Gilbert Lee's avatar
Gilbert Lee committed
274
275
276
277
  {
    // Check if line is a comment to be echoed to output (starts with ##)
    if (!ev.outputToCsv && line[0] == '#' && line[1] == '#') printf("%s", line);

Gilbert Lee's avatar
Gilbert Lee committed
278
279
    // Parse set of parallel Transfers to execute
    std::vector<Transfer> transfers;
280
    ParseTransfers(ev, line, transfers);
Gilbert Lee's avatar
Gilbert Lee committed
281
    if (transfers.empty()) continue;
Gilbert Lee's avatar
Gilbert Lee committed
282

gilbertlee-amd's avatar
gilbertlee-amd committed
283
284
285
286
287
288
289
290
291
292
293
    // If the number of bytes is specified, use it
    if (numBytesPerTransfer != 0)
    {
      size_t N = numBytesPerTransfer / sizeof(float);
      ExecuteTransfers(ev, ++testNum, N, transfers);
    }
    else
    {
      // Otherwise generate a range of values
      for (int N = 256; N <= (1<<27); N *= 2)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
294
        int delta = std::max(1, N / ev.samplingFactor);
gilbertlee-amd's avatar
gilbertlee-amd committed
295
296
297
        int curr = N;
        while (curr < N * 2)
        {
gilbertlee-amd's avatar
gilbertlee-amd committed
298
          ExecuteTransfers(ev, ++testNum, curr, transfers);
gilbertlee-amd's avatar
gilbertlee-amd committed
299
300
301
302
          curr += delta;
        }
      }
    }
Gilbert Lee's avatar
Gilbert Lee committed
303
304
  }
  fclose(fp);
Gilbert Lee's avatar
Gilbert Lee committed
305

Gilbert Lee's avatar
Gilbert Lee committed
306
307
  return 0;
}
Gilbert Lee's avatar
Gilbert Lee committed
308

Gilbert Lee's avatar
Gilbert Lee committed
309
void ExecuteTransfers(EnvVars const& ev,
gilbertlee-amd's avatar
gilbertlee-amd committed
310
311
312
                      int const testNum,
                      size_t const N,
                      std::vector<Transfer>& transfers,
gilbertlee-amd's avatar
gilbertlee-amd committed
313
314
                      bool verbose,
                      double* totalBandwidthCpu)
Gilbert Lee's avatar
Gilbert Lee committed
315
316
{
  int const initOffset = ev.byteOffset / sizeof(float);
Gilbert Lee's avatar
Gilbert Lee committed
317

Gilbert Lee's avatar
Gilbert Lee committed
318
319
  // Map transfers by executor
  TransferMap transferMap;
gilbertlee-amd's avatar
gilbertlee-amd committed
320
  for (int i = 0; i < transfers.size(); i++)
Gilbert Lee's avatar
Gilbert Lee committed
321
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
322
323
    Transfer& transfer = transfers[i];
    transfer.transferIndex = i;
gilbertlee-amd's avatar
gilbertlee-amd committed
324
    Executor executor(transfer.exeType, transfer.exeIndex);
Gilbert Lee's avatar
Gilbert Lee committed
325
    ExecutorInfo& executorInfo = transferMap[executor];
gilbertlee-amd's avatar
gilbertlee-amd committed
326
    executorInfo.transfers.push_back(&transfer);
Gilbert Lee's avatar
Gilbert Lee committed
327
  }
Gilbert Lee's avatar
Gilbert Lee committed
328

gilbertlee-amd's avatar
gilbertlee-amd committed
329
  // Loop over each executor and prepare sub-executors
gilbertlee-amd's avatar
gilbertlee-amd committed
330
  std::map<int, Transfer*> transferList;
Gilbert Lee's avatar
Gilbert Lee committed
331
332
333
  for (auto& exeInfoPair : transferMap)
  {
    Executor const& executor = exeInfoPair.first;
gilbertlee-amd's avatar
gilbertlee-amd committed
334
335
336
337
    ExecutorInfo& exeInfo    = exeInfoPair.second;
    ExeType const exeType    = executor.first;
    int     const exeIndex   = RemappedIndex(executor.second, IsCpuType(exeType));

Gilbert Lee's avatar
Gilbert Lee committed
338
    exeInfo.totalTime = 0.0;
gilbertlee-amd's avatar
gilbertlee-amd committed
339
    exeInfo.totalSubExecs = 0;
Gilbert Lee's avatar
Gilbert Lee committed
340
341

    // Loop over each transfer this executor is involved in
gilbertlee-amd's avatar
gilbertlee-amd committed
342
    for (Transfer* transfer : exeInfo.transfers)
Gilbert Lee's avatar
Gilbert Lee committed
343
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
344
345
346
347
348
349
      // Determine how many bytes to copy for this Transfer (use custom if pre-specified)
      transfer->numBytesActual = (transfer->numBytes ? transfer->numBytes : N * sizeof(float));

      // Allocate source memory
      transfer->srcMem.resize(transfer->numSrcs);
      for (int iSrc = 0; iSrc < transfer->numSrcs; ++iSrc)
Gilbert Lee's avatar
Gilbert Lee committed
350
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
351
352
353
        MemType const& srcType  = transfer->srcType[iSrc];
        int     const  srcIndex    = RemappedIndex(transfer->srcIndex[iSrc], IsCpuType(srcType));

Gilbert Lee's avatar
Gilbert Lee committed
354
        // Ensure executing GPU can access source memory
355
        if (IsGpuType(exeType) && IsGpuType(srcType) && srcIndex != exeIndex)
Gilbert Lee's avatar
Gilbert Lee committed
356
          EnablePeerAccess(exeIndex, srcIndex);
Gilbert Lee's avatar
Gilbert Lee committed
357

gilbertlee-amd's avatar
gilbertlee-amd committed
358
359
360
361
362
363
364
365
366
367
        AllocateMemory(srcType, srcIndex, transfer->numBytesActual + ev.byteOffset, (void**)&transfer->srcMem[iSrc]);
      }

      // Allocate destination memory
      transfer->dstMem.resize(transfer->numDsts);
      for (int iDst = 0; iDst < transfer->numDsts; ++iDst)
      {
        MemType const& dstType  = transfer->dstType[iDst];
        int     const  dstIndex    = RemappedIndex(transfer->dstIndex[iDst], IsCpuType(dstType));

Gilbert Lee's avatar
Gilbert Lee committed
368
        // Ensure executing GPU can access destination memory
369
        if (IsGpuType(exeType) && IsGpuType(dstType) && dstIndex != exeIndex)
Gilbert Lee's avatar
Gilbert Lee committed
370
371
          EnablePeerAccess(exeIndex, dstIndex);

gilbertlee-amd's avatar
gilbertlee-amd committed
372
373
        AllocateMemory(dstType, dstIndex, transfer->numBytesActual + ev.byteOffset, (void**)&transfer->dstMem[iDst]);
      }
Gilbert Lee's avatar
Gilbert Lee committed
374

gilbertlee-amd's avatar
gilbertlee-amd committed
375
      exeInfo.totalSubExecs += transfer->numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
376
      transferList[transfer->transferIndex] = transfer;
Gilbert Lee's avatar
Gilbert Lee committed
377
378
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
379
380
    // Prepare additional requirement for GPU-based executors
    if (IsGpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
381
    {
382
383
      HIP_CALL(hipSetDevice(exeIndex));

gilbertlee-amd's avatar
gilbertlee-amd committed
384
385
386
387
388
389
      // Single-stream is only supported for GFX-based executors
      int const numStreamsToUse = (exeType == EXE_GPU_DMA || !ev.useSingleStream) ? exeInfo.transfers.size() : 1;
      exeInfo.streams.resize(numStreamsToUse);
      exeInfo.startEvents.resize(numStreamsToUse);
      exeInfo.stopEvents.resize(numStreamsToUse);
      for (int i = 0; i < numStreamsToUse; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
390
      {
391
392
393
394
        if (ev.cuMask.size())
        {
#if !defined(__NVCC__)
          HIP_CALL(hipExtStreamCreateWithCUMask(&exeInfo.streams[i], ev.cuMask.size(), ev.cuMask.data()));
395
396
397
#else
          printf("[ERROR] CU Masking in not supported on NVIDIA hardware\n");
          exit(-1);
398
399
400
401
402
403
#endif
        }
        else
        {
          HIP_CALL(hipStreamCreate(&exeInfo.streams[i]));
        }
Gilbert Lee's avatar
Gilbert Lee committed
404
405
406
        HIP_CALL(hipEventCreate(&exeInfo.startEvents[i]));
        HIP_CALL(hipEventCreate(&exeInfo.stopEvents[i]));
      }
Gilbert Lee's avatar
Gilbert Lee committed
407

gilbertlee-amd's avatar
gilbertlee-amd committed
408
      if (exeType == EXE_GPU_GFX)
Gilbert Lee's avatar
Gilbert Lee committed
409
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
410
411
        // Allocate one contiguous chunk of GPU memory for threadblock parameters
        // This allows support for executing one transfer per stream, or all transfers in a single stream
412
#if !defined(__NVCC__)
gilbertlee-amd's avatar
gilbertlee-amd committed
413
414
        AllocateMemory(MEM_GPU, exeIndex, exeInfo.totalSubExecs * sizeof(SubExecParam),
                       (void**)&exeInfo.subExecParamGpu);
415
#else
416
        AllocateMemory(MEM_MANAGED, exeIndex, exeInfo.totalSubExecs * sizeof(SubExecParam),
417
418
                       (void**)&exeInfo.subExecParamGpu);
#endif
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

        // Check for sufficient subExecutors
        int numDeviceCUs = 0;
        HIP_CALL(hipDeviceGetAttribute(&numDeviceCUs, hipDeviceAttributeMultiprocessorCount, exeIndex));
        if (exeInfo.totalSubExecs > numDeviceCUs)
        {
          printf("[WARN] GFX executor %d requesting %d total subexecutors, however only has %d.  Some Transfers may be serialized\n",
                 exeIndex, exeInfo.totalSubExecs, numDeviceCUs);
        }
      }

      // Check for targeted DMA
      if (exeType == EXE_GPU_DMA)
      {
        bool useRandomDma = false;
        bool useTargetDma = false;

        // Check for sufficient hardware queues
#if !defined(__NVCC_)
        if (exeInfo.transfers.size() > ev.gpuMaxHwQueues)
        {
          printf("[WARN] DMA executor %d attempting %lu parallel transfers, however GPU_MAX_HW_QUEUES only set to %d\n",
                 exeIndex, exeInfo.transfers.size(), ev.gpuMaxHwQueues);
        }
#endif

        for (Transfer* transfer : exeInfo.transfers)
        {
          if (transfer->exeSubIndex != -1)
          {
            useTargetDma = true;

#if defined(__NVCC__)
            printf("[ERROR] DMA executor subindex not supported on NVIDIA hardware\n");
            exit(-1);
#else
            if (transfer->numSrcs != 1 || transfer->numDsts != 1)
            {
              printf("[ERROR] DMA Transfer must have at exactly one source and one destination");
              exit(1);
            }

            // Collect HSA agent information

            hsa_amd_pointer_info_t info;
            info.size = sizeof(info);

            HSA_CHECK(hsa_amd_pointer_info(transfer->dstMem[0], &info, NULL, NULL, NULL));
            transfer->dstAgent = info.agentOwner;

            HSA_CHECK(hsa_amd_pointer_info(transfer->srcMem[0], &info, NULL, NULL, NULL));
            transfer->srcAgent = info.agentOwner;

            // Create HSA completion signal
            HSA_CHECK(hsa_signal_create(1, 0, NULL, &transfer->signal));

            // Check for valid engine Id
            if (transfer->exeSubIndex < -1 || transfer->exeSubIndex >= 32)
            {
              printf("[ERROR] DMA executor subindex must be between 0 and 31\n");
              exit(1);
            }

            // Check that engine Id exists between agents
            uint32_t engineIdMask = 0;
            HSA_CHECK(hsa_amd_memory_copy_engine_status(transfer->dstAgent,
                                                        transfer->srcAgent,
                                                        &engineIdMask));
            transfer->sdmaEngineId = (hsa_amd_sdma_engine_id_t)(1U << transfer->exeSubIndex);
            if (!(transfer->sdmaEngineId & engineIdMask))
            {
              printf("[ERROR] DMA executor %d.%d does not exist or cannot copy between source %s to destination %s\n",
                     transfer->exeIndex, transfer->exeSubIndex,
                     transfer->SrcToStr().c_str(),
                     transfer->DstToStr().c_str());
              exit(1);
            }
#endif
          }
          else
          {
            useRandomDma = true;
          }
        }
        if (useRandomDma && useTargetDma)
        {
          printf("[WARN] Mixing targeted and untargetted DMA execution on GPU %d may result in resource conflicts\n",
            exeIndex);
        }
Gilbert Lee's avatar
Gilbert Lee committed
508
509
510
      }
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
511

gilbertlee-amd's avatar
gilbertlee-amd committed
512
513
514
  if (verbose && !ev.outputToCsv) printf("Test %d:\n", testNum);

  // Prepare input memory and block parameters for current N
515
  bool isSrcCorrect = true;
gilbertlee-amd's avatar
gilbertlee-amd committed
516
  for (auto& exeInfoPair : transferMap)
Gilbert Lee's avatar
Gilbert Lee committed
517
  {
518
519
520
521
522
    Executor const& executor = exeInfoPair.first;
    ExecutorInfo& exeInfo    = exeInfoPair.second;
    ExeType const exeType    = executor.first;
    int     const exeIndex   = RemappedIndex(executor.second, IsCpuType(exeType));

gilbertlee-amd's avatar
gilbertlee-amd committed
523
524
    exeInfo.totalBytes = 0;
    for (int i = 0; i < exeInfo.transfers.size(); ++i)
Gilbert Lee's avatar
Gilbert Lee committed
525
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
526
527
      // Prepare subarrays each threadblock works on and fill src memory with patterned data
      Transfer* transfer = exeInfo.transfers[i];
gilbertlee-amd's avatar
gilbertlee-amd committed
528
      transfer->PrepareSubExecParams(ev);
529
      isSrcCorrect &= transfer->PrepareSrc(ev);
gilbertlee-amd's avatar
gilbertlee-amd committed
530
      exeInfo.totalBytes += transfer->numBytesActual;
531
532
533
534
535
536
    }

    // Copy block parameters to GPU for GPU executors
    if (exeType == EXE_GPU_GFX)
    {
      std::vector<SubExecParam> tempSubExecParam;
Gilbert Lee's avatar
Gilbert Lee committed
537

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
      if (!ev.useSingleStream || (ev.blockOrder == ORDER_SEQUENTIAL))
      {
        // Assign Transfers to sequentual threadblocks
        int transferOffset = 0;
        for (Transfer* transfer : exeInfo.transfers)
        {
          transfer->subExecParamGpuPtr = exeInfo.subExecParamGpu + transferOffset;

          transfer->subExecIdx.clear();
          for (int subExecIdx = 0; subExecIdx < transfer->subExecParam.size(); subExecIdx++)
          {
            transfer->subExecIdx.push_back(transferOffset + subExecIdx);
            tempSubExecParam.push_back(transfer->subExecParam[subExecIdx]);
          }
          transferOffset += transfer->numSubExecs;
        }
      }
      else if (ev.blockOrder == ORDER_INTERLEAVED)
      {
        // Interleave threadblocks of different Transfers
        exeInfo.transfers[0]->subExecParamGpuPtr = exeInfo.subExecParamGpu;
        for (int subExecIdx = 0; tempSubExecParam.size() < exeInfo.totalSubExecs; ++subExecIdx)
        {
          for (Transfer* transfer : exeInfo.transfers)
          {
            if (subExecIdx < transfer->numSubExecs)
            {
              transfer->subExecIdx.push_back(tempSubExecParam.size());
              tempSubExecParam.push_back(transfer->subExecParam[subExecIdx]);
            }
          }
        }
      }
      else if (ev.blockOrder == ORDER_RANDOM)
Gilbert Lee's avatar
Gilbert Lee committed
572
      {
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        std::vector<std::pair<int,int>> indices;
        exeInfo.transfers[0]->subExecParamGpuPtr = exeInfo.subExecParamGpu;

        // Build up a list of (transfer,subExecParam) indices, then randomly sort them
        for (int i = 0; i < exeInfo.transfers.size(); i++)
        {
          Transfer* transfer = exeInfo.transfers[i];
          for (int subExecIdx = 0; subExecIdx < transfer->numSubExecs; subExecIdx++)
            indices.push_back(std::make_pair(i, subExecIdx));
        }
        std::shuffle(indices.begin(), indices.end(), *ev.generator);

        // Build randomized threadblock list
        for (auto p : indices)
        {
          Transfer* transfer = exeInfo.transfers[p.first];
          transfer->subExecIdx.push_back(tempSubExecParam.size());
          tempSubExecParam.push_back(transfer->subExecParam[p.second]);
        }
Gilbert Lee's avatar
Gilbert Lee committed
592
      }
593
594
595
596
597
598
599

      HIP_CALL(hipSetDevice(exeIndex));
      HIP_CALL(hipMemcpy(exeInfo.subExecParamGpu,
                         tempSubExecParam.data(),
                         tempSubExecParam.size() * sizeof(SubExecParam),
                         hipMemcpyDefault));
      HIP_CALL(hipDeviceSynchronize());
Gilbert Lee's avatar
Gilbert Lee committed
600
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
601
  }
Gilbert Lee's avatar
Gilbert Lee committed
602

gilbertlee-amd's avatar
gilbertlee-amd committed
603
604
605
606
  // Launch kernels (warmup iterations are not counted)
  double totalCpuTime = 0;
  size_t numTimedIterations = 0;
  std::stack<std::thread> threads;
607
  for (int iteration = -ev.numWarmups; isSrcCorrect; iteration++)
gilbertlee-amd's avatar
gilbertlee-amd committed
608
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
609
    if (ev.numIterations > 0 && iteration    >= ev.numIterations) break;
gilbertlee-amd's avatar
gilbertlee-amd committed
610
    if (ev.numIterations < 0 && totalCpuTime > -ev.numIterations) break;
Gilbert Lee's avatar
Gilbert Lee committed
611

gilbertlee-amd's avatar
gilbertlee-amd committed
612
613
    // Pause before starting first timed iteration in interactive mode
    if (verbose && ev.useInteractive && iteration == 0)
Gilbert Lee's avatar
Gilbert Lee committed
614
    {
615
616
617
618
      printf("Memory prepared:\n");

      for (Transfer& transfer : transfers)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
619
620
621
622
623
        printf("Transfer %03d:\n", transfer.transferIndex);
        for (int iSrc = 0; iSrc < transfer.numSrcs; ++iSrc)
          printf("  SRC %0d: %p\n", iSrc, transfer.srcMem[iSrc]);
        for (int iDst = 0; iDst < transfer.numDsts; ++iDst)
          printf("  DST %0d: %p\n", iDst, transfer.dstMem[iDst]);
624
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
625
      printf("Hit <Enter> to continue: ");
626
627
628
629
630
      if (scanf("%*c") != 0)
      {
        printf("[ERROR] Unexpected input\n");
        exit(1);
      }
Gilbert Lee's avatar
Gilbert Lee committed
631
632
      printf("\n");
    }
Gilbert Lee's avatar
Gilbert Lee committed
633

gilbertlee-amd's avatar
gilbertlee-amd committed
634
635
636
637
638
    // Start CPU timing for this iteration
    auto cpuStart = std::chrono::high_resolution_clock::now();

    // Execute all Transfers in parallel
    for (auto& exeInfoPair : transferMap)
639
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
640
      ExecutorInfo& exeInfo = exeInfoPair.second;
gilbertlee-amd's avatar
gilbertlee-amd committed
641
642
643
      ExeType       exeType = exeInfoPair.first.first;
      int const numTransfersToRun = (exeType == EXE_GPU_GFX && ev.useSingleStream) ? 1 : exeInfo.transfers.size();

gilbertlee-amd's avatar
gilbertlee-amd committed
644
645
      for (int i = 0; i < numTransfersToRun; ++i)
        threads.push(std::thread(RunTransfer, std::ref(ev), iteration, std::ref(exeInfo), i));
646
    }
Gilbert Lee's avatar
Gilbert Lee committed
647

gilbertlee-amd's avatar
gilbertlee-amd committed
648
649
650
651
652
653
654
    // Wait for all threads to finish
    int const numTransfers = threads.size();
    for (int i = 0; i < numTransfers; i++)
    {
      threads.top().join();
      threads.pop();
    }
Gilbert Lee's avatar
Gilbert Lee committed
655

gilbertlee-amd's avatar
gilbertlee-amd committed
656
657
658
659
    // Stop CPU timing for this iteration
    auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
    double deltaSec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();

660
661
662
663
664
665
666
667
668
    if (ev.alwaysValidate)
    {
      for (auto transferPair : transferList)
      {
        Transfer* transfer = transferPair.second;
        transfer->ValidateDst(ev);
      }
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
669
    if (iteration >= 0)
Gilbert Lee's avatar
Gilbert Lee committed
670
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
671
672
673
674
      ++numTimedIterations;
      totalCpuTime += deltaSec;
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
675

gilbertlee-amd's avatar
gilbertlee-amd committed
676
  // Pause for interactive mode
677
  if (verbose && isSrcCorrect && ev.useInteractive)
gilbertlee-amd's avatar
gilbertlee-amd committed
678
679
  {
    printf("Transfers complete. Hit <Enter> to continue: ");
680
681
682
683
684
    if (scanf("%*c") != 0)
    {
      printf("[ERROR] Unexpected input\n");
      exit(1);
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
685
686
    printf("\n");
  }
Gilbert Lee's avatar
Gilbert Lee committed
687

gilbertlee-amd's avatar
gilbertlee-amd committed
688
689
690
691
692
693
  // Validate that each transfer has transferred correctly
  size_t totalBytesTransferred = 0;
  int const numTransfers = transferList.size();
  for (auto transferPair : transferList)
  {
    Transfer* transfer = transferPair.second;
gilbertlee-amd's avatar
gilbertlee-amd committed
694
695
    transfer->ValidateDst(ev);
    totalBytesTransferred += transfer->numBytesActual;
gilbertlee-amd's avatar
gilbertlee-amd committed
696
  }
Gilbert Lee's avatar
Gilbert Lee committed
697

gilbertlee-amd's avatar
gilbertlee-amd committed
698
699
700
  // Report timings
  totalCpuTime = totalCpuTime / (1.0 * numTimedIterations) * 1000;
  double totalBandwidthGbs = (totalBytesTransferred / 1.0E6) / totalCpuTime;
gilbertlee-amd's avatar
gilbertlee-amd committed
701
702
  if (totalBandwidthCpu) *totalBandwidthCpu = totalBandwidthGbs;

gilbertlee-amd's avatar
gilbertlee-amd committed
703
  double maxGpuTime = 0;
Gilbert Lee's avatar
Gilbert Lee committed
704

705
  if (!isSrcCorrect) goto cleanup;
gilbertlee-amd's avatar
gilbertlee-amd committed
706
707
708
709
  if (ev.useSingleStream)
  {
    for (auto& exeInfoPair : transferMap)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
710
711
712
      ExecutorInfo  exeInfo  = exeInfoPair.second;
      ExeType const exeType  = exeInfoPair.first.first;
      int     const exeIndex = exeInfoPair.first.second;
Gilbert Lee's avatar
Gilbert Lee committed
713

gilbertlee-amd's avatar
gilbertlee-amd committed
714
715
      // Compute total time for non GPU executors
      if (exeType != EXE_GPU_GFX)
gilbertlee-amd's avatar
gilbertlee-amd committed
716
717
718
719
720
      {
        exeInfo.totalTime = 0;
        for (auto const& transfer : exeInfo.transfers)
          exeInfo.totalTime = std::max(exeInfo.totalTime, transfer->transferTime);
      }
721

gilbertlee-amd's avatar
gilbertlee-amd committed
722
723
724
      double exeDurationMsec = exeInfo.totalTime / (1.0 * numTimedIterations);
      double exeBandwidthGbs = (exeInfo.totalBytes / 1.0E9) / exeDurationMsec * 1000.0f;
      maxGpuTime = std::max(maxGpuTime, exeDurationMsec);
Gilbert Lee's avatar
Gilbert Lee committed
725

726
727
728
729
730
731
732
733
734
      double sumBandwidthGbs = 0.0;
      for (auto& transfer: exeInfo.transfers)
      {
        transfer->transferTime /= (1.0 * numTimedIterations);
        transfer->transferBandwidth = (transfer->numBytesActual / 1.0E9) / transfer->transferTime * 1000.0f;
        transfer->executorBandwidth = exeBandwidthGbs;
        sumBandwidthGbs += transfer->transferBandwidth;
      }

gilbertlee-amd's avatar
gilbertlee-amd committed
735
736
      if (verbose && !ev.outputToCsv)
      {
737
738
        printf(" Executor: %3s %02d | %7.3f GB/s | %8.3f ms | %12lu bytes | %-7.3f GB/s (sum)\n",
               ExeTypeName[exeType], exeIndex, exeBandwidthGbs, exeDurationMsec, exeInfo.totalBytes, sumBandwidthGbs);
Gilbert Lee's avatar
Gilbert Lee committed
739
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
740
741
742

      int totalCUs = 0;
      for (auto const& transfer : exeInfo.transfers)
Gilbert Lee's avatar
Gilbert Lee committed
743
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
744
        totalCUs += transfer->numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
745

gilbertlee-amd's avatar
gilbertlee-amd committed
746
        char exeSubIndexStr[32] = "";
747
        if (ev.useXccFilter || transfer->exeType == EXE_GPU_DMA)
gilbertlee-amd's avatar
gilbertlee-amd committed
748
749
750
751
752
753
754
        {
          if (transfer->exeSubIndex == -1)
            sprintf(exeSubIndexStr, ".*");
          else
            sprintf(exeSubIndexStr, ".%d", transfer->exeSubIndex);
        }

gilbertlee-amd's avatar
gilbertlee-amd committed
755
        if (!verbose) continue;
Gilbert Lee's avatar
Gilbert Lee committed
756
757
        if (!ev.outputToCsv)
        {
gilbertlee-amd's avatar
gilbertlee-amd committed
758
          printf("     Transfer %02d  | %7.3f GB/s | %8.3f ms | %12lu bytes | %s -> %s%02d%s:%03d -> %s\n",
Gilbert Lee's avatar
Gilbert Lee committed
759
                 transfer->transferIndex,
760
                 transfer->transferBandwidth,
761
                 transfer->transferTime,
gilbertlee-amd's avatar
gilbertlee-amd committed
762
763
764
                 transfer->numBytesActual,
                 transfer->SrcToStr().c_str(),
                 ExeTypeName[transfer->exeType], transfer->exeIndex,
gilbertlee-amd's avatar
gilbertlee-amd committed
765
                 exeSubIndexStr,
gilbertlee-amd's avatar
gilbertlee-amd committed
766
767
                 transfer->numSubExecs,
                 transfer->DstToStr().c_str());
768
769
770
771
772
773
774
775
776

          if (ev.showIterations)
          {
            std::set<std::pair<double, int>> times;
            double stdDevTime = 0;
            double stdDevBw = 0;
            for (int i = 0; i < numTimedIterations; i++)
            {
              times.insert(std::make_pair(transfer->perIterationTime[i], i+1));
777
              double const varTime = fabs(transfer->transferTime - transfer->perIterationTime[i]);
778
779
780
              stdDevTime += varTime * varTime;

              double iterBandwidthGbs = (transfer->numBytesActual / 1.0E9) / transfer->perIterationTime[i] * 1000.0f;
781
              double const varBw = fabs(iterBandwidthGbs - transfer->transferBandwidth);
782
783
784
785
786
787
788
789
790
              stdDevBw += varBw * varBw;
            }
            stdDevTime = sqrt(stdDevTime / numTimedIterations);
            stdDevBw = sqrt(stdDevBw / numTimedIterations);

            for (auto t : times)
            {
              double iterDurationMsec = t.first;
              double iterBandwidthGbs = (transfer->numBytesActual / 1.0E9) / iterDurationMsec * 1000.0f;
gilbertlee-amd's avatar
gilbertlee-amd committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
              printf("      Iter %03d    | %7.3f GB/s | %8.3f ms |", t.second, iterBandwidthGbs, iterDurationMsec);

              std::set<int> usedXccs;
              if (t.second - 1 < transfer->perIterationCUs.size())
              {
                printf(" CUs:");
                for (auto x : transfer->perIterationCUs[t.second - 1])
                {
                  printf(" %02d:%02d", x.first, x.second);
                  usedXccs.insert(x.first);
                }
              }
              printf(" XCCs:");
              for (auto x : usedXccs)
                printf(" %02d", x);
              printf("\n");
807
808
809
            }
            printf("      StandardDev | %7.3f GB/s | %8.3f ms |\n", stdDevBw, stdDevTime);
          }
Gilbert Lee's avatar
Gilbert Lee committed
810
811
812
        }
        else
        {
gilbertlee-amd's avatar
gilbertlee-amd committed
813
          printf("%d,%d,%lu,%s,%c%02d%s,%s,%d,%.3f,%.3f,%s,%s\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
814
815
                 testNum, transfer->transferIndex, transfer->numBytesActual,
                 transfer->SrcToStr().c_str(),
gilbertlee-amd's avatar
gilbertlee-amd committed
816
                 MemTypeStr[transfer->exeType], transfer->exeIndex, exeSubIndexStr,
gilbertlee-amd's avatar
gilbertlee-amd committed
817
818
                 transfer->DstToStr().c_str(),
                 transfer->numSubExecs,
819
                 transfer->transferBandwidth, transfer->transferTime,
gilbertlee-amd's avatar
gilbertlee-amd committed
820
821
                 PtrVectorToStr(transfer->srcMem, initOffset).c_str(),
                 PtrVectorToStr(transfer->dstMem, initOffset).c_str());
Gilbert Lee's avatar
Gilbert Lee committed
822
        }
Gilbert Lee's avatar
Gilbert Lee committed
823
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
824
825
826

      if (verbose && ev.outputToCsv)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
827
        printf("%d,ALL,%lu,ALL,%c%02d,ALL,%d,%.3f,%.3f,ALL,ALL\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
828
               testNum, totalBytesTransferred,
gilbertlee-amd's avatar
gilbertlee-amd committed
829
               MemTypeStr[exeType], exeIndex, totalCUs,
gilbertlee-amd's avatar
gilbertlee-amd committed
830
831
               exeBandwidthGbs, exeDurationMsec);
      }
Gilbert Lee's avatar
Gilbert Lee committed
832
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
833
834
835
836
837
838
  }
  else
  {
    for (auto const& transferPair : transferList)
    {
      Transfer* transfer = transferPair.second;
839
      transfer->transferTime /= (1.0 * numTimedIterations);
840
841
      transfer->transferBandwidth = (transfer->numBytesActual / 1.0E9) / transfer->transferTime * 1000.0f;
      transfer->executorBandwidth = transfer->transferBandwidth;
842
      maxGpuTime = std::max(maxGpuTime, transfer->transferTime);
gilbertlee-amd's avatar
gilbertlee-amd committed
843
      if (!verbose) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
844
845
846
847

      char exeSubIndexStr[32] = "";
      if (ev.useXccFilter)
      {
848
        if (transfer->exeSubIndex == -1 || transfer->exeType == EXE_GPU_DMA)
gilbertlee-amd's avatar
gilbertlee-amd committed
849
850
851
852
853
          sprintf(exeSubIndexStr, ".*");
        else
          sprintf(exeSubIndexStr, ".%d", transfer->exeSubIndex);
      }

gilbertlee-amd's avatar
gilbertlee-amd committed
854
855
      if (!ev.outputToCsv)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
856
        printf(" Transfer %02d      | %7.3f GB/s | %8.3f ms | %12lu bytes | %s -> %s%02d%s:%03d -> %s\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
857
               transfer->transferIndex,
858
               transfer->transferBandwidth, transfer->transferTime,
gilbertlee-amd's avatar
gilbertlee-amd committed
859
860
               transfer->numBytesActual,
               transfer->SrcToStr().c_str(),
gilbertlee-amd's avatar
gilbertlee-amd committed
861
               ExeTypeName[transfer->exeType], transfer->exeIndex, exeSubIndexStr,
gilbertlee-amd's avatar
gilbertlee-amd committed
862
863
               transfer->numSubExecs,
               transfer->DstToStr().c_str());
864
865
866
867
868
869
870
871
872

        if (ev.showIterations)
        {
            std::set<std::pair<double, int>> times;
            double stdDevTime = 0;
            double stdDevBw = 0;
            for (int i = 0; i < numTimedIterations; i++)
            {
              times.insert(std::make_pair(transfer->perIterationTime[i], i+1));
873
              double const varTime = fabs(transfer->transferTime - transfer->perIterationTime[i]);
874
875
876
              stdDevTime += varTime * varTime;

              double iterBandwidthGbs = (transfer->numBytesActual / 1.0E9) / transfer->perIterationTime[i] * 1000.0f;
877
              double const varBw = fabs(iterBandwidthGbs - transfer->transferBandwidth);
878
879
880
881
882
883
884
885
886
              stdDevBw += varBw * varBw;
            }
            stdDevTime = sqrt(stdDevTime / numTimedIterations);
            stdDevBw = sqrt(stdDevBw / numTimedIterations);

            for (auto t : times)
            {
              double iterDurationMsec = t.first;
              double iterBandwidthGbs = (transfer->numBytesActual / 1.0E9) / iterDurationMsec * 1000.0f;
887
              printf("      Iter %03d    | %7.3f GB/s | %8.3f ms |", t.second, iterBandwidthGbs, iterDurationMsec);
gilbertlee-amd's avatar
gilbertlee-amd committed
888
              std::set<int> usedXccs;
889
890
891
892
              if (t.second - 1 < transfer->perIterationCUs.size())
              {
                printf(" CUs:");
                for (auto x : transfer->perIterationCUs[t.second - 1])
gilbertlee-amd's avatar
gilbertlee-amd committed
893
894
895
896
                {
                  printf(" %02d:%02d", x.first, x.second);
                  usedXccs.insert(x.first);
                }
897
              }
gilbertlee-amd's avatar
gilbertlee-amd committed
898
899
900
              printf(" XCCs:");
              for (auto x : usedXccs)
                printf(" %d", x);
901
              printf("\n");
902
903
904
            }
            printf("      StandardDev | %7.3f GB/s | %8.3f ms |\n", stdDevBw, stdDevTime);
        }
gilbertlee-amd's avatar
gilbertlee-amd committed
905
906
907
      }
      else
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
908
        printf("%d,%d,%lu,%s,%s%02d%s,%s,%d,%.3f,%.3f,%s,%s\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
909
910
               testNum, transfer->transferIndex, transfer->numBytesActual,
               transfer->SrcToStr().c_str(),
gilbertlee-amd's avatar
gilbertlee-amd committed
911
               ExeTypeName[transfer->exeType], transfer->exeIndex, exeSubIndexStr,
gilbertlee-amd's avatar
gilbertlee-amd committed
912
913
               transfer->DstToStr().c_str(),
               transfer->numSubExecs,
914
               transfer->transferBandwidth, transfer->transferTime,
gilbertlee-amd's avatar
gilbertlee-amd committed
915
916
               PtrVectorToStr(transfer->srcMem, initOffset).c_str(),
               PtrVectorToStr(transfer->dstMem, initOffset).c_str());
gilbertlee-amd's avatar
gilbertlee-amd committed
917
918
919
      }
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
920

gilbertlee-amd's avatar
gilbertlee-amd committed
921
922
923
  // Display aggregate statistics
  if (verbose)
  {
Gilbert Lee's avatar
Gilbert Lee committed
924
    if (!ev.outputToCsv)
Gilbert Lee's avatar
Gilbert Lee committed
925
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
926
      printf(" Aggregate (CPU)  | %7.3f GB/s | %8.3f ms | %12lu bytes | Overhead: %.3f ms\n",
927
             totalBandwidthGbs, totalCpuTime, totalBytesTransferred, totalCpuTime - maxGpuTime);
Gilbert Lee's avatar
Gilbert Lee committed
928
929
930
    }
    else
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
931
      printf("%d,ALL,%lu,ALL,ALL,ALL,ALL,%.3f,%.3f,ALL,ALL\n",
932
             testNum, totalBytesTransferred, totalBandwidthGbs, totalCpuTime);
Gilbert Lee's avatar
Gilbert Lee committed
933
934
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
935

Gilbert Lee's avatar
Gilbert Lee committed
936
  // Release GPU memory
937
cleanup:
Gilbert Lee's avatar
Gilbert Lee committed
938
939
  for (auto exeInfoPair : transferMap)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
940
941
942
943
    ExecutorInfo& exeInfo  = exeInfoPair.second;
    ExeType const exeType  = exeInfoPair.first.first;
    int     const exeIndex = RemappedIndex(exeInfoPair.first.second, IsCpuType(exeType));

Gilbert Lee's avatar
Gilbert Lee committed
944
945
    for (auto& transfer : exeInfo.transfers)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
946
947
948
949
950
951
952
953
954
955
956
      for (int iSrc = 0; iSrc < transfer->numSrcs; ++iSrc)
      {
        MemType const& srcType = transfer->srcType[iSrc];
        DeallocateMemory(srcType, transfer->srcMem[iSrc], transfer->numBytesActual + ev.byteOffset);
      }
      for (int iDst = 0; iDst < transfer->numDsts; ++iDst)
      {
        MemType const& dstType = transfer->dstType[iDst];
        DeallocateMemory(dstType, transfer->dstMem[iDst], transfer->numBytesActual + ev.byteOffset);
      }
      transfer->subExecParam.clear();
957
958
959
960
961
962
963

      if (exeType == EXE_GPU_DMA && transfer->exeSubIndex != -1)
      {
#if !defined(__NVCC__)
        HSA_CHECK(hsa_signal_destroy(transfer->signal));
#endif
      }
Gilbert Lee's avatar
Gilbert Lee committed
964
965
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
966
    if (IsGpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
967
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
968
969
      int const numStreams = (int)exeInfo.streams.size();
      for (int i = 0; i < numStreams; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
970
      {
Gilbert Lee's avatar
Gilbert Lee committed
971
972
973
        HIP_CALL(hipEventDestroy(exeInfo.startEvents[i]));
        HIP_CALL(hipEventDestroy(exeInfo.stopEvents[i]));
        HIP_CALL(hipStreamDestroy(exeInfo.streams[i]));
Gilbert Lee's avatar
Gilbert Lee committed
974
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
975
976
977

      if (exeType == EXE_GPU_GFX)
      {
978
#if !defined(__NVCC__)
gilbertlee-amd's avatar
gilbertlee-amd committed
979
        DeallocateMemory(MEM_GPU, exeInfo.subExecParamGpu);
980
#else
981
        DeallocateMemory(MEM_MANAGED, exeInfo.subExecParamGpu);
982
#endif
gilbertlee-amd's avatar
gilbertlee-amd committed
983
      }
Gilbert Lee's avatar
Gilbert Lee committed
984
985
986
987
988
989
    }
  }
}

void DisplayUsage(char const* cmdName)
{
Gilbert Lee's avatar
Gilbert Lee committed
990
  printf("TransferBench v%s\n", TB_VERSION);
Gilbert Lee's avatar
Gilbert Lee committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
  printf("========================================\n");

  if (numa_available() == -1)
  {
    printf("[ERROR] NUMA library not supported. Check to see if libnuma has been installed on this system\n");
    exit(1);
  }
  int numGpuDevices;
  HIP_CALL(hipGetDeviceCount(&numGpuDevices));
  int const numCpuDevices = numa_num_configured_nodes();

  printf("Usage: %s config <N>\n", cmdName);
  printf("  config: Either:\n");
Gilbert Lee's avatar
Gilbert Lee committed
1004
  printf("          - Filename of configFile containing Transfers to execute (see example.cfg for format)\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
1005
  printf("          - Name of preset config:\n");
1006
1007
1008
  printf("              a2a          - GPU All-To-All benchmark\n");
  printf("                             - 3rd optional arg: # of SubExecs to use\n");
  printf("              cmdline      - Read Transfers from command line arguments (after N)\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
1009
  printf("              p2p          - Peer-to-peer benchmark tests\n");
1010
1011
1012
1013
1014
  printf("              rwrite/pcopy - Parallel writes/copies from single GPU to other GPUs\n");
  printf("                             - 3rd optional arg: # GPU SubExecs per Transfer\n");
  printf("                             - 4th optional arg: Root GPU index\n");
  printf("                             - 5th optional arg: Min number of other GPUs to transfer to\n");
  printf("                             - 6th optional arg: Max number of other GPUs to transfer to\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
1015
  printf("              sweep/rsweep - Sweep/random sweep across possible sets of Transfers\n");
1016
1017
  printf("                             - 3rd optional arg: # GPU SubExecs per Transfer\n");
  printf("                             - 4th optional arg: # CPU SubExecs per Transfer\n");
1018
  printf("              scaling      - GPU GFX SubExec scaling copy test\n");
1019
1020
  printf("                             - 3th optional arg: Max # of SubExecs to use\n");
  printf("                             - 4rd optional arg: GPU index to use as executor\n");
1021
  printf("              schmoo       - Local/RemoteRead/Write/Copy between two GPUs\n");
Gilbert Lee's avatar
Gilbert Lee committed
1022
  printf("  N     : (Optional) Number of bytes to copy per Transfer.\n");
Gilbert Lee's avatar
Gilbert Lee committed
1023
  printf("          If not specified, defaults to %lu bytes. Must be a multiple of 4 bytes\n",
Gilbert Lee's avatar
Gilbert Lee committed
1024
         DEFAULT_BYTES_PER_TRANSFER);
Gilbert Lee's avatar
Gilbert Lee committed
1025
1026
1027
1028
1029
1030
1031
  printf("          If 0 is specified, a range of Ns will be benchmarked\n");
  printf("          May append a suffix ('K', 'M', 'G') for kilobytes / megabytes / gigabytes\n");
  printf("\n");

  EnvVars::DisplayUsage();
}

gilbertlee-amd's avatar
gilbertlee-amd committed
1032
int RemappedIndex(int const origIdx, bool const isCpuType)
Gilbert Lee's avatar
Gilbert Lee committed
1033
{
1034
1035
  static std::vector<int> remappingCpu;
  static std::vector<int> remappingGpu;
Gilbert Lee's avatar
Gilbert Lee committed
1036

1037
1038
1039
1040
1041
1042
1043
1044
  // Build CPU remapping on first use
  // Skip numa nodes that are not configured
  if (remappingCpu.empty())
  {
    for (int node = 0; node <= numa_max_node(); node++)
      if (numa_bitmask_isbitset(numa_get_mems_allowed(), node))
        remappingCpu.push_back(node);
  }
Gilbert Lee's avatar
Gilbert Lee committed
1045

1046
1047
  // Build remappingGpu on first use
  if (remappingGpu.empty())
Gilbert Lee's avatar
Gilbert Lee committed
1048
1049
1050
  {
    int numGpuDevices;
    HIP_CALL(hipGetDeviceCount(&numGpuDevices));
1051
    remappingGpu.resize(numGpuDevices);
Gilbert Lee's avatar
Gilbert Lee committed
1052
1053
1054
1055

    int const usePcieIndexing = getenv("USE_PCIE_INDEX") ? atoi(getenv("USE_PCIE_INDEX")) : 0;
    if (!usePcieIndexing)
    {
1056
      // For HIP-based indexing no remappingGpu is necessary
Gilbert Lee's avatar
Gilbert Lee committed
1057
      for (int i = 0; i < numGpuDevices; ++i)
1058
        remappingGpu[i] = i;
Gilbert Lee's avatar
Gilbert Lee committed
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    }
    else
    {
      // Collect PCIe address for each GPU
      std::vector<std::pair<std::string, int>> mapping;
      char pciBusId[20];
      for (int i = 0; i < numGpuDevices; ++i)
      {
        HIP_CALL(hipDeviceGetPCIBusId(pciBusId, 20, i));
        mapping.push_back(std::make_pair(pciBusId, i));
      }
      // Sort GPUs by PCIe address then use that as mapping
      std::sort(mapping.begin(), mapping.end());
      for (int i = 0; i < numGpuDevices; ++i)
1073
        remappingGpu[i] = mapping[i].second;
Gilbert Lee's avatar
Gilbert Lee committed
1074
1075
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1076
  return isCpuType ? remappingCpu[origIdx] : remappingGpu[origIdx];
Gilbert Lee's avatar
Gilbert Lee committed
1077
1078
1079
1080
}

void DisplayTopology(bool const outputToCsv)
{
1081

1082
  int numCpuDevices = numa_num_configured_nodes();
Gilbert Lee's avatar
Gilbert Lee committed
1083
1084
1085
1086
1087
  int numGpuDevices;
  HIP_CALL(hipGetDeviceCount(&numGpuDevices));

  if (outputToCsv)
  {
1088
    printf("NumCpus,%d\n", numCpuDevices);
Gilbert Lee's avatar
Gilbert Lee committed
1089
    printf("NumGpus,%d\n", numGpuDevices);
1090
1091
1092
  }
  else
  {
1093
1094
    printf("\nDetected topology: %d configured CPU NUMA node(s) [%d total]   %d GPU device(s)\n",
           numa_num_configured_nodes(), numa_max_node() + 1, numGpuDevices);
1095
1096
1097
1098
1099
1100
1101
1102
  }

  // Print out detected CPU topology
  if (outputToCsv)
  {
    printf("NUMA");
    for (int j = 0; j < numCpuDevices; j++)
      printf(",NUMA%02d", j);
1103
    printf(",# CPUs,ClosestGPUs,ActualNode\n");
1104
1105
1106
  }
  else
  {
1107
    printf("            |");
1108
    for (int j = 0; j < numCpuDevices; j++)
1109
1110
1111
1112
      printf("NUMA %02d|", j);
    printf(" #Cpus | Closest GPU(s)\n");

    printf("------------+");
1113
    for (int j = 0; j <= numCpuDevices; j++)
1114
1115
      printf("-------+");
    printf("---------------\n");
1116
1117
1118
1119
  }

  for (int i = 0; i < numCpuDevices; i++)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1120
    int nodeI = RemappedIndex(i, true);
1121
    printf("NUMA %02d (%02d)%s", i, nodeI, outputToCsv ? "," : "|");
1122
1123
    for (int j = 0; j < numCpuDevices; j++)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1124
      int nodeJ = RemappedIndex(j, true);
1125
      int numaDist = numa_distance(nodeI, nodeJ);
1126
      if (outputToCsv)
gilbertlee-amd's avatar
gilbertlee-amd committed
1127
        printf("%d,", numaDist);
1128
      else
1129
        printf(" %5d |", numaDist);
1130
1131
1132
1133
    }

    int numCpus = 0;
    for (int j = 0; j < numa_num_configured_cpus(); j++)
1134
      if (numa_node_of_cpu(j) == nodeI) numCpus++;
1135
1136
1137
    if (outputToCsv)
      printf("%d,", numCpus);
    else
1138
      printf(" %5d | ", numCpus);
1139

1140
#if !defined(__NVCC__)
1141
1142
1143
    bool isFirst = true;
    for (int j = 0; j < numGpuDevices; j++)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1144
      if (GetClosestNumaNode(RemappedIndex(j, false)) == i)
1145
1146
      {
        if (isFirst) isFirst = false;
gilbertlee-amd's avatar
gilbertlee-amd committed
1147
1148
        else printf(",");
        printf("%d", j);
1149
1150
      }
    }
1151
#endif
1152
1153
1154
1155
    printf("\n");
  }
  printf("\n");

1156
#if defined(__NVCC__)
1157
1158
1159
1160
1161
1162
1163
1164

  for (int i = 0; i < numGpuDevices; i++)
  {
    hipDeviceProp_t prop;
    HIP_CALL(hipGetDeviceProperties(&prop, i));
    printf(" GPU %02d | %s\n", i, prop.name);
  }

1165
1166
  // No further topology detection done for NVIDIA platforms
  return;
1167
1168
1169
1170
#else
    // Figure out DMA engines per GPU
  std::vector<std::set<int>> dmaEngineIdsPerDevice(numGpuDevices);
  {
1171
1172
    std::vector<hsa_agent_t> gpuAgentList;
    std::vector<hsa_agent_t> allAgentList;
1173
1174
    hsa_amd_pointer_info_t info;
    info.size = sizeof(info);
1175

1176
1177
1178
    for (int deviceId = 0; deviceId < numGpuDevices; deviceId++)
    {
      HIP_CALL(hipSetDevice(deviceId));
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
      int32_t* tempGpuBuffer;
      HIP_CALL(hipMalloc((void**)&tempGpuBuffer, 1024));
      HSA_CHECK(hsa_amd_pointer_info(tempGpuBuffer, &info, NULL, NULL, NULL));
      gpuAgentList.push_back(info.agentOwner);
      allAgentList.push_back(info.agentOwner);
      HIP_CALL(hipFree(tempGpuBuffer));
    }
    for (int deviceId = 0; deviceId < numCpuDevices; deviceId++)
    {
      int32_t* tempCpuBuffer;
      AllocateMemory(MEM_CPU, deviceId, 1024, (void**)&tempCpuBuffer);
      HSA_CHECK(hsa_amd_pointer_info(tempCpuBuffer, &info, NULL, NULL, NULL));
      allAgentList.push_back(info.agentOwner);
      DeallocateMemory(MEM_CPU, tempCpuBuffer, 1024);
1193
1194
1195
1196
1197
    }

    for (int srcDevice = 0; srcDevice < numGpuDevices; srcDevice++)
    {
      dmaEngineIdsPerDevice[srcDevice].clear();
1198
      for (int dstDevice = 0; dstDevice < allAgentList.size(); dstDevice++)
1199
1200
1201
      {
        if (srcDevice == dstDevice) continue;
        uint32_t engineIdMask = 0;
1202
1203
        if (hsa_amd_memory_copy_engine_status(allAgentList[dstDevice],
                                              gpuAgentList[srcDevice],
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
                                              &engineIdMask) != HSA_STATUS_SUCCESS)
          continue;
        for (int engineId = 0; engineId < 32; engineId++)
        {
          if (engineIdMask & (1U << engineId))
            dmaEngineIdsPerDevice[srcDevice].insert(engineId);
        }
      }
    }
  }
1214

1215
1216
1217
  // Print out detected GPU topology
  if (outputToCsv)
  {
Gilbert Lee's avatar
Gilbert Lee committed
1218
1219
1220
    printf("GPU");
    for (int j = 0; j < numGpuDevices; j++)
      printf(",GPU %02d", j);
1221
    printf(",PCIe Bus ID,ClosestNUMA,DMA engines\n");
Gilbert Lee's avatar
Gilbert Lee committed
1222
1223
1224
  }
  else
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
    printf("        |");
    for (int j = 0; j < numGpuDevices; j++)
    {
      hipDeviceProp_t prop;
      HIP_CALL(hipGetDeviceProperties(&prop, j));
      std::string fullName = prop.gcnArchName;
      std::string archName = fullName.substr(0, fullName.find(':'));
      printf(" %6s |", archName.c_str());
    }
    printf("\n");
Gilbert Lee's avatar
Gilbert Lee committed
1235
1236
1237
    printf("        |");
    for (int j = 0; j < numGpuDevices; j++)
      printf(" GPU %02d |", j);
1238
    printf(" PCIe Bus ID  | #CUs | Closest NUMA | DMA engines\n");
Gilbert Lee's avatar
Gilbert Lee committed
1239
1240
    for (int j = 0; j <= numGpuDevices; j++)
      printf("--------+");
1241
    printf("--------------+------+-------------+------------\n");
Gilbert Lee's avatar
Gilbert Lee committed
1242
1243
1244
1245
1246
  }

  char pciBusId[20];
  for (int i = 0; i < numGpuDevices; i++)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1247
    int const deviceIdx = RemappedIndex(i, false);
Gilbert Lee's avatar
Gilbert Lee committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    printf("%sGPU %02d%s", outputToCsv ? "" : " ", i, outputToCsv ? "," : " |");
    for (int j = 0; j < numGpuDevices; j++)
    {
      if (i == j)
      {
        if (outputToCsv)
          printf("-,");
        else
          printf("    -   |");
      }
      else
      {
        uint32_t linkType, hopCount;
gilbertlee-amd's avatar
gilbertlee-amd committed
1261
1262
        HIP_CALL(hipExtGetLinkTypeAndHopCount(deviceIdx,
                                              RemappedIndex(j, false),
Gilbert Lee's avatar
Gilbert Lee committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
                                              &linkType, &hopCount));
        printf("%s%s-%d%s",
               outputToCsv ? "" : " ",
               linkType == HSA_AMD_LINK_INFO_TYPE_HYPERTRANSPORT ? "  HT" :
               linkType == HSA_AMD_LINK_INFO_TYPE_QPI            ? " QPI" :
               linkType == HSA_AMD_LINK_INFO_TYPE_PCIE           ? "PCIE" :
               linkType == HSA_AMD_LINK_INFO_TYPE_INFINBAND      ? "INFB" :
               linkType == HSA_AMD_LINK_INFO_TYPE_XGMI           ? "XGMI" : "????",
               hopCount, outputToCsv ? "," : " |");
      }
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1274
1275
1276
1277
1278
    HIP_CALL(hipDeviceGetPCIBusId(pciBusId, 20, deviceIdx));

    int numDeviceCUs = 0;
    HIP_CALL(hipDeviceGetAttribute(&numDeviceCUs, hipDeviceAttributeMultiprocessorCount, deviceIdx));

Gilbert Lee's avatar
Gilbert Lee committed
1279
    if (outputToCsv)
1280
      printf("%s,%d,%d,", pciBusId, numDeviceCUs, GetClosestNumaNode(deviceIdx));
Gilbert Lee's avatar
Gilbert Lee committed
1281
    else
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    {
      printf(" %11s | %4d | %-12d |", pciBusId, numDeviceCUs, GetClosestNumaNode(deviceIdx));

      bool isFirst = true;
      for (auto x : dmaEngineIdsPerDevice[deviceIdx])
      {
        if (isFirst) isFirst = false; else printf(",");
        printf("%d", x);
      }
      printf("\n");
    }
Gilbert Lee's avatar
Gilbert Lee committed
1293
  }
1294
#endif
Gilbert Lee's avatar
Gilbert Lee committed
1295
1296
}

1297
void ParseMemType(EnvVars const& ev, std::string const& token,
gilbertlee-amd's avatar
gilbertlee-amd committed
1298
                  std::vector<MemType>& memTypes, std::vector<int>& memIndices)
Gilbert Lee's avatar
Gilbert Lee committed
1299
1300
{
  char typeChar;
gilbertlee-amd's avatar
gilbertlee-amd committed
1301
1302
  int offset = 0, devIndex, inc;
  bool found = false;
Gilbert Lee's avatar
Gilbert Lee committed
1303

gilbertlee-amd's avatar
gilbertlee-amd committed
1304
1305
1306
  memTypes.clear();
  memIndices.clear();
  while (sscanf(token.c_str() + offset, " %c %d%n", &typeChar, &devIndex, &inc) == 2)
Gilbert Lee's avatar
Gilbert Lee committed
1307
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1308
1309
1310
    offset += inc;
    MemType memType = CharToMemType(typeChar);

1311
    if (IsCpuType(memType) && (devIndex < 0 || devIndex >= ev.numCpuDevices))
Gilbert Lee's avatar
Gilbert Lee committed
1312
    {
1313
      printf("[ERROR] CPU index must be between 0 and %d (instead of %d)\n", ev.numCpuDevices-1, devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1314
1315
      exit(1);
    }
1316
    if (IsGpuType(memType) && (devIndex < 0 || devIndex >= ev.numGpuDevices))
Gilbert Lee's avatar
Gilbert Lee committed
1317
    {
1318
      printf("[ERROR] GPU index must be between 0 and %d (instead of %d)\n", ev.numGpuDevices-1, devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1319
1320
      exit(1);
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336

    found = true;
    if (memType != MEM_NULL)
    {
      memTypes.push_back(memType);
      memIndices.push_back(devIndex);
    }
  }
  if (!found)
  {
    printf("[ERROR] Unable to parse memory type token %s.  Expected one of %s followed by an index\n",
           token.c_str(), MemTypeStr);
    exit(1);
  }
}

1337
1338
void ParseExeType(EnvVars const& ev, std::string const& token,
                  ExeType &exeType, int& exeIndex, int& exeSubIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
1339
1340
{
  char typeChar;
1341
1342
1343
  exeSubIndex = -1;
  int numTokensParsed = sscanf(token.c_str(), " %c%d.%d", &typeChar, &exeIndex, &exeSubIndex);
  if (numTokensParsed < 2)
gilbertlee-amd's avatar
gilbertlee-amd committed
1344
1345
1346
1347
1348
1349
1350
  {
    printf("[ERROR] Unable to parse valid executor token (%s).  Exepected one of %s followed by an index\n",
           token.c_str(), ExeTypeStr);
    exit(1);
  }
  exeType = CharToExeType(typeChar);

1351
  if (IsCpuType(exeType) && (exeIndex < 0 || exeIndex >= ev.numCpuDevices))
gilbertlee-amd's avatar
gilbertlee-amd committed
1352
  {
1353
    printf("[ERROR] CPU index must be between 0 and %d (instead of %d)\n", ev.numCpuDevices-1, exeIndex);
gilbertlee-amd's avatar
gilbertlee-amd committed
1354
1355
    exit(1);
  }
1356
  if (IsGpuType(exeType) && (exeIndex < 0 || exeIndex >= ev.numGpuDevices))
gilbertlee-amd's avatar
gilbertlee-amd committed
1357
  {
1358
    printf("[ERROR] GPU index must be between 0 and %d (instead of %d)\n", ev.numGpuDevices-1, exeIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1359
1360
    exit(1);
  }
1361
1362
1363
1364
1365
1366
1367
1368
1369
  if (exeType == EXE_GPU_GFX && exeSubIndex != -1)
  {
    int const idx = RemappedIndex(exeIndex, false);
    if (ev.xccIdsPerDevice[idx].count(exeSubIndex) == 0)
    {
      printf("[ERROR] GPU %d does not have subIndex %d\n", exeIndex, exeSubIndex);
      exit(1);
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
1370
1371
}

Gilbert Lee's avatar
Gilbert Lee committed
1372
// Helper function to parse a list of Transfer definitions
1373
void ParseTransfers(EnvVars const& ev, char* line, std::vector<Transfer>& transfers)
Gilbert Lee's avatar
Gilbert Lee committed
1374
1375
1376
1377
1378
{
  // Replace any round brackets or '->' with spaces,
  for (int i = 1; line[i]; i++)
    if (line[i] == '(' || line[i] == ')' || line[i] == '-' || line[i] == '>' ) line[i] = ' ';

Gilbert Lee's avatar
Gilbert Lee committed
1379
  transfers.clear();
Gilbert Lee's avatar
Gilbert Lee committed
1380

Gilbert Lee's avatar
Gilbert Lee committed
1381
  int numTransfers = 0;
Gilbert Lee's avatar
Gilbert Lee committed
1382
  std::istringstream iss(line);
Gilbert Lee's avatar
Gilbert Lee committed
1383
  iss >> numTransfers;
Gilbert Lee's avatar
Gilbert Lee committed
1384
1385
1386
1387
1388
  if (iss.fail()) return;

  std::string exeMem;
  std::string srcMem;
  std::string dstMem;
Gilbert Lee's avatar
Gilbert Lee committed
1389

gilbertlee-amd's avatar
gilbertlee-amd committed
1390
  // If numTransfers < 0, read 5-tuple (srcMem, exeMem, dstMem, #CUs, #Bytes)
Gilbert Lee's avatar
Gilbert Lee committed
1391
  // otherwise read triples (srcMem, exeMem, dstMem)
gilbertlee-amd's avatar
gilbertlee-amd committed
1392
  bool const advancedMode = (numTransfers < 0);
Gilbert Lee's avatar
Gilbert Lee committed
1393
1394
  numTransfers = abs(numTransfers);

gilbertlee-amd's avatar
gilbertlee-amd committed
1395
  int numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
1396
  if (!advancedMode)
Gilbert Lee's avatar
Gilbert Lee committed
1397
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1398
1399
    iss >> numSubExecs;
    if (numSubExecs <= 0 || iss.fail())
Gilbert Lee's avatar
Gilbert Lee committed
1400
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1401
      printf("Parsing error: Number of blocks to use (%d) must be greater than 0\n", numSubExecs);
Gilbert Lee's avatar
Gilbert Lee committed
1402
1403
1404
1405
      exit(1);
    }
  }

gilbertlee-amd's avatar
gilbertlee-amd committed
1406
  size_t numBytes = 0;
Gilbert Lee's avatar
Gilbert Lee committed
1407
1408
1409
  for (int i = 0; i < numTransfers; i++)
  {
    Transfer transfer;
gilbertlee-amd's avatar
gilbertlee-amd committed
1410
    transfer.numBytes = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
1411
    transfer.numBytesActual = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
1412
    if (!advancedMode)
Gilbert Lee's avatar
Gilbert Lee committed
1413
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
      iss >> srcMem >> exeMem >> dstMem;
      if (iss.fail())
      {
        printf("Parsing error: Unable to read valid Transfer %d (SRC EXE DST) triplet\n", i+1);
        exit(1);
      }
    }
    else
    {
      std::string numBytesToken;
gilbertlee-amd's avatar
gilbertlee-amd committed
1424
      iss >> srcMem >> exeMem >> dstMem >> numSubExecs >> numBytesToken;
gilbertlee-amd's avatar
gilbertlee-amd committed
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
      if (iss.fail())
      {
        printf("Parsing error: Unable to read valid Transfer %d (SRC EXE DST #CU #Bytes) tuple\n", i+1);
        exit(1);
      }
      if (sscanf(numBytesToken.c_str(), "%lu", &numBytes) != 1)
      {
        printf("Parsing error: '%s' is not a valid expression of numBytes for Transfer %d\n", numBytesToken.c_str(), i+1);
        exit(1);
      }
      char units = numBytesToken.back();
gilbertlee-amd's avatar
gilbertlee-amd committed
1436
      switch (toupper(units))
gilbertlee-amd's avatar
gilbertlee-amd committed
1437
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1438
1439
1440
      case 'K': numBytes *= 1024; break;
      case 'M': numBytes *= 1024*1024; break;
      case 'G': numBytes *= 1024*1024*1024; break;
gilbertlee-amd's avatar
gilbertlee-amd committed
1441
      }
Gilbert Lee's avatar
Gilbert Lee committed
1442
    }
Gilbert Lee's avatar
Gilbert Lee committed
1443

1444
1445
1446
    ParseMemType(ev, srcMem, transfer.srcType, transfer.srcIndex);
    ParseMemType(ev, dstMem, transfer.dstType, transfer.dstIndex);
    ParseExeType(ev, exeMem, transfer.exeType, transfer.exeIndex, transfer.exeSubIndex);
gilbertlee-amd's avatar
gilbertlee-amd committed
1447
1448
1449
1450
1451
1452
1453
1454
1455

    transfer.numSrcs = (int)transfer.srcType.size();
    transfer.numDsts = (int)transfer.dstType.size();
    if (transfer.numSrcs == 0 && transfer.numDsts == 0)
    {
      printf("[ERROR] Transfer must have at least one src or dst\n");
      exit(1);
    }

1456
    if (transfer.exeType == EXE_GPU_DMA && (transfer.numSrcs != 1 || transfer.numDsts != 1))
gilbertlee-amd's avatar
gilbertlee-amd committed
1457
    {
1458
      printf("[ERROR] GPU DMA executor can only be used for single source + single dst copies\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
1459
1460
1461
1462
      exit(1);
    }

    transfer.numSubExecs = numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
1463
    transfer.numBytes = numBytes;
Gilbert Lee's avatar
Gilbert Lee committed
1464
    transfers.push_back(transfer);
Gilbert Lee's avatar
Gilbert Lee committed
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
  }
}

void EnablePeerAccess(int const deviceId, int const peerDeviceId)
{
  int canAccess;
  HIP_CALL(hipDeviceCanAccessPeer(&canAccess, deviceId, peerDeviceId));
  if (!canAccess)
  {
    printf("[ERROR] Unable to enable peer access from GPU devices %d to %d\n", peerDeviceId, deviceId);
    exit(1);
  }
  HIP_CALL(hipSetDevice(deviceId));
Gilbert Lee's avatar
Gilbert Lee committed
1478
1479
1480
1481
1482
1483
1484
  hipError_t error = hipDeviceEnablePeerAccess(peerDeviceId, 0);
  if (error != hipSuccess && error != hipErrorPeerAccessAlreadyEnabled)
  {
    printf("[ERROR] Unable to enable peer to peer access from %d to %d (%s)\n",
           deviceId, peerDeviceId, hipGetErrorString(error));
    exit(1);
  }
Gilbert Lee's avatar
Gilbert Lee committed
1485
1486
1487
1488
1489
1490
1491
1492
1493
}

void AllocateMemory(MemType memType, int devIndex, size_t numBytes, void** memPtr)
{
  if (numBytes == 0)
  {
    printf("[ERROR] Unable to allocate 0 bytes\n");
    exit(1);
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1494
  *memPtr = nullptr;
gilbertlee-amd's avatar
gilbertlee-amd committed
1495
  if (IsCpuType(memType))
Gilbert Lee's avatar
Gilbert Lee committed
1496
1497
  {
    // Set numa policy prior to call to hipHostMalloc
1498
    numa_set_preferred(devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1499
1500
1501
1502

    // Allocate host-pinned memory (should respect NUMA mem policy)
    if (memType == MEM_CPU_FINE)
    {
1503
1504
1505
1506
#if defined (__NVCC__)
      printf("[ERROR] Fine-grained CPU memory not supported on NVIDIA platform\n");
      exit(1);
#else
Gilbert Lee's avatar
Gilbert Lee committed
1507
      HIP_CALL(hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser));
1508
#endif
Gilbert Lee's avatar
Gilbert Lee committed
1509
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1510
    else if (memType == MEM_CPU)
Gilbert Lee's avatar
Gilbert Lee committed
1511
    {
1512
1513
1514
#if defined (__NVCC__)
      if (hipHostMalloc((void **)memPtr, numBytes, 0) != hipSuccess)
#else
1515
      if (hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser | hipHostMallocNonCoherent) != hipSuccess)
1516
#endif
1517
1518
1519
1520
      {
        printf("[ERROR] Unable to allocate non-coherent host memory on NUMA node %d\n", devIndex);
        exit(1);
      }
Gilbert Lee's avatar
Gilbert Lee committed
1521
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1522
1523
1524
1525
    else if (memType == MEM_CPU_UNPINNED)
    {
      *memPtr = numa_alloc_onnode(numBytes, devIndex);
    }
Gilbert Lee's avatar
Gilbert Lee committed
1526
1527

    // Check that the allocated pages are actually on the correct NUMA node
gilbertlee-amd's avatar
gilbertlee-amd committed
1528
    memset(*memPtr, 0, numBytes);
1529

gilbertlee-amd's avatar
gilbertlee-amd committed
1530
    CheckPages((char*)*memPtr, numBytes, devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1531
1532

    // Reset to default numa mem policy
1533
    numa_set_preferred(-1);
Gilbert Lee's avatar
Gilbert Lee committed
1534
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1535
  else if (IsGpuType(memType))
Gilbert Lee's avatar
Gilbert Lee committed
1536
  {
1537
1538
1539
1540
1541
1542
1543
1544
    if (memType == MEM_GPU)
    {
      // Allocate GPU memory on appropriate device
      HIP_CALL(hipSetDevice(devIndex));
      HIP_CALL(hipMalloc((void**)memPtr, numBytes));
    }
    else if (memType == MEM_GPU_FINE)
    {
1545
#if defined (__NVCC__)
1546
1547
      printf("[ERROR] Fine-grained GPU memory not supported on NVIDIA platform\n");
      exit(1);
1548
#else
1549
      HIP_CALL(hipSetDevice(devIndex));
1550
      int flag = hipDeviceMallocUncached;
gilbertlee-amd's avatar
gilbertlee-amd committed
1551
      HIP_CALL(hipExtMallocWithFlags((void**)memPtr, numBytes, flag));
1552
#endif
1553
    }
1554
1555
1556
1557
1558
    else if (memType == MEM_MANAGED)
    {
      HIP_CALL(hipSetDevice(devIndex));
      HIP_CALL(hipMallocManaged((void**)memPtr, numBytes));
    }
1559
    HIP_CALL(hipMemset(*memPtr, 0, numBytes));
gilbertlee-amd's avatar
gilbertlee-amd committed
1560
    HIP_CALL(hipDeviceSynchronize());
Gilbert Lee's avatar
Gilbert Lee committed
1561
1562
1563
1564
1565
1566
1567
1568
  }
  else
  {
    printf("[ERROR] Unsupported memory type %d\n", memType);
    exit(1);
  }
}

gilbertlee-amd's avatar
gilbertlee-amd committed
1569
void DeallocateMemory(MemType memType, void* memPtr, size_t const bytes)
Gilbert Lee's avatar
Gilbert Lee committed
1570
1571
1572
{
  if (memType == MEM_CPU || memType == MEM_CPU_FINE)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1573
1574
1575
1576
1577
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null CPU pointer for %lu bytes.  Skipping hipHostFree\n", bytes);
      return;
    }
Gilbert Lee's avatar
Gilbert Lee committed
1578
1579
    HIP_CALL(hipHostFree(memPtr));
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1580
1581
  else if (memType == MEM_CPU_UNPINNED)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1582
1583
1584
1585
1586
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null unpinned CPU pointer for %lu bytes.  Skipping numa_free\n", bytes);
      return;
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1587
1588
    numa_free(memPtr, bytes);
  }
Gilbert Lee's avatar
Gilbert Lee committed
1589
1590
  else if (memType == MEM_GPU || memType == MEM_GPU_FINE)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1591
1592
1593
1594
1595
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null GPU pointer for %lu bytes. Skipping hipFree\n", bytes);
      return;
    }
Gilbert Lee's avatar
Gilbert Lee committed
1596
1597
    HIP_CALL(hipFree(memPtr));
  }
1598
1599
1600
1601
1602
1603
1604
1605
1606
  else if (memType == MEM_MANAGED)
  {
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null managed pointer for %lu bytes. Skipping hipMFree\n", bytes);
      return;
    }
    HIP_CALL(hipFree(memPtr));
  }
Gilbert Lee's avatar
Gilbert Lee committed
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
}

void CheckPages(char* array, size_t numBytes, int targetId)
{
  unsigned long const pageSize = getpagesize();
  unsigned long const numPages = (numBytes + pageSize - 1) / pageSize;

  std::vector<void *> pages(numPages);
  std::vector<int> status(numPages);

  pages[0] = array;
  for (int i = 1; i < numPages; i++)
  {
    pages[i] = (char*)pages[i-1] + pageSize;
  }

  long const retCode = move_pages(0, numPages, pages.data(), NULL, status.data(), 0);
  if (retCode)
  {
    printf("[ERROR] Unable to collect page info\n");
    exit(1);
  }

  size_t mistakeCount = 0;
  for (int i = 0; i < numPages; i++)
  {
    if (status[i] < 0)
    {
      printf("[ERROR] Unexpected page status %d for page %d\n", status[i], i);
      exit(1);
    }
    if (status[i] != targetId) mistakeCount++;
  }
  if (mistakeCount > 0)
  {
    printf("[ERROR] %lu out of %lu pages for memory allocation were not on NUMA node %d\n", mistakeCount, numPages, targetId);
    exit(1);
  }
}

1647
1648
uint32_t GetId(uint32_t hwId)
{
1649
1650
1651
#if defined(__NVCC_)
  return hwId;
#else
1652
  // Based on instinct-mi200-cdna2-instruction-set-architecture.pdf
1653
1654
1655
  int const shId = (hwId >> 12) &  1;
  int const cuId = (hwId >>  8) & 15;
  int const seId = (hwId >> 13) &  3;
1656
  return (shId << 5) + (cuId << 2) + seId;
1657
#endif
1658
1659
}

1660
void RunTransfer(EnvVars const& ev, int const iteration,
Gilbert Lee's avatar
Gilbert Lee committed
1661
                 ExecutorInfo& exeInfo, int const transferIdx)
Gilbert Lee's avatar
Gilbert Lee committed
1662
{
gilbertlee-amd's avatar
gilbertlee-amd committed
1663
  Transfer* transfer = exeInfo.transfers[transferIdx];
Gilbert Lee's avatar
Gilbert Lee committed
1664

gilbertlee-amd's avatar
gilbertlee-amd committed
1665
  if (transfer->exeType == EXE_GPU_GFX)
Gilbert Lee's avatar
Gilbert Lee committed
1666
1667
  {
    // Switch to executing GPU
gilbertlee-amd's avatar
gilbertlee-amd committed
1668
    int const exeIndex = RemappedIndex(transfer->exeIndex, false);
Gilbert Lee's avatar
Gilbert Lee committed
1669
1670
    HIP_CALL(hipSetDevice(exeIndex));

Gilbert Lee's avatar
Gilbert Lee committed
1671
1672
1673
    hipStream_t& stream     = exeInfo.streams[transferIdx];
    hipEvent_t&  startEvent = exeInfo.startEvents[transferIdx];
    hipEvent_t&  stopEvent  = exeInfo.stopEvents[transferIdx];
Gilbert Lee's avatar
Gilbert Lee committed
1674

gilbertlee-amd's avatar
gilbertlee-amd committed
1675
1676
1677
1678
    // Figure out how many threadblocks to use.
    // In single stream mode, all the threadblocks for this GPU are launched
    // Otherwise, just launch the threadblocks associated with this single Transfer
    int const numBlocksToRun = ev.useSingleStream ? exeInfo.totalSubExecs : transfer->numSubExecs;
1679
    int const numXCCs = (ev.useXccFilter ? ev.xccIdsPerDevice[exeIndex].size() : 1);
1680
1681
    dim3 const gridSize(numXCCs, numBlocksToRun, 1);
    dim3 const blockSize(ev.gfxBlockSize, 1, 1);
1682

1683
1684
#if defined(__NVCC__)
    HIP_CALL(hipEventRecord(startEvent, stream));
1685
1686
    GpuKernelTable[ev.gfxBlockSize/64 - 1][ev.gfxUnroll - 1]
      <<<gridSize, blockSize, ev.sharedMemBytes, stream>>>(transfer->subExecParamGpuPtr, ev.gfxWaveOrder);
1687
1688
    HIP_CALL(hipEventRecord(stopEvent, stream));
#else
1689
1690
    hipExtLaunchKernelGGL(GpuKernelTable[ev.gfxBlockSize/64 - 1][ev.gfxUnroll - 1],
                          gridSize, blockSize,
gilbertlee-amd's avatar
gilbertlee-amd committed
1691
1692
                          ev.sharedMemBytes, stream,
                          startEvent, stopEvent,
gilbertlee-amd's avatar
gilbertlee-amd committed
1693
                          0, transfer->subExecParamGpuPtr, ev.gfxWaveOrder);
1694
#endif
Gilbert Lee's avatar
Gilbert Lee committed
1695
1696
    // Synchronize per iteration, unless in single sync mode, in which case
    // synchronize during last warmup / last actual iteration
Gilbert Lee's avatar
Gilbert Lee committed
1697
    HIP_CALL(hipStreamSynchronize(stream));
Gilbert Lee's avatar
Gilbert Lee committed
1698
1699
1700
1701

    if (iteration >= 0)
    {
      // Record GPU timing
Gilbert Lee's avatar
Gilbert Lee committed
1702
1703
      float gpuDeltaMsec;
      HIP_CALL(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
Gilbert Lee's avatar
Gilbert Lee committed
1704

Gilbert Lee's avatar
Gilbert Lee committed
1705
1706
      if (ev.useSingleStream)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1707
        // Figure out individual timings for Transfers that were all launched together
gilbertlee-amd's avatar
gilbertlee-amd committed
1708
        for (Transfer* currTransfer : exeInfo.transfers)
Gilbert Lee's avatar
Gilbert Lee committed
1709
        {
1710
1711
1712
          long long minStartCycle = std::numeric_limits<long long>::max();
          long long maxStopCycle  = std::numeric_limits<long long>::min();

gilbertlee-amd's avatar
gilbertlee-amd committed
1713
          std::set<std::pair<int,int>> CUs;
1714
          for (auto subExecIdx : currTransfer->subExecIdx)
Gilbert Lee's avatar
Gilbert Lee committed
1715
          {
1716
1717
1718
            minStartCycle = std::min(minStartCycle, exeInfo.subExecParamGpu[subExecIdx].startCycle);
            maxStopCycle  = std::max(maxStopCycle,  exeInfo.subExecParamGpu[subExecIdx].stopCycle);
            if (ev.showIterations)
gilbertlee-amd's avatar
gilbertlee-amd committed
1719
1720
              CUs.insert(std::make_pair(exeInfo.subExecParamGpu[subExecIdx].xccId,
                                        GetId(exeInfo.subExecParamGpu[subExecIdx].hwId)));
Gilbert Lee's avatar
Gilbert Lee committed
1721
          }
1722
          int const wallClockRate = ev.wallClockPerDeviceMhz[exeIndex];
Gilbert Lee's avatar
Gilbert Lee committed
1723
          double iterationTimeMs = (maxStopCycle - minStartCycle) / (double)(wallClockRate);
gilbertlee-amd's avatar
gilbertlee-amd committed
1724
          currTransfer->transferTime += iterationTimeMs;
1725
          if (ev.showIterations)
1726
          {
1727
            currTransfer->perIterationTime.push_back(iterationTimeMs);
1728
1729
            currTransfer->perIterationCUs.push_back(CUs);
          }
Gilbert Lee's avatar
Gilbert Lee committed
1730
        }
Gilbert Lee's avatar
Gilbert Lee committed
1731
1732
1733
1734
        exeInfo.totalTime += gpuDeltaMsec;
      }
      else
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1735
        transfer->transferTime += gpuDeltaMsec;
1736
        if (ev.showIterations)
1737
        {
1738
          transfer->perIterationTime.push_back(gpuDeltaMsec);
gilbertlee-amd's avatar
gilbertlee-amd committed
1739
          std::set<std::pair<int,int>> CUs;
1740
          for (int i = 0; i < transfer->numSubExecs; i++)
gilbertlee-amd's avatar
gilbertlee-amd committed
1741
1742
            CUs.insert(std::make_pair(transfer->subExecParamGpuPtr[i].xccId,
                                      GetId(transfer->subExecParamGpuPtr[i].hwId)));
1743
1744
          transfer->perIterationCUs.push_back(CUs);
        }
Gilbert Lee's avatar
Gilbert Lee committed
1745
1746
1747
      }
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1748
1749
1750
1751
  else if (transfer->exeType == EXE_GPU_DMA)
  {
    int const exeIndex = RemappedIndex(transfer->exeIndex, false);

1752
    if (transfer->exeSubIndex == -1)
gilbertlee-amd's avatar
gilbertlee-amd committed
1753
    {
1754
1755
1756
1757
1758
      // Switch to executing GPU
      HIP_CALL(hipSetDevice(exeIndex));
      hipStream_t& stream     = exeInfo.streams[transferIdx];
      hipEvent_t&  startEvent = exeInfo.startEvents[transferIdx];
      hipEvent_t&  stopEvent  = exeInfo.stopEvents[transferIdx];
gilbertlee-amd's avatar
gilbertlee-amd committed
1759

1760
      HIP_CALL(hipEventRecord(startEvent, stream));
1761
      if (transfer->numSrcs == 1 && transfer->numDsts == 1)
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
      {
        HIP_CALL(hipMemcpyAsync(transfer->dstMem[0], transfer->srcMem[0],
                                transfer->numBytesActual, hipMemcpyDefault,
                                stream));
      }
      HIP_CALL(hipEventRecord(stopEvent, stream));
      HIP_CALL(hipStreamSynchronize(stream));

      if (iteration >= 0)
      {
        // Record GPU timing
        float gpuDeltaMsec;
        HIP_CALL(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
        transfer->transferTime += gpuDeltaMsec;
        if (ev.showIterations)
          transfer->perIterationTime.push_back(gpuDeltaMsec);
      }
    }
    else
gilbertlee-amd's avatar
gilbertlee-amd committed
1781
    {
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
#if defined(__NVCC__)
      printf("[ERROR] CUDA does not support targeting specific DMA engines\n");
      exit(1);
#else
      // Target specific DMA engine

      // Atomically set signal to 1
      HSA_CALL(hsa_signal_store_screlease(transfer->signal, 1));

      auto cpuStart = std::chrono::high_resolution_clock::now();
      HSA_CALL(hsa_amd_memory_async_copy_on_engine(transfer->dstMem[0], transfer->dstAgent,
                                                   transfer->srcMem[0], transfer->srcAgent,
                                                   transfer->numBytesActual, 0, NULL,
                                                   transfer->signal,
                                                   transfer->sdmaEngineId, true));
      // Wait for SDMA transfer to complete
      // NOTE: "A wait operation can spuriously resume at any time sooner than the timeout
      //        (for example, due to system or other external factors) even when the
      //         condition has not been met.)
      while(hsa_signal_wait_scacquire(transfer->signal,
                                      HSA_SIGNAL_CONDITION_LT, 1, UINT64_MAX,
                                      HSA_WAIT_STATE_ACTIVE) >= 1);
      if (iteration >= 0)
      {
        // Record GPU timing
        auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
        double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
        transfer->transferTime += deltaMsec;
        if (ev.showIterations)
          transfer->perIterationTime.push_back(deltaMsec);
      }
#endif
gilbertlee-amd's avatar
gilbertlee-amd committed
1814
1815
1816
    }
  }
  else if (transfer->exeType == EXE_CPU) // CPU execution agent
Gilbert Lee's avatar
Gilbert Lee committed
1817
1818
  {
    // Force this thread and all child threads onto correct NUMA node
gilbertlee-amd's avatar
gilbertlee-amd committed
1819
    int const exeIndex = RemappedIndex(transfer->exeIndex, true);
1820
    if (numa_run_on_node(exeIndex))
Gilbert Lee's avatar
Gilbert Lee committed
1821
    {
1822
      printf("[ERROR] Unable to set CPU to NUMA node %d\n", exeIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1823
1824
1825
1826
1827
1828
1829
      exit(1);
    }

    std::vector<std::thread> childThreads;

    auto cpuStart = std::chrono::high_resolution_clock::now();

gilbertlee-amd's avatar
gilbertlee-amd committed
1830
1831
1832
    // Launch each subExecutor in child-threads to perform memcopies
    for (int i = 0; i < transfer->numSubExecs; ++i)
      childThreads.push_back(std::thread(CpuReduceKernel, std::ref(transfer->subExecParam[i])));
Gilbert Lee's avatar
Gilbert Lee committed
1833
1834

    // Wait for child-threads to finish
gilbertlee-amd's avatar
gilbertlee-amd committed
1835
    for (int i = 0; i < transfer->numSubExecs; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
1836
1837
1838
1839
1840
1841
      childThreads[i].join();

    auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;

    // Record time if not a warmup iteration
    if (iteration >= 0)
1842
1843
1844
1845
1846
1847
    {
      double const delta = (std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0);
      transfer->transferTime += delta;
      if (ev.showIterations)
        transfer->perIterationTime.push_back(delta);
    }
Gilbert Lee's avatar
Gilbert Lee committed
1848
1849
1850
  }
}

gilbertlee-amd's avatar
gilbertlee-amd committed
1851
void RunPeerToPeerBenchmarks(EnvVars const& ev, size_t N)
Gilbert Lee's avatar
Gilbert Lee committed
1852
{
gilbertlee-amd's avatar
gilbertlee-amd committed
1853
1854
  ev.DisplayP2PBenchmarkEnvVars();

1855
1856
1857
  char const separator = ev.outputToCsv ? ',' : ' ';
  printf("Bytes Per Direction%c%lu\n", separator, N * sizeof(float));

Gilbert Lee's avatar
Gilbert Lee committed
1858
  // Collect the number of available CPUs/GPUs on this machine
gilbertlee-amd's avatar
gilbertlee-amd committed
1859
1860
  int const numCpus    = ev.numCpuDevices;
  int const numGpus    = ev.numGpuDevices;
Gilbert Lee's avatar
Gilbert Lee committed
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
  int const numDevices = numCpus + numGpus;

  // Enable peer to peer for each GPU
  for (int i = 0; i < numGpus; i++)
    for (int j = 0; j < numGpus; j++)
      if (i != j) EnablePeerAccess(i, j);

  // Perform unidirectional / bidirectional
  for (int isBidirectional = 0; isBidirectional <= 1; isBidirectional++)
  {
1871
1872
1873
    if (ev.p2pMode == 1 && isBidirectional == 1 ||
        ev.p2pMode == 2 && isBidirectional == 0) continue;

1874
1875
1876
1877
1878
    printf("%sdirectional copy peak bandwidth GB/s [%s read / %s write] (GPU-Executor: %s)\n", isBidirectional ? "Bi" : "Uni",
           ev.useRemoteRead ? "Remote" : "Local",
           ev.useRemoteRead ? "Local" : "Remote",
           ev.useDmaCopy    ? "DMA"   : "GFX");

Gilbert Lee's avatar
Gilbert Lee committed
1879
    // Print header
1880
    if (isBidirectional)
Gilbert Lee's avatar
Gilbert Lee committed
1881
    {
1882
1883
1884
1885
1886
1887
      printf("%12s", "SRC\\DST");
    }
    else
    {
      if (ev.useRemoteRead)
        printf("%12s", "SRC\\EXE+DST");
1888
      else
1889
1890
1891
1892
1893
1894
1895
1896
        printf("%12s", "SRC+EXE\\DST");
    }
    if (ev.outputToCsv) printf(",");
    for (int i = 0; i < numCpus; i++)
    {
      printf("%7s %02d", "CPU", i);
      if (ev.outputToCsv) printf(",");
    }
1897
    if (numCpus > 0) printf("   ");
1898
1899
1900
1901
    for (int i = 0; i < numGpus; i++)
    {
      printf("%7s %02d", "GPU", i);
      if (ev.outputToCsv) printf(",");
Gilbert Lee's avatar
Gilbert Lee committed
1902
    }
1903
1904
    printf("\n");

1905
1906
1907
    double avgBwSum[2][2] = {};
    int    avgCount[2][2] = {};

1908
    ExeType const gpuExeType = ev.useDmaCopy ? EXE_GPU_DMA : EXE_GPU_GFX;
Gilbert Lee's avatar
Gilbert Lee committed
1909
1910
1911
    // Loop over all possible src/dst pairs
    for (int src = 0; src < numDevices; src++)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1912
1913
      MemType const srcType  = (src < numCpus ? MEM_CPU : MEM_GPU);
      int     const srcIndex = (srcType == MEM_CPU ? src : src - numCpus);
1914
1915
1916
      MemType const srcTypeActual = ((ev.useFineGrain && srcType == MEM_CPU) ? MEM_CPU_FINE :
                                     (ev.useFineGrain && srcType == MEM_GPU) ? MEM_GPU_FINE :
                                                                               srcType);
1917
1918
1919
1920
      std::vector<std::vector<double>> avgBandwidth(isBidirectional + 1);
      std::vector<std::vector<double>> minBandwidth(isBidirectional + 1);
      std::vector<std::vector<double>> maxBandwidth(isBidirectional + 1);
      std::vector<std::vector<double>> stdDev(isBidirectional + 1);
gilbertlee-amd's avatar
gilbertlee-amd committed
1921

1922
      if (src == numCpus && src != 0) printf("\n");
Gilbert Lee's avatar
Gilbert Lee committed
1923
1924
      for (int dst = 0; dst < numDevices; dst++)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1925
1926
        MemType const dstType  = (dst < numCpus ? MEM_CPU : MEM_GPU);
        int     const dstIndex = (dstType == MEM_CPU ? dst : dst - numCpus);
1927
1928
1929
        MemType const dstTypeActual = ((ev.useFineGrain && dstType == MEM_CPU) ? MEM_CPU_FINE :
                                       (ev.useFineGrain && dstType == MEM_GPU) ? MEM_GPU_FINE :
                                                                                 dstType);
1930
1931
1932
1933
1934
        // Prepare Transfers
        std::vector<Transfer> transfers(isBidirectional + 1);

        // SRC -> DST
        transfers[0].numBytes = N * sizeof(float);
1935
1936
        transfers[0].srcType.push_back(srcTypeActual);
        transfers[0].dstType.push_back(dstTypeActual);
1937
1938
1939
1940
1941
        transfers[0].srcIndex.push_back(srcIndex);
        transfers[0].dstIndex.push_back(dstIndex);
        transfers[0].numSrcs = transfers[0].numDsts = 1;
        transfers[0].exeType = IsGpuType(ev.useRemoteRead ? dstType : srcType) ? gpuExeType : EXE_CPU;
        transfers[0].exeIndex = (ev.useRemoteRead ? dstIndex : srcIndex);
1942
        transfers[0].exeSubIndex = -1;
1943
1944
1945
1946
1947
1948
1949
        transfers[0].numSubExecs = IsGpuType(transfers[0].exeType) ? ev.numGpuSubExecs : ev.numCpuSubExecs;

        // DST -> SRC
        if (isBidirectional)
        {
          transfers[1].numBytes = N * sizeof(float);
          transfers[1].numSrcs = transfers[1].numDsts = 1;
1950
1951
          transfers[1].srcType.push_back(dstTypeActual);
          transfers[1].dstType.push_back(srcTypeActual);
1952
1953
1954
1955
          transfers[1].srcIndex.push_back(dstIndex);
          transfers[1].dstIndex.push_back(srcIndex);
          transfers[1].exeType = IsGpuType(ev.useRemoteRead ? srcType : dstType) ? gpuExeType : EXE_CPU;
          transfers[1].exeIndex = (ev.useRemoteRead ? srcIndex : dstIndex);
1956
          transfers[1].exeSubIndex = -1;
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
          transfers[1].numSubExecs = IsGpuType(transfers[1].exeType) ? ev.numGpuSubExecs : ev.numCpuSubExecs;
        }

        bool skipTest = false;

        // Abort if executing on NUMA node with no CPUs
        for (int i = 0; i <= isBidirectional; i++)
        {
          if (transfers[i].exeType == EXE_CPU && ev.numCpusPerNuma[transfers[i].exeIndex] == 0)
          {
            skipTest = true;
            break;
          }

#if defined(__NVCC__)
          // NVIDIA platform cannot access GPU memory directly from CPU executors
          if (transfers[i].exeType == EXE_CPU && (IsGpuType(srcType) || IsGpuType(dstType)))
          {
            skipTest = true;
            break;
          }
#endif
        }

        if (isBidirectional && srcType == dstType && srcIndex == dstIndex) skipTest = true;

        if (!skipTest)
        {
          ExecuteTransfers(ev, 0, N, transfers, false);

          for (int dir = 0; dir <= isBidirectional; dir++)
          {
1989
            double const avgTime = transfers[dir].transferTime;
1990
1991
1992
            double const avgBw   = (transfers[dir].numBytesActual / 1.0E9) / avgTime * 1000.0f;
            avgBandwidth[dir].push_back(avgBw);

1993
1994
1995
1996
1997
1998
            if (!(srcType == dstType && srcIndex == dstIndex))
            {
              avgBwSum[srcType][dstType] += avgBw;
              avgCount[srcType][dstType]++;
            }

1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
            if (ev.showIterations)
            {
              double minTime = transfers[dir].perIterationTime[0];
              double maxTime = transfers[dir].perIterationTime[0];
              double varSum  = 0;
              for (int i = 0; i < transfers[dir].perIterationTime.size(); i++)
              {
                minTime = std::min(minTime, transfers[dir].perIterationTime[i]);
                maxTime = std::max(maxTime, transfers[dir].perIterationTime[i]);
                double const bw  = (transfers[dir].numBytesActual / 1.0E9) / transfers[dir].perIterationTime[i] * 1000.0f;
                double const delta = (avgBw - bw);
                varSum += delta * delta;
              }
              double const minBw = (transfers[dir].numBytesActual / 1.0E9) / maxTime * 1000.0f;
              double const maxBw = (transfers[dir].numBytesActual / 1.0E9) / minTime * 1000.0f;
              double const stdev = sqrt(varSum / transfers[dir].perIterationTime.size());
              minBandwidth[dir].push_back(minBw);
              maxBandwidth[dir].push_back(maxBw);
              stdDev[dir].push_back(stdev);
            }
          }
        }
        else
Gilbert Lee's avatar
Gilbert Lee committed
2022
        {
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
          for (int dir = 0; dir <= isBidirectional; dir++)
          {
            avgBandwidth[dir].push_back(0);
            minBandwidth[dir].push_back(0);
            maxBandwidth[dir].push_back(0);
            stdDev[dir].push_back(-1.0);
          }
        }
      }

      for (int dir = 0; dir <= isBidirectional; dir++)
      {
        printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, dir ? "<- " : " ->");
        if (ev.outputToCsv) printf(",");

        for (int dst = 0; dst < numDevices; dst++)
        {
2040
          if (dst == numCpus && dst != 0) printf("   ");
2041
2042
2043
          double const avgBw = avgBandwidth[dir][dst];

          if (avgBw == 0.0)
Gilbert Lee's avatar
Gilbert Lee committed
2044
2045
            printf("%10s", "N/A");
          else
2046
2047
            printf("%10.2f", avgBw);
          if (ev.outputToCsv) printf(",");
Gilbert Lee's avatar
Gilbert Lee committed
2048
        }
2049
2050
2051
        printf("\n");

        if (ev.showIterations)
Gilbert Lee's avatar
Gilbert Lee committed
2052
        {
2053
2054
2055
2056
2057
2058
          // minBw
          printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "min");
          if (ev.outputToCsv) printf(",");
          for (int i = 0; i < numDevices; i++)
          {
            double const minBw = minBandwidth[dir][i];
2059
            if (i == numCpus && i != 0) printf("   ");
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
            if (minBw == 0.0)
              printf("%10s", "N/A");
            else
              printf("%10.2f", minBw);
            if (ev.outputToCsv) printf(",");
          }
          printf("\n");

          // maxBw
          printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "max");
          if (ev.outputToCsv) printf(",");
          for (int i = 0; i < numDevices; i++)
          {
            double const maxBw = maxBandwidth[dir][i];
2074
            if (i == numCpus && i != 0) printf("   ");
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
            if (maxBw == 0.0)
              printf("%10s", "N/A");
            else
              printf("%10.2f", maxBw);
            if (ev.outputToCsv) printf(",");
          }
          printf("\n");

          // stddev
          printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, " sd");
          if (ev.outputToCsv) printf(",");
          for (int i = 0; i < numDevices; i++)
          {
            double const sd = stdDev[dir][i];
2089
            if (i == numCpus && i != 0) printf("   ");
2090
2091
2092
2093
2094
2095
2096
            if (sd == -1.0)
              printf("%10s", "N/A");
            else
              printf("%10.2f", sd);
            if (ev.outputToCsv) printf(",");
          }
          printf("\n");
Gilbert Lee's avatar
Gilbert Lee committed
2097
2098
2099
        }
        fflush(stdout);
      }
2100
2101
2102
2103
2104
2105
2106
2107

      if (isBidirectional)
      {
        printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "<->");
        if (ev.outputToCsv) printf(",");
        for (int dst = 0; dst < numDevices; dst++)
        {
          double const sumBw = avgBandwidth[0][dst] + avgBandwidth[1][dst];
2108
          if (dst == numCpus && dst != 0) printf("   ");
2109
2110
2111
2112
2113
2114
          if (sumBw == 0.0)
            printf("%10s", "N/A");
          else
            printf("%10.2f", sumBw);
          if (ev.outputToCsv) printf(",");
        }
2115
2116
        printf("\n");
        if (src < numDevices - 1) printf("\n");
2117
      }
Gilbert Lee's avatar
Gilbert Lee committed
2118
    }
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138

    if (!ev.outputToCsv)
    {
      printf("                         ");
      for (int srcType : {MEM_CPU, MEM_GPU})
        for (int dstType : {MEM_CPU, MEM_GPU})
          printf("  %cPU->%cPU", srcType == MEM_CPU ? 'C' : 'G', dstType == MEM_CPU ? 'C' : 'G');
      printf("\n");

      printf("Averages (During %s):",  isBidirectional ? " BiDir" : "UniDir");
      for (int srcType : {MEM_CPU, MEM_GPU})
        for (int dstType : {MEM_CPU, MEM_GPU})
        {
          if (avgCount[srcType][dstType])
            printf("%10.2f", avgBwSum[srcType][dstType] / avgCount[srcType][dstType]);
          else
            printf("%10s", "N/A");
        }
      printf("\n\n");
    }
Gilbert Lee's avatar
Gilbert Lee committed
2139
2140
2141
  }
}

2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
void RunScalingBenchmark(EnvVars const& ev, size_t N, int const exeIndex, int const maxSubExecs)
{
  ev.DisplayEnvVars();

  // Collect the number of available CPUs/GPUs on this machine
  int const numCpus    = ev.numCpuDevices;
  int const numGpus    = ev.numGpuDevices;
  int const numDevices = numCpus + numGpus;

  // Enable peer to peer for each GPU
  for (int i = 0; i < numGpus; i++)
    for (int j = 0; j < numGpus; j++)
      if (i != j) EnablePeerAccess(i, j);

  char separator = (ev.outputToCsv ? ',' : ' ');

  std::vector<Transfer> transfers(1);
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
  Transfer& t = transfers[0];
  t.numBytes = N * sizeof(float);
  t.numSrcs  = 1;
  t.numDsts  = 1;
  t.exeType  = EXE_GPU_GFX;
  t.exeIndex = exeIndex;
  t.exeSubIndex = -1;
  t.srcType.resize(1, MEM_GPU);
  t.dstType.resize(1, MEM_GPU);
  t.srcIndex.resize(1);
  t.dstIndex.resize(1);
2170
2171
2172

  printf("GPU-GFX Scaling benchmark:\n");
  printf("==========================\n");
2173
  printf("- Copying %lu bytes from GPU %d to other devices\n", t.numBytes, exeIndex);
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
  printf("- All numbers reported as GB/sec\n\n");

  printf("NumCUs");
  for (int i = 0; i < numDevices; i++)
    printf("%c  %s%02d     ", separator, i < numCpus ? "CPU" : "GPU", i < numCpus ? i : i - numCpus);
  printf("\n");

  std::vector<std::pair<double, int>> bestResult(numDevices);
  for (int numSubExec = 1; numSubExec <= maxSubExecs; numSubExec++)
  {
2184
    t.numSubExecs = numSubExec;
2185
2186
2187
2188
    printf("%4d  ", numSubExec);

    for (int i = 0; i < numDevices; i++)
    {
2189
2190
      t.dstType[0]  = i < numCpus ? MEM_CPU : MEM_GPU;
      t.dstIndex[0] = i < numCpus ? i : i - numCpus;
2191
2192

      ExecuteTransfers(ev, 0, N, transfers, false);
2193
      printf("%c%7.2f     ", separator, t.transferBandwidth);
2194

2195
      if (t.transferBandwidth > bestResult[i].first)
2196
      {
2197
        bestResult[i].first  = t.transferBandwidth;
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
        bestResult[i].second = numSubExec;
      }
    }
    printf("\n");
  }

  printf(" Best ");
  for (int i = 0; i < numDevices; i++)
  {
    printf("%c%7.2f(%3d)", separator, bestResult[i].first, bestResult[i].second);
  }
  printf("\n");
}

gilbertlee-amd's avatar
gilbertlee-amd committed
2212
2213
void RunAllToAllBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int const numSubExecs)
{
2214
  ev.DisplayA2AEnvVars();
gilbertlee-amd's avatar
gilbertlee-amd committed
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228

  // Collect the number of GPU devices to use
  int const numGpus = ev.numGpuDevices;

  // Enable peer to peer for each GPU
  for (int i = 0; i < numGpus; i++)
    for (int j = 0; j < numGpus; j++)
      if (i != j) EnablePeerAccess(i, j);

  char separator = (ev.outputToCsv ? ',' : ' ');

  Transfer transfer;
  transfer.numBytes    = numBytesPerTransfer;
  transfer.numSubExecs = numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
2229
2230
  transfer.numSrcs     = ev.a2aMode == 2 ? 0 : 1;
  transfer.numDsts     = ev.a2aMode == 1 ? 0 : 1;
gilbertlee-amd's avatar
gilbertlee-amd committed
2231
  transfer.exeType     = EXE_GPU_GFX;
2232
  transfer.exeSubIndex = -1;
2233
2234
  transfer.srcType.resize(1, ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
  transfer.dstType.resize(1, ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
gilbertlee-amd's avatar
gilbertlee-amd committed
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
  transfer.srcIndex.resize(1);
  transfer.dstIndex.resize(1);

  std::vector<Transfer> transfers;
  for (int i = 0; i < numGpus; i++)
  {
    transfer.srcIndex[0] = i;
    for (int j = 0; j < numGpus; j++)
    {
      transfer.dstIndex[0] = j;
2245
2246
      transfer.exeIndex    = (ev.useRemoteRead ? j : i);

2247
2248
2249
2250
      if (ev.a2aDirect)
      {
        if (i == j) continue;

2251
#if !defined(__NVCC__)
2252
2253
2254
2255
2256
2257
2258
        uint32_t linkType, hopCount;
        HIP_CALL(hipExtGetLinkTypeAndHopCount(RemappedIndex(i, false),
                                              RemappedIndex(j, false),
                                              &linkType, &hopCount));
        if (hopCount != 1) continue;
#endif
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
2259
2260
2261
2262
2263
2264
      transfers.push_back(transfer);
    }
  }

  printf("GPU-GFX All-To-All benchmark:\n");
  printf("==========================\n");
2265
2266
2267
  printf("- Copying %lu bytes between %s pairs of GPUs using %d CUs (%lu Transfers)\n",
         numBytesPerTransfer, ev.a2aDirect ? "directly connected" : "all", numSubExecs, transfers.size());
  if (transfers.size() == 0) return;
gilbertlee-amd's avatar
gilbertlee-amd committed
2268
2269

  double totalBandwidthCpu = 0;
2270
  ExecuteTransfers(ev, 0, numBytesPerTransfer / sizeof(float), transfers, !ev.hideEnv, &totalBandwidthCpu);
gilbertlee-amd's avatar
gilbertlee-amd committed
2271
2272
2273

  printf("\nSummary:\n");
  printf("==========================================================\n");
2274
  printf("SRC\\DST ");
gilbertlee-amd's avatar
gilbertlee-amd committed
2275
  for (int dst = 0; dst < numGpus; dst++)
2276
2277
    printf("%cGPU %02d    ", separator, dst);
  printf("   %cSTotal     %cActual\n", separator, separator);
2278
2279
2280
2281
2282
2283
2284

  std::map<std::pair<int, int>, int> reIndex;
  for (int i = 0; i < transfers.size(); i++)
  {
    Transfer const& t = transfers[i];
    reIndex[std::make_pair(t.srcIndex[0], t.dstIndex[0])] = i;
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
2285

2286
  double totalBandwidthGpu = 0.0;
2287
2288
  double minExecutorBandwidth = std::numeric_limits<double>::max();
  double maxExecutorBandwidth = 0.0;
2289
  std::vector<double> colTotalBandwidth(numGpus+1, 0.0);
gilbertlee-amd's avatar
gilbertlee-amd committed
2290
2291
  for (int src = 0; src < numGpus; src++)
  {
2292
    double rowTotalBandwidth = 0;
2293
    double executorBandwidth = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
2294
2295
2296
    printf("GPU %02d", src);
    for (int dst = 0; dst < numGpus; dst++)
    {
2297
2298
2299
      if (reIndex.count(std::make_pair(src, dst)))
      {
        Transfer const& transfer = transfers[reIndex[std::make_pair(src,dst)]];
2300
2301
2302
2303
2304
        colTotalBandwidth[dst]  += transfer.transferBandwidth;
        rowTotalBandwidth       += transfer.transferBandwidth;
        totalBandwidthGpu       += transfer.transferBandwidth;
        executorBandwidth        = std::max(executorBandwidth, transfer.executorBandwidth);
        printf("%c%8.3f  ", separator, transfer.transferBandwidth);
2305
2306
2307
      }
      else
      {
2308
        printf("%c%8s  ", separator, "N/A");
2309
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
2310
    }
2311
2312
2313
    printf("   %c%8.3f   %c%8.3f\n", separator, rowTotalBandwidth, separator, executorBandwidth);
    minExecutorBandwidth = std::min(minExecutorBandwidth, executorBandwidth);
    maxExecutorBandwidth = std::max(maxExecutorBandwidth, executorBandwidth);
2314
    colTotalBandwidth[numGpus] += rowTotalBandwidth;
gilbertlee-amd's avatar
gilbertlee-amd committed
2315
  }
2316
2317
2318
  printf("\nRTotal");
  for (int dst = 0; dst < numGpus; dst++)
  {
2319
    printf("%c%8.3f  ", separator, colTotalBandwidth[dst]);
2320
  }
2321
2322
  printf("   %c%8.3f   %c%8.3f   %c%8.3f\n", separator, colTotalBandwidth[numGpus],
         separator, minExecutorBandwidth, separator, maxExecutorBandwidth);
2323
2324
  printf("\n");

2325
2326
2327
  printf("Average   bandwidth (GPU Timed): %8.3f GB/s\n", totalBandwidthGpu / transfers.size());
  printf("Aggregate bandwidth (GPU Timed): %8.3f GB/s\n", totalBandwidthGpu);
  printf("Aggregate bandwidth (CPU Timed): %8.3f GB/s\n", totalBandwidthCpu);
gilbertlee-amd's avatar
gilbertlee-amd committed
2328
2329
}

gilbertlee-amd's avatar
gilbertlee-amd committed
2330
void Transfer::PrepareSubExecParams(EnvVars const& ev)
Gilbert Lee's avatar
Gilbert Lee committed
2331
{
gilbertlee-amd's avatar
gilbertlee-amd committed
2332
2333
2334
2335
2336
2337
2338
  // Each subExecutor needs to know src/dst pointers and how many elements to transfer
  // Figure out the sub-array each subExecutor works on for this Transfer
  // - Partition N as evenly as possible, but try to keep subarray sizes as multiples of BLOCK_BYTES bytes,
  //   except the very last one, for alignment reasons
  size_t const N              = this->numBytesActual / sizeof(float);
  int    const initOffset     = ev.byteOffset / sizeof(float);
  int    const targetMultiple = ev.blockBytes / sizeof(float);
Gilbert Lee's avatar
Gilbert Lee committed
2339

gilbertlee-amd's avatar
gilbertlee-amd committed
2340
  // In some cases, there may not be enough data for all subExectors
2341
  int const maxSubExecToUse = std::min((size_t)(N + targetMultiple - 1) / targetMultiple, (size_t)this->numSubExecs);
gilbertlee-amd's avatar
gilbertlee-amd committed
2342
2343
  this->subExecParam.clear();
  this->subExecParam.resize(this->numSubExecs);
Gilbert Lee's avatar
Gilbert Lee committed
2344
2345

  size_t assigned = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
2346
2347
  for (int i = 0; i < this->numSubExecs; ++i)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2348
2349
2350
    SubExecParam& p  = this->subExecParam[i];
    p.numSrcs        = this->numSrcs;
    p.numDsts        = this->numDsts;
gilbertlee-amd's avatar
gilbertlee-amd committed
2351

gilbertlee-amd's avatar
gilbertlee-amd committed
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
    if (ev.gfxSingleTeam && this->exeType == EXE_GPU_GFX)
    {
      p.N           = N;
      p.teamSize    = this->numSubExecs;
      p.teamIdx     = i;
      for (int iSrc = 0; iSrc < this->numSrcs; ++iSrc) p.src[iSrc] = this->srcMem[iSrc] + initOffset;
      for (int iDst = 0; iDst < this->numDsts; ++iDst) p.dst[iDst] = this->dstMem[iDst] + initOffset;
    }
    else
    {
      int    const subExecLeft = std::max(0, maxSubExecToUse - i);
      size_t const leftover    = N - assigned;
      size_t const roundedN    = (leftover + targetMultiple - 1) / targetMultiple;
gilbertlee-amd's avatar
gilbertlee-amd committed
2365

gilbertlee-amd's avatar
gilbertlee-amd committed
2366
2367
2368
2369
2370
2371
2372
2373
      p.N           = subExecLeft ? std::min(leftover, ((roundedN / subExecLeft) * targetMultiple)) : 0;
      p.teamSize    = 1;
      p.teamIdx     = 0;
      for (int iSrc = 0; iSrc < this->numSrcs; ++iSrc) p.src[iSrc] = this->srcMem[iSrc] + initOffset + assigned;
      for (int iDst = 0; iDst < this->numDsts; ++iDst) p.dst[iDst] = this->dstMem[iDst] + initOffset + assigned;

      assigned += p.N;
    }
2374

gilbertlee-amd's avatar
gilbertlee-amd committed
2375
    p.preferredXccId = -1;
2376
    if (ev.useXccFilter && this->exeType == EXE_GPU_GFX)
2377
    {
2378
2379
2380
2381
2382
2383
2384
2385
      std::uniform_int_distribution<int> distribution(0, ev.xccIdsPerDevice[this->exeIndex].size() - 1);

      // Use this tranfer's executor subIndex if set
      if (this->exeSubIndex != -1)
      {
        p.preferredXccId = this->exeSubIndex;
      }
      else if (this->numDsts >= 1 && IsGpuType(this->dstType[0]))
2386
2387
2388
      {
        p.preferredXccId = ev.prefXccTable[this->exeIndex][this->dstIndex[0]];
      }
2389
2390
2391
2392
2393

      if (p.preferredXccId == -1)
      {
        p.preferredXccId = distribution(*ev.generator);
      }
2394
2395
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
2396
2397
2398
2399
2400
    if (ev.enableDebug)
    {
      printf("Transfer %02d SE:%02d: %10lu floats: %10lu to %10lu\n",
             this->transferIndex, i, p.N, assigned, assigned + p.N);
    }
Gilbert Lee's avatar
Gilbert Lee committed
2401

gilbertlee-amd's avatar
gilbertlee-amd committed
2402
2403
    p.startCycle = 0;
    p.stopCycle  = 0;
Gilbert Lee's avatar
Gilbert Lee committed
2404
2405
  }

Gilbert Lee's avatar
Gilbert Lee committed
2406
  this->transferTime = 0.0;
2407
  this->perIterationTime.clear();
Gilbert Lee's avatar
Gilbert Lee committed
2408
2409
}

gilbertlee-amd's avatar
gilbertlee-amd committed
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
void Transfer::PrepareReference(EnvVars const& ev, std::vector<float>& buffer, int bufferIdx)
{
  size_t N = buffer.size();
  if (bufferIdx >= 0)
  {
    size_t patternLen = ev.fillPattern.size();
    if (patternLen > 0)
    {
      for (size_t i = 0; i < N; ++i)
        buffer[i] = ev.fillPattern[i % patternLen];
    }
    else
    {
      for (size_t i = 0; i < N; ++i)
2424
        buffer[i] = PrepSrcValue(bufferIdx, i);
gilbertlee-amd's avatar
gilbertlee-amd committed
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
    }
  }
  else // Destination buffer
  {
    if (this->numSrcs == 0)
    {
      // Note: 0x75757575 = 13323083.0
      memset(buffer.data(), MEMSET_CHAR, N * sizeof(float));
    }
    else
    {
      PrepareReference(ev, buffer, 0);

      if (this->numSrcs > 1)
      {
        std::vector<float> temp(N);
        for (int srcIdx = 1; srcIdx < this->numSrcs; ++srcIdx)
        {
          PrepareReference(ev, temp, srcIdx);
          for (int i = 0; i < N; ++i)
          {
            buffer[i] += temp[i];
          }
        }
      }
    }
  }
}

2454
bool Transfer::PrepareSrc(EnvVars const& ev)
gilbertlee-amd's avatar
gilbertlee-amd committed
2455
{
2456
  if (this->numSrcs == 0) return true;
gilbertlee-amd's avatar
gilbertlee-amd committed
2457
2458
2459
2460
2461
2462
  size_t const N = this->numBytesActual / sizeof(float);
  int const initOffset = ev.byteOffset / sizeof(float);

  std::vector<float> reference(N);
  for (int srcIdx = 0; srcIdx < this->numSrcs; ++srcIdx)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2463
    float* srcPtr = this->srcMem[srcIdx] + initOffset;
2464
    PrepareReference(ev, reference, srcIdx);
gilbertlee-amd's avatar
gilbertlee-amd committed
2465
2466
2467

    // Initialize source memory array with reference pattern
    if (IsGpuType(this->srcType[srcIdx]))
2468
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2469
2470
2471
      int const deviceIdx = RemappedIndex(this->srcIndex[srcIdx], false);
      HIP_CALL(hipSetDevice(deviceIdx));
      if (ev.usePrepSrcKernel)
gilbertlee-amd's avatar
gilbertlee-amd committed
2472
        PrepSrcDataKernel<<<32, ev.gfxBlockSize>>>(srcPtr, N, srcIdx);
gilbertlee-amd's avatar
gilbertlee-amd committed
2473
2474
      else
        HIP_CALL(hipMemcpy(srcPtr, reference.data(), this->numBytesActual, hipMemcpyDefault));
2475
2476
      HIP_CALL(hipDeviceSynchronize());
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
2477
    else if (IsCpuType(this->srcType[srcIdx]))
2478
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2479
      memcpy(srcPtr, reference.data(), this->numBytesActual);
2480
    }
2481
2482

    // Perform check just to make sure that data has been copied properly
gilbertlee-amd's avatar
gilbertlee-amd committed
2483
    float* srcCheckPtr = srcPtr;
2484
    std::vector<float> srcCopy(N);
gilbertlee-amd's avatar
gilbertlee-amd committed
2485
2486
2487
2488
2489
2490
2491
2492
2493
    if (IsGpuType(this->srcType[srcIdx]))
    {
      if (!ev.validateDirect)
      {
        HIP_CALL(hipMemcpy(srcCopy.data(), srcPtr, this->numBytesActual, hipMemcpyDefault));
        HIP_CALL(hipDeviceSynchronize());
        srcCheckPtr = srcCopy.data();
      }
    }
2494
2495
2496

    for (size_t i = 0; i < N; ++i)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2497
      if (reference[i] != srcCheckPtr[i])
2498
2499
      {
        printf("\n[ERROR] Unexpected mismatch at index %lu of source array %d:\n", i, srcIdx);
2500
2501
2502
#if !defined(__NVCC__)
        float const val = this->srcMem[srcIdx][initOffset + i];
        printf("[ERROR] SRC %02d   value: %10.5f [%08X] Direct: %10.5f [%08X]\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
2503
               srcIdx, srcCheckPtr[i], *(unsigned int*)&srcCheckPtr[i], val, *(unsigned int*)&val);
2504
#else
gilbertlee-amd's avatar
gilbertlee-amd committed
2505
        printf("[ERROR] SRC %02d   value: %10.5f [%08X]\n", srcIdx, srcCheckPtr[i], *(unsigned int*)&srcCheckPtr[i]);
2506
#endif
2507
2508
2509
2510
2511
2512
2513
        printf("[ERROR] EXPECTED value: %10.5f [%08X]\n", reference[i], *(unsigned int*)&reference[i]);
        printf("[ERROR] Failed Transfer details: #%d: %s -> [%c%d:%d] -> %s\n",
               this->transferIndex,
               this->SrcToStr().c_str(),
               ExeTypeStr[this->exeType], this->exeIndex,
               this->numSubExecs,
               this->DstToStr().c_str());
2514
2515
        printf("[ERROR] Possible cause is misconfigured IOMMU (AMD Instinct cards require amd_iommu=on and iommu=pt)\n");
        printf("[ERROR] Please see https://community.amd.com/t5/knowledge-base/iommu-advisory-for-amd-instinct/ta-p/484601 for more details\n");
2516
2517
        if (!ev.continueOnError)
          exit(1);
2518
        return false;
2519
2520
      }
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
2521
  }
2522
  return true;
gilbertlee-amd's avatar
gilbertlee-amd committed
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
}

void Transfer::ValidateDst(EnvVars const& ev)
{
  if (this->numDsts == 0) return;
  size_t const N = this->numBytesActual / sizeof(float);
  int const initOffset = ev.byteOffset / sizeof(float);

  std::vector<float> reference(N);
  PrepareReference(ev, reference, -1);

  std::vector<float> hostBuffer(N);
  for (int dstIdx = 0; dstIdx < this->numDsts; ++dstIdx)
  {
    float* output;
2538
    if (IsCpuType(this->dstType[dstIdx]) || ev.validateDirect)
gilbertlee-amd's avatar
gilbertlee-amd committed
2539
2540
2541
2542
2543
    {
      output = this->dstMem[dstIdx] + initOffset;
    }
    else
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2544
2545
      int const deviceIdx = RemappedIndex(this->dstIndex[dstIdx], false);
      HIP_CALL(hipSetDevice(deviceIdx));
gilbertlee-amd's avatar
gilbertlee-amd committed
2546
      HIP_CALL(hipMemcpy(hostBuffer.data(), this->dstMem[dstIdx] + initOffset, this->numBytesActual, hipMemcpyDefault));
gilbertlee-amd's avatar
gilbertlee-amd committed
2547
      HIP_CALL(hipDeviceSynchronize());
gilbertlee-amd's avatar
gilbertlee-amd committed
2548
2549
2550
2551
2552
2553
2554
      output = hostBuffer.data();
    }

    for (size_t i = 0; i < N; ++i)
    {
      if (reference[i] != output[i])
      {
2555
2556
2557
2558
2559
        printf("\n[ERROR] Unexpected mismatch at index %lu of destination array %d:\n", i, dstIdx);
        for (int srcIdx = 0; srcIdx < this->numSrcs; ++srcIdx)
        {
          float srcVal;
          HIP_CALL(hipMemcpy(&srcVal, this->srcMem[srcIdx] + initOffset + i, sizeof(float), hipMemcpyDefault));
2560
2561
2562
2563
2564
#if !defined(__NVCC__)
          float val = this->srcMem[srcIdx][initOffset + i];
          printf("[ERROR] SRC %02dD  value: %10.5f [%08X] Direct: %10.5f [%08X]\n",
                 srcIdx, srcVal, *(unsigned int*)&srcVal, val, *(unsigned int*)&val);
#else
2565
          printf("[ERROR] SRC %02d   value: %10.5f [%08X]\n", srcIdx, srcVal, *(unsigned int*)&srcVal);
2566
#endif
2567
        }
2568
        printf("[ERROR] EXPECTED value: %10.5f [%08X]\n", reference[i], *(unsigned int*)&reference[i]);
2569
2570
2571
2572
2573
#if !defined(__NVCC__)
        float dstVal = this->dstMem[dstIdx][initOffset + i];
        printf("[ERROR] DST %02d   value: %10.5f [%08X] Direct: %10.5f [%08X]\n",
               dstIdx, output[i], *(unsigned int*)&output[i], dstVal, *(unsigned int*)&dstVal);
#else
2574
        printf("[ERROR] DST %02d   value: %10.5f [%08X]\n", dstIdx, output[i], *(unsigned int*)&output[i]);
2575
#endif
gilbertlee-amd's avatar
gilbertlee-amd committed
2576
2577
2578
2579
2580
2581
        printf("[ERROR] Failed Transfer details: #%d: %s -> [%c%d:%d] -> %s\n",
               this->transferIndex,
               this->SrcToStr().c_str(),
               ExeTypeStr[this->exeType], this->exeIndex,
               this->numSubExecs,
               this->DstToStr().c_str());
2582
2583
        if (!ev.continueOnError)
          exit(1);
2584
2585
        else
          break;
gilbertlee-amd's avatar
gilbertlee-amd committed
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
      }
    }
  }
}

std::string Transfer::SrcToStr() const
{
  if (numSrcs == 0) return "N";
  std::stringstream ss;
  for (int i = 0; i < numSrcs; ++i)
    ss << MemTypeStr[srcType[i]] << srcIndex[i];
  return ss.str();
}

std::string Transfer::DstToStr() const
{
  if (numDsts == 0) return "N";
  std::stringstream ss;
  for (int i = 0; i < numDsts; ++i)
    ss << MemTypeStr[dstType[i]] << dstIndex[i];
  return ss.str();
}

2609
2610
void RunSchmooBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int const localIdx, int const remoteIdx, int const maxSubExecs)
{
2611
  char memType = ev.useFineGrain ? 'F' : 'G';
2612
  printf("Bytes to transfer: %lu Local GPU: %d Remote GPU: %d\n", numBytesPerTransfer, localIdx, remoteIdx);
2613
2614
  printf("       | Local Read  | Local Write | Local Copy  | Remote Read | Remote Write| Remote Copy |\n");
  printf("  #CUs |%c%02d->G%02d->N00|N00->G%02d->%c%02d|%c%02d->G%02d->%c%02d|%c%02d->G%02d->N00|N00->G%02d->%c%02d|%c%02d->G%02d->%c%02d|\n",
2615
2616
2617
2618
2619
2620
         memType, localIdx, localIdx,
         localIdx, memType, localIdx,
         memType, localIdx, localIdx, memType, localIdx,
         memType, remoteIdx, localIdx,
         localIdx, memType, remoteIdx,
         memType, localIdx, localIdx, memType, remoteIdx);
2621
  printf("|------|-------------|-------------|-------------|-------------|-------------|-------------|\n");
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709

  std::vector<Transfer> transfers(1);
  Transfer& t   = transfers[0];
  t.exeType     = EXE_GPU_GFX;
  t.exeIndex    = localIdx;
  t.exeSubIndex = -1;
  t.numBytes    = numBytesPerTransfer;

  for (int numCUs = 1; numCUs <= maxSubExecs; numCUs++)
  {
    t.numSubExecs = numCUs;

    // Local Read
    t.numSrcs = 1;
    t.numDsts = 0;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = localIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const localRead = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Local Write
    t.numSrcs = 0;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = localIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const localWrite = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Local Copy
    t.numSrcs = 1;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = localIdx;
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = localIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const localCopy = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Remote Read
    t.numSrcs = 1;
    t.numDsts = 0;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = remoteIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const remoteRead = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Remote Write
    t.numSrcs = 0;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = remoteIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const remoteWrite = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Remote Copy
    t.numSrcs = 1;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = localIdx;
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = remoteIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const remoteCopy = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

2710
    printf("   %3d   %11.3f   %11.3f   %11.3f   %11.3f   %11.3f   %11.3f  \n",
2711
2712
2713
2714
           numCUs, localRead, localWrite, localCopy, remoteRead, remoteWrite, remoteCopy);
  }
}

2715
2716
void RunRemoteWriteBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int numSubExecs, int const srcIdx, int minGpus, int maxGpus)
{
2717
2718
  printf("Bytes to %s: %lu from GPU %d using %d CUs [Sweeping %d to %d parallel writes]\n",
         ev.useRemoteRead ? "read" : "write", numBytesPerTransfer, srcIdx, numSubExecs, minGpus, maxGpus);
2719

gilbertlee-amd's avatar
gilbertlee-amd committed
2720
2721
  char sep = (ev.outputToCsv ? ',' : ' ');

2722
2723
2724
  for (int i = 0; i < ev.numGpuDevices; i++)
  {
    if (i == srcIdx) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
2725
    printf("   GPU %-3d  %c", i, sep);
2726
2727
  }
  printf("\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
2728
  if (!ev.outputToCsv)
2729
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2730
2731
2732
2733
2734
    for (int i = 0; i < ev.numGpuDevices-1; i++)
    {
      printf("-------------");
    }
    printf("\n");
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
  }

  for (int p = minGpus; p <= maxGpus; p++)
  {
    for (int bitmask = 0; bitmask < (1<<ev.numGpuDevices); bitmask++)
    {
      if (bitmask & (1<<srcIdx)) continue;
      if (__builtin_popcount(bitmask) == p)
      {
        std::vector<Transfer> transfers;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
          {
            Transfer t;
            t.exeType     = EXE_GPU_GFX;
            t.exeSubIndex = -1;
            t.numSubExecs = numSubExecs;
            t.numBytes    = numBytesPerTransfer;
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774

            if (ev.useRemoteRead)
            {
              t.numSrcs  = 1;
              t.numDsts  = 0;
              t.exeIndex = i;
              t.srcType.resize(1);
              t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
              t.srcIndex.resize(1);
              t.srcIndex[0] = srcIdx;
            }
            else
            {
              t.numSrcs     = 0;
              t.numDsts     = 1;
              t.exeIndex    = srcIdx;
              t.dstType.resize(1);
              t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
              t.dstIndex.resize(1);
              t.dstIndex[0] = i;
            }
2775
2776
2777
2778
2779
2780
2781
2782
2783
            transfers.push_back(t);
          }
        }
        ExecuteTransfers(ev, 0, 0, transfers, false);

        int counter = 0;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
gilbertlee-amd's avatar
gilbertlee-amd committed
2784
            printf("  %8.3f  %c", transfers[counter++].transferBandwidth, sep);
2785
          else if (i != srcIdx)
gilbertlee-amd's avatar
gilbertlee-amd committed
2786
            printf("            %c", sep);
2787
2788
        }

gilbertlee-amd's avatar
gilbertlee-amd committed
2789
        printf(" %d %d", p, numSubExecs);
2790
2791
        for (auto i = 0; i < transfers.size(); i++)
        {
2792
2793
          printf(" (%s %c%d %s)",
                 transfers[i].SrcToStr().c_str(),
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
                 ExeTypeStr[transfers[i].exeType], transfers[i].exeIndex,
                 transfers[i].DstToStr().c_str());
        }
        printf("\n");
      }
    }
  }
}

void RunParallelCopyBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int numSubExecs, int const srcIdx, int minGpus, int maxGpus)
{
  if (ev.useDmaCopy)
    printf("Bytes to copy: %lu from GPU %d using DMA [Sweeping %d to %d parallel writes]\n",
           numBytesPerTransfer, srcIdx, minGpus, maxGpus);
  else
    printf("Bytes to copy: %lu from GPU %d using GFX (%d CUs) [Sweeping %d to %d parallel writes]\n",
           numBytesPerTransfer, srcIdx, numSubExecs, minGpus, maxGpus);

  char sep = (ev.outputToCsv ? ',' : ' ');

  for (int i = 0; i < ev.numGpuDevices; i++)
  {
    if (i == srcIdx) continue;
    printf("   GPU %-3d  %c", i, sep);
  }
  printf("\n");
  if (!ev.outputToCsv)
  {
    for (int i = 0; i < ev.numGpuDevices-1; i++)
    {
      printf("-------------");
    }
    printf("\n");
  }

  for (int p = minGpus; p <= maxGpus; p++)
  {
    for (int bitmask = 0; bitmask < (1<<ev.numGpuDevices); bitmask++)
    {
      if (bitmask & (1<<srcIdx)) continue;
      if (__builtin_popcount(bitmask) == p)
      {
        std::vector<Transfer> transfers;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
          {
            Transfer t;
            t.exeType     = ev.useDmaCopy ? EXE_GPU_DMA : EXE_GPU_GFX;
            t.exeSubIndex = -1;
            t.numSubExecs = ev.useDmaCopy ? 1 : numSubExecs;
            t.numBytes    = numBytesPerTransfer;

            t.numSrcs     = 1;
            t.numDsts     = 1;
            t.exeIndex    = srcIdx;
            t.srcType.resize(1);
            t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
            t.srcIndex.resize(1);
            t.srcIndex[0] = srcIdx;
            t.dstType.resize(1);
            t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
            t.dstIndex.resize(1);
            t.dstIndex[0] = i;

            transfers.push_back(t);
          }
        }
        ExecuteTransfers(ev, 0, 0, transfers, false);

        int counter = 0;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
            printf("  %8.3f  %c", transfers[counter++].transferBandwidth, sep);
          else if (i != srcIdx)
            printf("            %c", sep);
        }

        printf(" %d %d", p, numSubExecs);
        for (auto i = 0; i < transfers.size(); i++)
        {
          printf(" (%s %c%d %s)",
                 transfers[i].SrcToStr().c_str(),
                 ExeTypeStr[transfers[i].exeType], transfers[i].exeIndex,
2879
                 transfers[i].DstToStr().c_str());
2880
2881
2882
2883
2884
2885
        }
        printf("\n");
      }
    }
  }
}
2886

gilbertlee-amd's avatar
gilbertlee-amd committed
2887
void RunSweepPreset(EnvVars const& ev, size_t const numBytesPerTransfer, int const numGpuSubExecs, int const numCpuSubExecs, bool const isRandom)
Gilbert Lee's avatar
Gilbert Lee committed
2888
2889
2890
2891
{
  ev.DisplaySweepEnvVars();

  // Compute how many possible Transfers are permitted (unique SRC/EXE/DST triplets)
gilbertlee-amd's avatar
gilbertlee-amd committed
2892
  std::vector<std::pair<ExeType, int>> exeList;
Gilbert Lee's avatar
Gilbert Lee committed
2893
2894
  for (auto exe : ev.sweepExe)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2895
2896
    ExeType const exeType = CharToExeType(exe);
    if (IsGpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
2897
    {
2898
      for (int exeIndex = 0; exeIndex < ev.numGpuDevices; ++exeIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
2899
        exeList.push_back(std::make_pair(exeType, exeIndex));
Gilbert Lee's avatar
Gilbert Lee committed
2900
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
2901
    else if (IsCpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
2902
    {
2903
2904
2905
2906
      for (int exeIndex = 0; exeIndex < ev.numCpuDevices; ++exeIndex)
      {
        // Skip NUMA nodes that have no CPUs (e.g. CXL)
        if (ev.numCpusPerNuma[exeIndex] == 0) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
2907
        exeList.push_back(std::make_pair(exeType, exeIndex));
2908
      }
Gilbert Lee's avatar
Gilbert Lee committed
2909
2910
    }
  }
2911
  int numExes = exeList.size();
Gilbert Lee's avatar
Gilbert Lee committed
2912
2913
2914
2915

  std::vector<std::pair<MemType, int>> srcList;
  for (auto src : ev.sweepSrc)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2916
2917
    MemType const srcType = CharToMemType(src);
    int const numDevices = IsGpuType(srcType) ? ev.numGpuDevices : ev.numCpuDevices;
2918

Gilbert Lee's avatar
Gilbert Lee committed
2919
    for (int srcIndex = 0; srcIndex < numDevices; ++srcIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
2920
      srcList.push_back(std::make_pair(srcType, srcIndex));
Gilbert Lee's avatar
Gilbert Lee committed
2921
2922
2923
2924
2925
2926
2927
  }
  int numSrcs = srcList.size();


  std::vector<std::pair<MemType, int>> dstList;
  for (auto dst : ev.sweepDst)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2928
2929
    MemType const dstType = CharToMemType(dst);
    int const numDevices = IsGpuType(dstType) ? ev.numGpuDevices : ev.numCpuDevices;
Gilbert Lee's avatar
Gilbert Lee committed
2930
2931

    for (int dstIndex = 0; dstIndex < numDevices; ++dstIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
2932
      dstList.push_back(std::make_pair(dstType, dstIndex));
Gilbert Lee's avatar
Gilbert Lee committed
2933
2934
2935
  }
  int numDsts = dstList.size();

2936
2937
  // Build array of possibilities, respecting any additional restrictions (e.g. XGMI hop count)
  struct TransferInfo
Gilbert Lee's avatar
Gilbert Lee committed
2938
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2939
2940
2941
    MemType srcType; int srcIndex;
    ExeType exeType; int exeIndex;
    MemType dstType; int dstIndex;
2942
2943
2944
2945
2946
2947
2948
2949
  };

  // If either XGMI minimum is non-zero, or XGMI maximum is specified and non-zero then both links must be XGMI
  bool const useXgmiOnly = (ev.sweepXgmiMin > 0 || ev.sweepXgmiMax > 0);

  std::vector<TransferInfo> possibleTransfers;
  TransferInfo tinfo;
  for (int i = 0; i < numExes; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
2950
  {
2951
2952
    // Skip CPU executors if XGMI link must be used
    if (useXgmiOnly && !IsGpuType(exeList[i].first)) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
2953
2954
    tinfo.exeType  = exeList[i].first;
    tinfo.exeIndex = exeList[i].second;
2955

gilbertlee-amd's avatar
gilbertlee-amd committed
2956
    bool isXgmiSrc  = false;
2957
2958
2959
2960
2961
2962
2963
    int  numHopsSrc = 0;
    for (int j = 0; j < numSrcs; ++j)
    {
      if (IsGpuType(exeList[i].first) && IsGpuType(srcList[j].first))
      {
        if (exeList[i].second != srcList[j].second)
        {
2964
2965
2966
#if defined(__NVCC__)
          isXgmiSrc = false;
#else
2967
          uint32_t exeToSrcLinkType, exeToSrcHopCount;
gilbertlee-amd's avatar
gilbertlee-amd committed
2968
2969
          HIP_CALL(hipExtGetLinkTypeAndHopCount(RemappedIndex(exeList[i].second, false),
                                                RemappedIndex(srcList[j].second, false),
2970
2971
2972
2973
                                                &exeToSrcLinkType,
                                                &exeToSrcHopCount));
          isXgmiSrc = (exeToSrcLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
          if (isXgmiSrc) numHopsSrc = exeToSrcHopCount;
2974
#endif
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
        }
        else
        {
          isXgmiSrc = true;
          numHopsSrc = 0;
        }

        // Skip this SRC if it is not XGMI but only XGMI links may be used
        if (useXgmiOnly && !isXgmiSrc) continue;

        // Skip this SRC if XGMI distance is already past limit
        if (ev.sweepXgmiMax >= 0 && isXgmiSrc && numHopsSrc > ev.sweepXgmiMax) continue;
      }
      else if (useXgmiOnly) continue;

gilbertlee-amd's avatar
gilbertlee-amd committed
2990
2991
      tinfo.srcType  = srcList[j].first;
      tinfo.srcIndex = srcList[j].second;
2992
2993
2994
2995
2996
2997
2998
2999
3000

      bool isXgmiDst = false;
      int  numHopsDst = 0;
      for (int k = 0; k < numDsts; ++k)
      {
        if (IsGpuType(exeList[i].first) && IsGpuType(dstList[k].first))
        {
          if (exeList[i].second != dstList[k].second)
          {
3001
3002
3003
#if defined(__NVCC__)
            isXgmiSrc = false;
#else
3004
            uint32_t exeToDstLinkType, exeToDstHopCount;
gilbertlee-amd's avatar
gilbertlee-amd committed
3005
3006
            HIP_CALL(hipExtGetLinkTypeAndHopCount(RemappedIndex(exeList[i].second, false),
                                                  RemappedIndex(dstList[k].second, false),
3007
3008
3009
3010
                                                  &exeToDstLinkType,
                                                  &exeToDstHopCount));
            isXgmiDst = (exeToDstLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
            if (isXgmiDst) numHopsDst = exeToDstHopCount;
3011
#endif
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
          }
          else
          {
            isXgmiDst = true;
            numHopsDst = 0;
          }
        }

        // Skip this DST if it is not XGMI but only XGMI links may be used
        if (useXgmiOnly && !isXgmiDst) continue;

        // Skip this DST if total XGMI distance (SRC + DST) is less than min limit
        if (ev.sweepXgmiMin > 0 && (numHopsSrc + numHopsDst < ev.sweepXgmiMin)) continue;

        // Skip this DST if total XGMI distance (SRC + DST) is greater than max limit
        if (ev.sweepXgmiMax >= 0 && (numHopsSrc + numHopsDst) > ev.sweepXgmiMax) continue;

3029
3030
3031
3032
3033
3034
#if defined(__NVCC__)
        // Skip CPU executors on GPU memory on NVIDIA platform
        if (IsCpuType(exeList[i].first) && (IsGpuType(dstList[j].first) || IsGpuType(dstList[k].first)))
          continue;
#endif

gilbertlee-amd's avatar
gilbertlee-amd committed
3035
3036
        tinfo.dstType  = dstList[k].first;
        tinfo.dstIndex = dstList[k].second;
3037
3038
3039
3040

        possibleTransfers.push_back(tinfo);
      }
    }
Gilbert Lee's avatar
Gilbert Lee committed
3041
3042
  }

3043
3044
3045
  int const numPossible = (int)possibleTransfers.size();
  int maxParallelTransfers = (ev.sweepMax == 0 ? numPossible : ev.sweepMax);

Gilbert Lee's avatar
Gilbert Lee committed
3046
3047
3048
3049
3050
3051
  if (ev.sweepMin > numPossible)
  {
    printf("No valid test configurations exist\n");
    return;
  }

3052
3053
3054
3055
3056
3057
  if (ev.outputToCsv)
  {
    printf("\nTest#,Transfer#,NumBytes,Src,Exe,Dst,CUs,BW(GB/s),Time(ms),"
           "ExeToSrcLinkType,ExeToDstLinkType,SrcAddr,DstAddr\n");
  }

Gilbert Lee's avatar
Gilbert Lee committed
3058
3059
  int numTestsRun = 0;
  int M = ev.sweepMin;
gilbertlee-amd's avatar
gilbertlee-amd committed
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
  std::uniform_int_distribution<int> randSize(1, numBytesPerTransfer / sizeof(float));
  std::uniform_int_distribution<int> distribution(ev.sweepMin, maxParallelTransfers);

  // Log sweep to configuration file
  FILE *fp = fopen("lastSweep.cfg", "w");
  if (!fp)
  {
    printf("[ERROR] Unable to open lastSweep.cfg.  Check permissions\n");
    exit(1);
  }

Gilbert Lee's avatar
Gilbert Lee committed
3071
3072
3073
3074
3075
3076
3077
3078
3079
  // Create bitmask of numPossible triplets, of which M will be chosen
  std::string bitmask(M, 1);  bitmask.resize(numPossible, 0);
  auto cpuStart = std::chrono::high_resolution_clock::now();
  while (1)
  {
    if (isRandom)
    {
      // Pick random number of simultaneous transfers to execute
      // NOTE: This currently skews distribution due to some #s having more possibilities than others
gilbertlee-amd's avatar
gilbertlee-amd committed
3080
      M = distribution(*ev.generator);
Gilbert Lee's avatar
Gilbert Lee committed
3081
3082
3083
3084

      // Generate a random bitmask
      for (int i = 0; i < numPossible; i++)
        bitmask[i] = (i < M) ? 1 : 0;
3085
      std::shuffle(bitmask.begin(), bitmask.end(), *ev.generator);
Gilbert Lee's avatar
Gilbert Lee committed
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
    }

    // Convert bitmask to list of Transfers
    std::vector<Transfer> transfers;
    for (int value = 0; value < numPossible; ++value)
    {
      if (bitmask[value])
      {
        // Convert integer value to (SRC->EXE->DST) triplet
        Transfer transfer;
gilbertlee-amd's avatar
gilbertlee-amd committed
3096
3097
3098
3099
3100
        transfer.numSrcs        = 1;
        transfer.numDsts        = 1;
        transfer.srcType        = {possibleTransfers[value].srcType};
        transfer.srcIndex       = {possibleTransfers[value].srcIndex};
        transfer.exeType        = possibleTransfers[value].exeType;
3101
        transfer.exeIndex       = possibleTransfers[value].exeIndex;
3102
        transfer.exeSubIndex    = -1;
gilbertlee-amd's avatar
gilbertlee-amd committed
3103
3104
3105
        transfer.dstType        = {possibleTransfers[value].dstType};
        transfer.dstIndex       = {possibleTransfers[value].dstIndex};
        transfer.numSubExecs    = IsGpuType(transfer.exeType) ? numGpuSubExecs : numCpuSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
3106
        transfer.numBytes       = ev.sweepRandBytes ? randSize(*ev.generator) * sizeof(float) : 0;
Gilbert Lee's avatar
Gilbert Lee committed
3107
3108
3109
3110
        transfers.push_back(transfer);
      }
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
3111
3112
    LogTransfers(fp, ++numTestsRun, transfers);
    ExecuteTransfers(ev, numTestsRun, numBytesPerTransfer / sizeof(float), transfers);
Gilbert Lee's avatar
Gilbert Lee committed
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143

    // Check for test limit
    if (numTestsRun == ev.sweepTestLimit)
    {
      printf("Test limit reached\n");
      break;
    }

    // Check for time limit
    auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
    double totalCpuTime = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();
    if (ev.sweepTimeLimit && totalCpuTime > ev.sweepTimeLimit)
    {
      printf("Time limit exceeded\n");
      break;
    }

    // Increment bitmask if not random sweep
    if (!isRandom && !std::prev_permutation(bitmask.begin(), bitmask.end()))
    {
      M++;
      // Check for completion
      if (M > maxParallelTransfers)
      {
        printf("Sweep complete\n");
        break;
      }
      for (int i = 0; i < numPossible; i++)
        bitmask[i] = (i < M) ? 1 : 0;
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
  fclose(fp);
}

void LogTransfers(FILE *fp, int const testNum, std::vector<Transfer> const& transfers)
{
  fprintf(fp, "# Test %d\n", testNum);
  fprintf(fp, "%d", -1 * (int)transfers.size());
  for (auto const& transfer : transfers)
  {
    fprintf(fp, " (%c%d->%c%d->%c%d %d %lu)",
gilbertlee-amd's avatar
gilbertlee-amd committed
3154
3155
3156
3157
            MemTypeStr[transfer.srcType[0]], transfer.srcIndex[0],
            ExeTypeStr[transfer.exeType],    transfer.exeIndex,
            MemTypeStr[transfer.dstType[0]], transfer.dstIndex[0],
            transfer.numSubExecs,
gilbertlee-amd's avatar
gilbertlee-amd committed
3158
3159
3160
3161
            transfer.numBytes);
  }
  fprintf(fp, "\n");
  fflush(fp);
Gilbert Lee's avatar
Gilbert Lee committed
3162
}
gilbertlee-amd's avatar
gilbertlee-amd committed
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173

std::string PtrVectorToStr(std::vector<float*> const& strVector, int const initOffset)
{
  std::stringstream ss;
  for (int i = 0; i < strVector.size(); ++i)
  {
    if (i) ss << " ";
    ss << (strVector[i] + initOffset);
  }
  return ss.str();
}