TransferBench.cpp 103 KB
Newer Older
Gilbert Lee's avatar
Gilbert Lee committed
1
/*
2
Copyright (c) 2019-2024 Advanced Micro Devices, Inc. All rights reserved.
Gilbert Lee's avatar
Gilbert Lee committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/

// This program measures simultaneous copy performance across multiple GPUs
// on the same node
25
26
#include <numa.h>     // If not found, try installing libnuma-dev (e.g apt-get install libnuma-dev)
#include <cmath>      // If not found, try installing g++-12      (e.g apt-get install g++-12)
Gilbert Lee's avatar
Gilbert Lee committed
27
#include <numaif.h>
Gilbert Lee's avatar
Gilbert Lee committed
28
#include <random>
Gilbert Lee's avatar
Gilbert Lee committed
29
30
31
32
33
34
35
36
#include <stack>
#include <thread>

#include "TransferBench.hpp"
#include "GetClosestNumaNode.hpp"

int main(int argc, char **argv)
{
Gilbert Lee's avatar
Gilbert Lee committed
37
38
39
40
41
42
43
  // Check for NUMA library support
  if (numa_available() == -1)
  {
    printf("[ERROR] NUMA library not supported. Check to see if libnuma has been installed on this system\n");
    exit(1);
  }

Gilbert Lee's avatar
Gilbert Lee committed
44
45
46
47
48
49
50
51
52
53
54
55
  // Display usage instructions and detected topology
  if (argc <= 1)
  {
    int const outputToCsv = EnvVars::GetEnvVar("OUTPUT_TO_CSV", 0);
    if (!outputToCsv) DisplayUsage(argv[0]);
    DisplayTopology(outputToCsv);
    exit(0);
  }

  // Collect environment variables / display current run configuration
  EnvVars ev;

Gilbert Lee's avatar
Gilbert Lee committed
56
57
  // Determine number of bytes to run per Transfer
  size_t numBytesPerTransfer = argc > 2 ? atoll(argv[2]) : DEFAULT_BYTES_PER_TRANSFER;
Gilbert Lee's avatar
Gilbert Lee committed
58
59
60
61
62
63
  if (argc > 2)
  {
    // Adjust bytes if unit specified
    char units = argv[2][strlen(argv[2])-1];
    switch (units)
    {
Gilbert Lee's avatar
Gilbert Lee committed
64
65
66
    case 'K': case 'k': numBytesPerTransfer *= 1024; break;
    case 'M': case 'm': numBytesPerTransfer *= 1024*1024; break;
    case 'G': case 'g': numBytesPerTransfer *= 1024*1024*1024; break;
Gilbert Lee's avatar
Gilbert Lee committed
67
68
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
69
70
71
72
73
  if (numBytesPerTransfer % 4)
  {
    printf("[ERROR] numBytesPerTransfer (%lu) must be a multiple of 4\n", numBytesPerTransfer);
    exit(1);
  }
Gilbert Lee's avatar
Gilbert Lee committed
74

Gilbert Lee's avatar
Gilbert Lee committed
75
76
77
78
  // Check for preset tests
  // - Tests that sweep across possible sets of Transfers
  if (!strcmp(argv[1], "sweep") || !strcmp(argv[1], "rsweep"))
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
79
80
    int numGpuSubExecs = (argc > 3 ? atoi(argv[3]) : 4);
    int numCpuSubExecs = (argc > 4 ? atoi(argv[4]) : 4);
gilbertlee-amd's avatar
gilbertlee-amd committed
81

82
    ev.configMode = CFG_SWEEP;
gilbertlee-amd's avatar
gilbertlee-amd committed
83
    RunSweepPreset(ev, numBytesPerTransfer, numGpuSubExecs, numCpuSubExecs, !strcmp(argv[1], "rsweep"));
Gilbert Lee's avatar
Gilbert Lee committed
84
85
86
    exit(0);
  }
  // - Tests that benchmark peer-to-peer performance
gilbertlee-amd's avatar
gilbertlee-amd committed
87
  else if (!strcmp(argv[1], "p2p"))
Gilbert Lee's avatar
Gilbert Lee committed
88
  {
89
    ev.configMode = CFG_P2P;
gilbertlee-amd's avatar
gilbertlee-amd committed
90
    RunPeerToPeerBenchmarks(ev, numBytesPerTransfer / sizeof(float));
Gilbert Lee's avatar
Gilbert Lee committed
91
92
    exit(0);
  }
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  // - Test SubExecutor scaling
  else if (!strcmp(argv[1], "scaling"))
  {
    int maxSubExecs = (argc > 3 ? atoi(argv[3]) : 32);
    int exeIndex    = (argc > 4 ? atoi(argv[4]) : 0);

    if (exeIndex >= ev.numGpuDevices)
    {
      printf("[ERROR] Cannot execute scaling test with GPU device %d\n", exeIndex);
      exit(1);
    }
    ev.configMode = CFG_SCALE;
    RunScalingBenchmark(ev, numBytesPerTransfer / sizeof(float), exeIndex, maxSubExecs);
    exit(0);
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
108
109
110
111
112
113
114
115
116
117
118
  // - Test all2all benchmark
  else if (!strcmp(argv[1], "a2a"))
  {
    int numSubExecs = (argc > 3 ? atoi(argv[3]) : 4);

    // Force single-stream mode for all-to-all benchmark
    ev.useSingleStream = 1;
    ev.configMode = CFG_A2A;
    RunAllToAllBenchmark(ev, numBytesPerTransfer, numSubExecs);
    exit(0);
  }
119
120
121
122
123
124
125
126
127
128
129
130
  // - Test schmoo benchmark
  else if (!strcmp(argv[1], "schmoo"))
  {
    if (ev.numGpuDevices < 2)
    {
      printf("[ERROR] Schmoo benchmark requires at least 2 GPUs\n");
      exit(1);
    }
    ev.configMode = CFG_SCHMOO;

    int localIdx    = (argc > 3 ? atoi(argv[3]) : 0);
    int remoteIdx   = (argc > 4 ? atoi(argv[4]) : 1);
131
    int maxSubExecs = (argc > 5 ? atoi(argv[5]) : 32);
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

    if (localIdx >= ev.numGpuDevices || remoteIdx >= ev.numGpuDevices)
    {
      printf("[ERROR] Cannot execute schmoo test with local GPU device %d, remote GPU device %d\n", localIdx, remoteIdx);
      exit(1);
    }
    ev.DisplaySchmooEnvVars();

    for (int N = 256; N <= (1<<27); N *= 2)
    {
      int delta = std::max(1, N / ev.samplingFactor);
      int curr = (numBytesPerTransfer == 0) ? N : numBytesPerTransfer / sizeof(float);
      do
      {
        RunSchmooBenchmark(ev, curr * sizeof(float), localIdx, remoteIdx, maxSubExecs);
        if (numBytesPerTransfer != 0) exit(0);
        curr += delta;
      } while (curr < N * 2);
    }
  }
152
153
154
155
156
157
158
159
160
  else if (!strcmp(argv[1], "rwrite"))
  {
    if (ev.numGpuDevices < 2)
    {
      printf("[ERROR] Remote write benchmark requires at least 2 GPUs\n");
      exit(1);
    }
    ev.DisplayRemoteWriteEnvVars();

gilbertlee-amd's avatar
gilbertlee-amd committed
161
    int numSubExecs = (argc > 3 ? atoi(argv[3]) : 4);
162
163
    int srcIdx      = (argc > 4 ? atoi(argv[4]) : 0);
    int minGpus     = (argc > 5 ? atoi(argv[5]) : 1);
164
    int maxGpus     = (argc > 6 ? atoi(argv[6]) : ev.numGpuDevices - 1);
165
166
167
168
169
170
171
172
173
174
175
176
177

    for (int N = 256; N <= (1<<27); N *= 2)
    {
      int delta = std::max(1, N / ev.samplingFactor);
      int curr = (numBytesPerTransfer == 0) ? N : numBytesPerTransfer / sizeof(float);
      do
      {
        RunRemoteWriteBenchmark(ev, curr * sizeof(float), numSubExecs, srcIdx, minGpus, maxGpus);
        if (numBytesPerTransfer != 0) exit(0);
        curr += delta;
      } while (curr < N * 2);
    }
  }
178
179
180
181
182
183
184
185
186
187
188
189
190
191
  else if (!strcmp(argv[1], "cmdline"))
  {
    // Print environment variables and CSV header
    ev.DisplayEnvVars();
    if (ev.outputToCsv)
    {
      printf("Test#,Transfer#,NumBytes,Src,Exe,Dst,CUs,BW(GB/s),Time(ms),SrcAddr,DstAddr\n");
    }

    // Read Transfer from command line
    std::string cmdlineTransfer;
    for (int i = 3; i < argc; i++)
      cmdlineTransfer += std::string(argv[i]) + " ";

192
    char line[MAX_LINE_LEN];
193
194
    sprintf(line, "%s", cmdlineTransfer.c_str());
    std::vector<Transfer> transfers;
195
    ParseTransfers(ev, line, transfers);
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    if (transfers.empty()) exit(0);

    // If the number of bytes is specified, use it
    if (numBytesPerTransfer != 0)
    {
      size_t N = numBytesPerTransfer / sizeof(float);
      ExecuteTransfers(ev, 1, N, transfers);
    }
    else
    {
      // Otherwise generate a range of values
      for (int N = 256; N <= (1<<27); N *= 2)
      {
        int delta = std::max(1, N / ev.samplingFactor);
        int curr = N;
        while (curr < N * 2)
        {
          ExecuteTransfers(ev, 1, curr, transfers);
          curr += delta;
        }
      }
    }
    exit(0);
  }
Gilbert Lee's avatar
Gilbert Lee committed
220

Gilbert Lee's avatar
Gilbert Lee committed
221
  // Check that Transfer configuration file can be opened
222
  ev.configMode = CFG_FILE;
Gilbert Lee's avatar
Gilbert Lee committed
223
224
225
  FILE* fp = fopen(argv[1], "r");
  if (!fp)
  {
Gilbert Lee's avatar
Gilbert Lee committed
226
    printf("[ERROR] Unable to open transfer configuration file: [%s]\n", argv[1]);
Gilbert Lee's avatar
Gilbert Lee committed
227
228
229
    exit(1);
  }

Gilbert Lee's avatar
Gilbert Lee committed
230
  // Print environment variables and CSV header
Gilbert Lee's avatar
Gilbert Lee committed
231
232
233
  ev.DisplayEnvVars();
  if (ev.outputToCsv)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
234
    printf("Test#,Transfer#,NumBytes,Src,Exe,Dst,CUs,BW(GB/s),Time(ms),SrcAddr,DstAddr\n");
Gilbert Lee's avatar
Gilbert Lee committed
235
236
237
  }

  int testNum = 0;
238
239
  char line[MAX_LINE_LEN];
  while(fgets(line, MAX_LINE_LEN, fp))
Gilbert Lee's avatar
Gilbert Lee committed
240
241
242
243
  {
    // Check if line is a comment to be echoed to output (starts with ##)
    if (!ev.outputToCsv && line[0] == '#' && line[1] == '#') printf("%s", line);

Gilbert Lee's avatar
Gilbert Lee committed
244
245
    // Parse set of parallel Transfers to execute
    std::vector<Transfer> transfers;
246
    ParseTransfers(ev, line, transfers);
Gilbert Lee's avatar
Gilbert Lee committed
247
    if (transfers.empty()) continue;
Gilbert Lee's avatar
Gilbert Lee committed
248

gilbertlee-amd's avatar
gilbertlee-amd committed
249
250
251
252
253
254
255
256
257
258
259
    // If the number of bytes is specified, use it
    if (numBytesPerTransfer != 0)
    {
      size_t N = numBytesPerTransfer / sizeof(float);
      ExecuteTransfers(ev, ++testNum, N, transfers);
    }
    else
    {
      // Otherwise generate a range of values
      for (int N = 256; N <= (1<<27); N *= 2)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
260
        int delta = std::max(1, N / ev.samplingFactor);
gilbertlee-amd's avatar
gilbertlee-amd committed
261
262
263
        int curr = N;
        while (curr < N * 2)
        {
gilbertlee-amd's avatar
gilbertlee-amd committed
264
          ExecuteTransfers(ev, ++testNum, curr, transfers);
gilbertlee-amd's avatar
gilbertlee-amd committed
265
266
267
268
          curr += delta;
        }
      }
    }
Gilbert Lee's avatar
Gilbert Lee committed
269
270
  }
  fclose(fp);
Gilbert Lee's avatar
Gilbert Lee committed
271

Gilbert Lee's avatar
Gilbert Lee committed
272
273
  return 0;
}
Gilbert Lee's avatar
Gilbert Lee committed
274

Gilbert Lee's avatar
Gilbert Lee committed
275
void ExecuteTransfers(EnvVars const& ev,
gilbertlee-amd's avatar
gilbertlee-amd committed
276
277
278
                      int const testNum,
                      size_t const N,
                      std::vector<Transfer>& transfers,
gilbertlee-amd's avatar
gilbertlee-amd committed
279
280
                      bool verbose,
                      double* totalBandwidthCpu)
Gilbert Lee's avatar
Gilbert Lee committed
281
282
{
  int const initOffset = ev.byteOffset / sizeof(float);
Gilbert Lee's avatar
Gilbert Lee committed
283

Gilbert Lee's avatar
Gilbert Lee committed
284
285
  // Map transfers by executor
  TransferMap transferMap;
gilbertlee-amd's avatar
gilbertlee-amd committed
286
  for (int i = 0; i < transfers.size(); i++)
Gilbert Lee's avatar
Gilbert Lee committed
287
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
288
289
    Transfer& transfer = transfers[i];
    transfer.transferIndex = i;
gilbertlee-amd's avatar
gilbertlee-amd committed
290
    Executor executor(transfer.exeType, transfer.exeIndex);
Gilbert Lee's avatar
Gilbert Lee committed
291
    ExecutorInfo& executorInfo = transferMap[executor];
gilbertlee-amd's avatar
gilbertlee-amd committed
292
    executorInfo.transfers.push_back(&transfer);
Gilbert Lee's avatar
Gilbert Lee committed
293
  }
Gilbert Lee's avatar
Gilbert Lee committed
294

gilbertlee-amd's avatar
gilbertlee-amd committed
295
  // Loop over each executor and prepare sub-executors
gilbertlee-amd's avatar
gilbertlee-amd committed
296
  std::map<int, Transfer*> transferList;
Gilbert Lee's avatar
Gilbert Lee committed
297
298
299
  for (auto& exeInfoPair : transferMap)
  {
    Executor const& executor = exeInfoPair.first;
gilbertlee-amd's avatar
gilbertlee-amd committed
300
301
302
303
    ExecutorInfo& exeInfo    = exeInfoPair.second;
    ExeType const exeType    = executor.first;
    int     const exeIndex   = RemappedIndex(executor.second, IsCpuType(exeType));

Gilbert Lee's avatar
Gilbert Lee committed
304
    exeInfo.totalTime = 0.0;
gilbertlee-amd's avatar
gilbertlee-amd committed
305
    exeInfo.totalSubExecs = 0;
Gilbert Lee's avatar
Gilbert Lee committed
306
307

    // Loop over each transfer this executor is involved in
gilbertlee-amd's avatar
gilbertlee-amd committed
308
    for (Transfer* transfer : exeInfo.transfers)
Gilbert Lee's avatar
Gilbert Lee committed
309
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
310
311
312
313
314
315
      // Determine how many bytes to copy for this Transfer (use custom if pre-specified)
      transfer->numBytesActual = (transfer->numBytes ? transfer->numBytes : N * sizeof(float));

      // Allocate source memory
      transfer->srcMem.resize(transfer->numSrcs);
      for (int iSrc = 0; iSrc < transfer->numSrcs; ++iSrc)
Gilbert Lee's avatar
Gilbert Lee committed
316
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
317
318
319
        MemType const& srcType  = transfer->srcType[iSrc];
        int     const  srcIndex    = RemappedIndex(transfer->srcIndex[iSrc], IsCpuType(srcType));

Gilbert Lee's avatar
Gilbert Lee committed
320
        // Ensure executing GPU can access source memory
321
        if (IsGpuType(exeType) && IsGpuType(srcType) && srcIndex != exeIndex)
Gilbert Lee's avatar
Gilbert Lee committed
322
          EnablePeerAccess(exeIndex, srcIndex);
Gilbert Lee's avatar
Gilbert Lee committed
323

gilbertlee-amd's avatar
gilbertlee-amd committed
324
325
326
327
328
329
330
331
332
333
        AllocateMemory(srcType, srcIndex, transfer->numBytesActual + ev.byteOffset, (void**)&transfer->srcMem[iSrc]);
      }

      // Allocate destination memory
      transfer->dstMem.resize(transfer->numDsts);
      for (int iDst = 0; iDst < transfer->numDsts; ++iDst)
      {
        MemType const& dstType  = transfer->dstType[iDst];
        int     const  dstIndex    = RemappedIndex(transfer->dstIndex[iDst], IsCpuType(dstType));

Gilbert Lee's avatar
Gilbert Lee committed
334
        // Ensure executing GPU can access destination memory
335
        if (IsGpuType(exeType) && IsGpuType(dstType) && dstIndex != exeIndex)
Gilbert Lee's avatar
Gilbert Lee committed
336
337
          EnablePeerAccess(exeIndex, dstIndex);

gilbertlee-amd's avatar
gilbertlee-amd committed
338
339
        AllocateMemory(dstType, dstIndex, transfer->numBytesActual + ev.byteOffset, (void**)&transfer->dstMem[iDst]);
      }
Gilbert Lee's avatar
Gilbert Lee committed
340

gilbertlee-amd's avatar
gilbertlee-amd committed
341
      exeInfo.totalSubExecs += transfer->numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
342
      transferList[transfer->transferIndex] = transfer;
Gilbert Lee's avatar
Gilbert Lee committed
343
344
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
345
346
    // Prepare additional requirement for GPU-based executors
    if (IsGpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
347
    {
348
349
      HIP_CALL(hipSetDevice(exeIndex));

gilbertlee-amd's avatar
gilbertlee-amd committed
350
351
352
353
354
355
      // Single-stream is only supported for GFX-based executors
      int const numStreamsToUse = (exeType == EXE_GPU_DMA || !ev.useSingleStream) ? exeInfo.transfers.size() : 1;
      exeInfo.streams.resize(numStreamsToUse);
      exeInfo.startEvents.resize(numStreamsToUse);
      exeInfo.stopEvents.resize(numStreamsToUse);
      for (int i = 0; i < numStreamsToUse; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
356
      {
357
358
359
360
        if (ev.cuMask.size())
        {
#if !defined(__NVCC__)
          HIP_CALL(hipExtStreamCreateWithCUMask(&exeInfo.streams[i], ev.cuMask.size(), ev.cuMask.data()));
361
362
363
#else
          printf("[ERROR] CU Masking in not supported on NVIDIA hardware\n");
          exit(-1);
364
365
366
367
368
369
#endif
        }
        else
        {
          HIP_CALL(hipStreamCreate(&exeInfo.streams[i]));
        }
Gilbert Lee's avatar
Gilbert Lee committed
370
371
372
        HIP_CALL(hipEventCreate(&exeInfo.startEvents[i]));
        HIP_CALL(hipEventCreate(&exeInfo.stopEvents[i]));
      }
Gilbert Lee's avatar
Gilbert Lee committed
373

gilbertlee-amd's avatar
gilbertlee-amd committed
374
      if (exeType == EXE_GPU_GFX)
Gilbert Lee's avatar
Gilbert Lee committed
375
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
376
377
        // Allocate one contiguous chunk of GPU memory for threadblock parameters
        // This allows support for executing one transfer per stream, or all transfers in a single stream
378
#if !defined(__NVCC__)
gilbertlee-amd's avatar
gilbertlee-amd committed
379
380
        AllocateMemory(MEM_GPU, exeIndex, exeInfo.totalSubExecs * sizeof(SubExecParam),
                       (void**)&exeInfo.subExecParamGpu);
381
#else
382
        AllocateMemory(MEM_MANAGED, exeIndex, exeInfo.totalSubExecs * sizeof(SubExecParam),
383
384
                       (void**)&exeInfo.subExecParamGpu);
#endif
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

        // Check for sufficient subExecutors
        int numDeviceCUs = 0;
        HIP_CALL(hipDeviceGetAttribute(&numDeviceCUs, hipDeviceAttributeMultiprocessorCount, exeIndex));
        if (exeInfo.totalSubExecs > numDeviceCUs)
        {
          printf("[WARN] GFX executor %d requesting %d total subexecutors, however only has %d.  Some Transfers may be serialized\n",
                 exeIndex, exeInfo.totalSubExecs, numDeviceCUs);
        }
      }

      // Check for targeted DMA
      if (exeType == EXE_GPU_DMA)
      {
        bool useRandomDma = false;
        bool useTargetDma = false;

        // Check for sufficient hardware queues
#if !defined(__NVCC_)
        if (exeInfo.transfers.size() > ev.gpuMaxHwQueues)
        {
          printf("[WARN] DMA executor %d attempting %lu parallel transfers, however GPU_MAX_HW_QUEUES only set to %d\n",
                 exeIndex, exeInfo.transfers.size(), ev.gpuMaxHwQueues);
        }
#endif

        for (Transfer* transfer : exeInfo.transfers)
        {
          if (transfer->exeSubIndex != -1)
          {
            useTargetDma = true;

#if defined(__NVCC__)
            printf("[ERROR] DMA executor subindex not supported on NVIDIA hardware\n");
            exit(-1);
#else
            if (transfer->numSrcs != 1 || transfer->numDsts != 1)
            {
              printf("[ERROR] DMA Transfer must have at exactly one source and one destination");
              exit(1);
            }

            // Collect HSA agent information

            hsa_amd_pointer_info_t info;
            info.size = sizeof(info);

            HSA_CHECK(hsa_amd_pointer_info(transfer->dstMem[0], &info, NULL, NULL, NULL));
            transfer->dstAgent = info.agentOwner;

            HSA_CHECK(hsa_amd_pointer_info(transfer->srcMem[0], &info, NULL, NULL, NULL));
            transfer->srcAgent = info.agentOwner;

            // Create HSA completion signal
            HSA_CHECK(hsa_signal_create(1, 0, NULL, &transfer->signal));

            // Check for valid engine Id
            if (transfer->exeSubIndex < -1 || transfer->exeSubIndex >= 32)
            {
              printf("[ERROR] DMA executor subindex must be between 0 and 31\n");
              exit(1);
            }

            // Check that engine Id exists between agents
            uint32_t engineIdMask = 0;
            HSA_CHECK(hsa_amd_memory_copy_engine_status(transfer->dstAgent,
                                                        transfer->srcAgent,
                                                        &engineIdMask));
            transfer->sdmaEngineId = (hsa_amd_sdma_engine_id_t)(1U << transfer->exeSubIndex);
            if (!(transfer->sdmaEngineId & engineIdMask))
            {
              printf("[ERROR] DMA executor %d.%d does not exist or cannot copy between source %s to destination %s\n",
                     transfer->exeIndex, transfer->exeSubIndex,
                     transfer->SrcToStr().c_str(),
                     transfer->DstToStr().c_str());
              exit(1);
            }
#endif
          }
          else
          {
            useRandomDma = true;
          }
        }
        if (useRandomDma && useTargetDma)
        {
          printf("[WARN] Mixing targeted and untargetted DMA execution on GPU %d may result in resource conflicts\n",
            exeIndex);
        }
Gilbert Lee's avatar
Gilbert Lee committed
474
475
476
      }
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
477

gilbertlee-amd's avatar
gilbertlee-amd committed
478
479
480
  if (verbose && !ev.outputToCsv) printf("Test %d:\n", testNum);

  // Prepare input memory and block parameters for current N
481
  bool isSrcCorrect = true;
gilbertlee-amd's avatar
gilbertlee-amd committed
482
  for (auto& exeInfoPair : transferMap)
Gilbert Lee's avatar
Gilbert Lee committed
483
  {
484
485
486
487
488
    Executor const& executor = exeInfoPair.first;
    ExecutorInfo& exeInfo    = exeInfoPair.second;
    ExeType const exeType    = executor.first;
    int     const exeIndex   = RemappedIndex(executor.second, IsCpuType(exeType));

gilbertlee-amd's avatar
gilbertlee-amd committed
489
490
    exeInfo.totalBytes = 0;
    for (int i = 0; i < exeInfo.transfers.size(); ++i)
Gilbert Lee's avatar
Gilbert Lee committed
491
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
492
493
      // Prepare subarrays each threadblock works on and fill src memory with patterned data
      Transfer* transfer = exeInfo.transfers[i];
gilbertlee-amd's avatar
gilbertlee-amd committed
494
      transfer->PrepareSubExecParams(ev);
495
      isSrcCorrect &= transfer->PrepareSrc(ev);
gilbertlee-amd's avatar
gilbertlee-amd committed
496
      exeInfo.totalBytes += transfer->numBytesActual;
497
498
499
500
501
502
    }

    // Copy block parameters to GPU for GPU executors
    if (exeType == EXE_GPU_GFX)
    {
      std::vector<SubExecParam> tempSubExecParam;
Gilbert Lee's avatar
Gilbert Lee committed
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
      if (!ev.useSingleStream || (ev.blockOrder == ORDER_SEQUENTIAL))
      {
        // Assign Transfers to sequentual threadblocks
        int transferOffset = 0;
        for (Transfer* transfer : exeInfo.transfers)
        {
          transfer->subExecParamGpuPtr = exeInfo.subExecParamGpu + transferOffset;

          transfer->subExecIdx.clear();
          for (int subExecIdx = 0; subExecIdx < transfer->subExecParam.size(); subExecIdx++)
          {
            transfer->subExecIdx.push_back(transferOffset + subExecIdx);
            tempSubExecParam.push_back(transfer->subExecParam[subExecIdx]);
          }
          transferOffset += transfer->numSubExecs;
        }
      }
      else if (ev.blockOrder == ORDER_INTERLEAVED)
      {
        // Interleave threadblocks of different Transfers
        exeInfo.transfers[0]->subExecParamGpuPtr = exeInfo.subExecParamGpu;
        for (int subExecIdx = 0; tempSubExecParam.size() < exeInfo.totalSubExecs; ++subExecIdx)
        {
          for (Transfer* transfer : exeInfo.transfers)
          {
            if (subExecIdx < transfer->numSubExecs)
            {
              transfer->subExecIdx.push_back(tempSubExecParam.size());
              tempSubExecParam.push_back(transfer->subExecParam[subExecIdx]);
            }
          }
        }
      }
      else if (ev.blockOrder == ORDER_RANDOM)
Gilbert Lee's avatar
Gilbert Lee committed
538
      {
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        std::vector<std::pair<int,int>> indices;
        exeInfo.transfers[0]->subExecParamGpuPtr = exeInfo.subExecParamGpu;

        // Build up a list of (transfer,subExecParam) indices, then randomly sort them
        for (int i = 0; i < exeInfo.transfers.size(); i++)
        {
          Transfer* transfer = exeInfo.transfers[i];
          for (int subExecIdx = 0; subExecIdx < transfer->numSubExecs; subExecIdx++)
            indices.push_back(std::make_pair(i, subExecIdx));
        }
        std::shuffle(indices.begin(), indices.end(), *ev.generator);

        // Build randomized threadblock list
        for (auto p : indices)
        {
          Transfer* transfer = exeInfo.transfers[p.first];
          transfer->subExecIdx.push_back(tempSubExecParam.size());
          tempSubExecParam.push_back(transfer->subExecParam[p.second]);
        }
Gilbert Lee's avatar
Gilbert Lee committed
558
      }
559
560
561
562
563
564
565

      HIP_CALL(hipSetDevice(exeIndex));
      HIP_CALL(hipMemcpy(exeInfo.subExecParamGpu,
                         tempSubExecParam.data(),
                         tempSubExecParam.size() * sizeof(SubExecParam),
                         hipMemcpyDefault));
      HIP_CALL(hipDeviceSynchronize());
Gilbert Lee's avatar
Gilbert Lee committed
566
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
567
  }
Gilbert Lee's avatar
Gilbert Lee committed
568

gilbertlee-amd's avatar
gilbertlee-amd committed
569
570
571
572
  // Launch kernels (warmup iterations are not counted)
  double totalCpuTime = 0;
  size_t numTimedIterations = 0;
  std::stack<std::thread> threads;
573
  for (int iteration = -ev.numWarmups; isSrcCorrect; iteration++)
gilbertlee-amd's avatar
gilbertlee-amd committed
574
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
575
    if (ev.numIterations > 0 && iteration    >= ev.numIterations) break;
gilbertlee-amd's avatar
gilbertlee-amd committed
576
    if (ev.numIterations < 0 && totalCpuTime > -ev.numIterations) break;
Gilbert Lee's avatar
Gilbert Lee committed
577

gilbertlee-amd's avatar
gilbertlee-amd committed
578
579
    // Pause before starting first timed iteration in interactive mode
    if (verbose && ev.useInteractive && iteration == 0)
Gilbert Lee's avatar
Gilbert Lee committed
580
    {
581
582
583
584
      printf("Memory prepared:\n");

      for (Transfer& transfer : transfers)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
585
586
587
588
589
        printf("Transfer %03d:\n", transfer.transferIndex);
        for (int iSrc = 0; iSrc < transfer.numSrcs; ++iSrc)
          printf("  SRC %0d: %p\n", iSrc, transfer.srcMem[iSrc]);
        for (int iDst = 0; iDst < transfer.numDsts; ++iDst)
          printf("  DST %0d: %p\n", iDst, transfer.dstMem[iDst]);
590
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
591
      printf("Hit <Enter> to continue: ");
592
593
594
595
596
      if (scanf("%*c") != 0)
      {
        printf("[ERROR] Unexpected input\n");
        exit(1);
      }
Gilbert Lee's avatar
Gilbert Lee committed
597
598
      printf("\n");
    }
Gilbert Lee's avatar
Gilbert Lee committed
599

gilbertlee-amd's avatar
gilbertlee-amd committed
600
601
602
603
604
    // Start CPU timing for this iteration
    auto cpuStart = std::chrono::high_resolution_clock::now();

    // Execute all Transfers in parallel
    for (auto& exeInfoPair : transferMap)
605
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
606
      ExecutorInfo& exeInfo = exeInfoPair.second;
gilbertlee-amd's avatar
gilbertlee-amd committed
607
608
609
      ExeType       exeType = exeInfoPair.first.first;
      int const numTransfersToRun = (exeType == EXE_GPU_GFX && ev.useSingleStream) ? 1 : exeInfo.transfers.size();

gilbertlee-amd's avatar
gilbertlee-amd committed
610
611
      for (int i = 0; i < numTransfersToRun; ++i)
        threads.push(std::thread(RunTransfer, std::ref(ev), iteration, std::ref(exeInfo), i));
612
    }
Gilbert Lee's avatar
Gilbert Lee committed
613

gilbertlee-amd's avatar
gilbertlee-amd committed
614
615
616
617
618
619
620
    // Wait for all threads to finish
    int const numTransfers = threads.size();
    for (int i = 0; i < numTransfers; i++)
    {
      threads.top().join();
      threads.pop();
    }
Gilbert Lee's avatar
Gilbert Lee committed
621

gilbertlee-amd's avatar
gilbertlee-amd committed
622
623
624
625
    // Stop CPU timing for this iteration
    auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
    double deltaSec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();

626
627
628
629
630
631
632
633
634
    if (ev.alwaysValidate)
    {
      for (auto transferPair : transferList)
      {
        Transfer* transfer = transferPair.second;
        transfer->ValidateDst(ev);
      }
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
635
    if (iteration >= 0)
Gilbert Lee's avatar
Gilbert Lee committed
636
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
637
638
639
640
      ++numTimedIterations;
      totalCpuTime += deltaSec;
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
641

gilbertlee-amd's avatar
gilbertlee-amd committed
642
  // Pause for interactive mode
643
  if (verbose && isSrcCorrect && ev.useInteractive)
gilbertlee-amd's avatar
gilbertlee-amd committed
644
645
  {
    printf("Transfers complete. Hit <Enter> to continue: ");
646
647
648
649
650
    if (scanf("%*c") != 0)
    {
      printf("[ERROR] Unexpected input\n");
      exit(1);
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
651
652
    printf("\n");
  }
Gilbert Lee's avatar
Gilbert Lee committed
653

gilbertlee-amd's avatar
gilbertlee-amd committed
654
655
656
657
658
659
  // Validate that each transfer has transferred correctly
  size_t totalBytesTransferred = 0;
  int const numTransfers = transferList.size();
  for (auto transferPair : transferList)
  {
    Transfer* transfer = transferPair.second;
gilbertlee-amd's avatar
gilbertlee-amd committed
660
661
    transfer->ValidateDst(ev);
    totalBytesTransferred += transfer->numBytesActual;
gilbertlee-amd's avatar
gilbertlee-amd committed
662
  }
Gilbert Lee's avatar
Gilbert Lee committed
663

gilbertlee-amd's avatar
gilbertlee-amd committed
664
665
666
  // Report timings
  totalCpuTime = totalCpuTime / (1.0 * numTimedIterations) * 1000;
  double totalBandwidthGbs = (totalBytesTransferred / 1.0E6) / totalCpuTime;
gilbertlee-amd's avatar
gilbertlee-amd committed
667
668
  if (totalBandwidthCpu) *totalBandwidthCpu = totalBandwidthGbs;

gilbertlee-amd's avatar
gilbertlee-amd committed
669
  double maxGpuTime = 0;
Gilbert Lee's avatar
Gilbert Lee committed
670

671
  if (!isSrcCorrect) goto cleanup;
gilbertlee-amd's avatar
gilbertlee-amd committed
672
673
674
675
  if (ev.useSingleStream)
  {
    for (auto& exeInfoPair : transferMap)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
676
677
678
      ExecutorInfo  exeInfo  = exeInfoPair.second;
      ExeType const exeType  = exeInfoPair.first.first;
      int     const exeIndex = exeInfoPair.first.second;
Gilbert Lee's avatar
Gilbert Lee committed
679

gilbertlee-amd's avatar
gilbertlee-amd committed
680
681
      // Compute total time for non GPU executors
      if (exeType != EXE_GPU_GFX)
gilbertlee-amd's avatar
gilbertlee-amd committed
682
683
684
685
686
      {
        exeInfo.totalTime = 0;
        for (auto const& transfer : exeInfo.transfers)
          exeInfo.totalTime = std::max(exeInfo.totalTime, transfer->transferTime);
      }
687

gilbertlee-amd's avatar
gilbertlee-amd committed
688
689
690
      double exeDurationMsec = exeInfo.totalTime / (1.0 * numTimedIterations);
      double exeBandwidthGbs = (exeInfo.totalBytes / 1.0E9) / exeDurationMsec * 1000.0f;
      maxGpuTime = std::max(maxGpuTime, exeDurationMsec);
Gilbert Lee's avatar
Gilbert Lee committed
691

692
693
694
695
696
697
698
699
700
      double sumBandwidthGbs = 0.0;
      for (auto& transfer: exeInfo.transfers)
      {
        transfer->transferTime /= (1.0 * numTimedIterations);
        transfer->transferBandwidth = (transfer->numBytesActual / 1.0E9) / transfer->transferTime * 1000.0f;
        transfer->executorBandwidth = exeBandwidthGbs;
        sumBandwidthGbs += transfer->transferBandwidth;
      }

gilbertlee-amd's avatar
gilbertlee-amd committed
701
702
      if (verbose && !ev.outputToCsv)
      {
703
704
        printf(" Executor: %3s %02d | %7.3f GB/s | %8.3f ms | %12lu bytes | %-7.3f GB/s (sum)\n",
               ExeTypeName[exeType], exeIndex, exeBandwidthGbs, exeDurationMsec, exeInfo.totalBytes, sumBandwidthGbs);
Gilbert Lee's avatar
Gilbert Lee committed
705
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
706
707
708

      int totalCUs = 0;
      for (auto const& transfer : exeInfo.transfers)
Gilbert Lee's avatar
Gilbert Lee committed
709
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
710
        totalCUs += transfer->numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
711

gilbertlee-amd's avatar
gilbertlee-amd committed
712
        char exeSubIndexStr[32] = "";
713
        if (ev.useXccFilter || transfer->exeType == EXE_GPU_DMA)
gilbertlee-amd's avatar
gilbertlee-amd committed
714
715
716
717
718
719
720
        {
          if (transfer->exeSubIndex == -1)
            sprintf(exeSubIndexStr, ".*");
          else
            sprintf(exeSubIndexStr, ".%d", transfer->exeSubIndex);
        }

gilbertlee-amd's avatar
gilbertlee-amd committed
721
        if (!verbose) continue;
Gilbert Lee's avatar
Gilbert Lee committed
722
723
        if (!ev.outputToCsv)
        {
gilbertlee-amd's avatar
gilbertlee-amd committed
724
          printf("     Transfer %02d  | %7.3f GB/s | %8.3f ms | %12lu bytes | %s -> %s%02d%s:%03d -> %s\n",
Gilbert Lee's avatar
Gilbert Lee committed
725
                 transfer->transferIndex,
726
                 transfer->transferBandwidth,
727
                 transfer->transferTime,
gilbertlee-amd's avatar
gilbertlee-amd committed
728
729
730
                 transfer->numBytesActual,
                 transfer->SrcToStr().c_str(),
                 ExeTypeName[transfer->exeType], transfer->exeIndex,
gilbertlee-amd's avatar
gilbertlee-amd committed
731
                 exeSubIndexStr,
gilbertlee-amd's avatar
gilbertlee-amd committed
732
733
                 transfer->numSubExecs,
                 transfer->DstToStr().c_str());
734
735
736
737
738
739
740
741
742

          if (ev.showIterations)
          {
            std::set<std::pair<double, int>> times;
            double stdDevTime = 0;
            double stdDevBw = 0;
            for (int i = 0; i < numTimedIterations; i++)
            {
              times.insert(std::make_pair(transfer->perIterationTime[i], i+1));
743
              double const varTime = fabs(transfer->transferTime - transfer->perIterationTime[i]);
744
745
746
              stdDevTime += varTime * varTime;

              double iterBandwidthGbs = (transfer->numBytesActual / 1.0E9) / transfer->perIterationTime[i] * 1000.0f;
747
              double const varBw = fabs(iterBandwidthGbs - transfer->transferBandwidth);
748
749
750
751
752
753
754
755
756
              stdDevBw += varBw * varBw;
            }
            stdDevTime = sqrt(stdDevTime / numTimedIterations);
            stdDevBw = sqrt(stdDevBw / numTimedIterations);

            for (auto t : times)
            {
              double iterDurationMsec = t.first;
              double iterBandwidthGbs = (transfer->numBytesActual / 1.0E9) / iterDurationMsec * 1000.0f;
gilbertlee-amd's avatar
gilbertlee-amd committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
              printf("      Iter %03d    | %7.3f GB/s | %8.3f ms |", t.second, iterBandwidthGbs, iterDurationMsec);

              std::set<int> usedXccs;
              if (t.second - 1 < transfer->perIterationCUs.size())
              {
                printf(" CUs:");
                for (auto x : transfer->perIterationCUs[t.second - 1])
                {
                  printf(" %02d:%02d", x.first, x.second);
                  usedXccs.insert(x.first);
                }
              }
              printf(" XCCs:");
              for (auto x : usedXccs)
                printf(" %02d", x);
              printf("\n");
773
774
775
            }
            printf("      StandardDev | %7.3f GB/s | %8.3f ms |\n", stdDevBw, stdDevTime);
          }
Gilbert Lee's avatar
Gilbert Lee committed
776
777
778
        }
        else
        {
gilbertlee-amd's avatar
gilbertlee-amd committed
779
          printf("%d,%d,%lu,%s,%c%02d%s,%s,%d,%.3f,%.3f,%s,%s\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
780
781
                 testNum, transfer->transferIndex, transfer->numBytesActual,
                 transfer->SrcToStr().c_str(),
gilbertlee-amd's avatar
gilbertlee-amd committed
782
                 MemTypeStr[transfer->exeType], transfer->exeIndex, exeSubIndexStr,
gilbertlee-amd's avatar
gilbertlee-amd committed
783
784
                 transfer->DstToStr().c_str(),
                 transfer->numSubExecs,
785
                 transfer->transferBandwidth, transfer->transferTime,
gilbertlee-amd's avatar
gilbertlee-amd committed
786
787
                 PtrVectorToStr(transfer->srcMem, initOffset).c_str(),
                 PtrVectorToStr(transfer->dstMem, initOffset).c_str());
Gilbert Lee's avatar
Gilbert Lee committed
788
        }
Gilbert Lee's avatar
Gilbert Lee committed
789
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
790
791
792

      if (verbose && ev.outputToCsv)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
793
        printf("%d,ALL,%lu,ALL,%c%02d,ALL,%d,%.3f,%.3f,ALL,ALL\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
794
               testNum, totalBytesTransferred,
gilbertlee-amd's avatar
gilbertlee-amd committed
795
               MemTypeStr[exeType], exeIndex, totalCUs,
gilbertlee-amd's avatar
gilbertlee-amd committed
796
797
               exeBandwidthGbs, exeDurationMsec);
      }
Gilbert Lee's avatar
Gilbert Lee committed
798
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
799
800
801
802
803
804
  }
  else
  {
    for (auto const& transferPair : transferList)
    {
      Transfer* transfer = transferPair.second;
805
      transfer->transferTime /= (1.0 * numTimedIterations);
806
807
      transfer->transferBandwidth = (transfer->numBytesActual / 1.0E9) / transfer->transferTime * 1000.0f;
      transfer->executorBandwidth = transfer->transferBandwidth;
808
      maxGpuTime = std::max(maxGpuTime, transfer->transferTime);
gilbertlee-amd's avatar
gilbertlee-amd committed
809
      if (!verbose) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
810
811
812
813

      char exeSubIndexStr[32] = "";
      if (ev.useXccFilter)
      {
814
        if (transfer->exeSubIndex == -1 || transfer->exeType == EXE_GPU_DMA)
gilbertlee-amd's avatar
gilbertlee-amd committed
815
816
817
818
819
          sprintf(exeSubIndexStr, ".*");
        else
          sprintf(exeSubIndexStr, ".%d", transfer->exeSubIndex);
      }

gilbertlee-amd's avatar
gilbertlee-amd committed
820
821
      if (!ev.outputToCsv)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
822
        printf(" Transfer %02d      | %7.3f GB/s | %8.3f ms | %12lu bytes | %s -> %s%02d%s:%03d -> %s\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
823
               transfer->transferIndex,
824
               transfer->transferBandwidth, transfer->transferTime,
gilbertlee-amd's avatar
gilbertlee-amd committed
825
826
               transfer->numBytesActual,
               transfer->SrcToStr().c_str(),
gilbertlee-amd's avatar
gilbertlee-amd committed
827
               ExeTypeName[transfer->exeType], transfer->exeIndex, exeSubIndexStr,
gilbertlee-amd's avatar
gilbertlee-amd committed
828
829
               transfer->numSubExecs,
               transfer->DstToStr().c_str());
830
831
832
833
834
835
836
837
838

        if (ev.showIterations)
        {
            std::set<std::pair<double, int>> times;
            double stdDevTime = 0;
            double stdDevBw = 0;
            for (int i = 0; i < numTimedIterations; i++)
            {
              times.insert(std::make_pair(transfer->perIterationTime[i], i+1));
839
              double const varTime = fabs(transfer->transferTime - transfer->perIterationTime[i]);
840
841
842
              stdDevTime += varTime * varTime;

              double iterBandwidthGbs = (transfer->numBytesActual / 1.0E9) / transfer->perIterationTime[i] * 1000.0f;
843
              double const varBw = fabs(iterBandwidthGbs - transfer->transferBandwidth);
844
845
846
847
848
849
850
851
852
              stdDevBw += varBw * varBw;
            }
            stdDevTime = sqrt(stdDevTime / numTimedIterations);
            stdDevBw = sqrt(stdDevBw / numTimedIterations);

            for (auto t : times)
            {
              double iterDurationMsec = t.first;
              double iterBandwidthGbs = (transfer->numBytesActual / 1.0E9) / iterDurationMsec * 1000.0f;
853
              printf("      Iter %03d    | %7.3f GB/s | %8.3f ms |", t.second, iterBandwidthGbs, iterDurationMsec);
gilbertlee-amd's avatar
gilbertlee-amd committed
854
              std::set<int> usedXccs;
855
856
857
858
              if (t.second - 1 < transfer->perIterationCUs.size())
              {
                printf(" CUs:");
                for (auto x : transfer->perIterationCUs[t.second - 1])
gilbertlee-amd's avatar
gilbertlee-amd committed
859
860
861
862
                {
                  printf(" %02d:%02d", x.first, x.second);
                  usedXccs.insert(x.first);
                }
863
              }
gilbertlee-amd's avatar
gilbertlee-amd committed
864
865
866
              printf(" XCCs:");
              for (auto x : usedXccs)
                printf(" %d", x);
867
              printf("\n");
868
869
870
            }
            printf("      StandardDev | %7.3f GB/s | %8.3f ms |\n", stdDevBw, stdDevTime);
        }
gilbertlee-amd's avatar
gilbertlee-amd committed
871
872
873
      }
      else
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
874
        printf("%d,%d,%lu,%s,%s%02d%s,%s,%d,%.3f,%.3f,%s,%s\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
875
876
               testNum, transfer->transferIndex, transfer->numBytesActual,
               transfer->SrcToStr().c_str(),
gilbertlee-amd's avatar
gilbertlee-amd committed
877
               ExeTypeName[transfer->exeType], transfer->exeIndex, exeSubIndexStr,
gilbertlee-amd's avatar
gilbertlee-amd committed
878
879
               transfer->DstToStr().c_str(),
               transfer->numSubExecs,
880
               transfer->transferBandwidth, transfer->transferTime,
gilbertlee-amd's avatar
gilbertlee-amd committed
881
882
               PtrVectorToStr(transfer->srcMem, initOffset).c_str(),
               PtrVectorToStr(transfer->dstMem, initOffset).c_str());
gilbertlee-amd's avatar
gilbertlee-amd committed
883
884
885
      }
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
886

gilbertlee-amd's avatar
gilbertlee-amd committed
887
888
889
  // Display aggregate statistics
  if (verbose)
  {
Gilbert Lee's avatar
Gilbert Lee committed
890
    if (!ev.outputToCsv)
Gilbert Lee's avatar
Gilbert Lee committed
891
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
892
      printf(" Aggregate (CPU)  | %7.3f GB/s | %8.3f ms | %12lu bytes | Overhead: %.3f ms\n",
893
             totalBandwidthGbs, totalCpuTime, totalBytesTransferred, totalCpuTime - maxGpuTime);
Gilbert Lee's avatar
Gilbert Lee committed
894
895
896
    }
    else
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
897
      printf("%d,ALL,%lu,ALL,ALL,ALL,ALL,%.3f,%.3f,ALL,ALL\n",
898
             testNum, totalBytesTransferred, totalBandwidthGbs, totalCpuTime);
Gilbert Lee's avatar
Gilbert Lee committed
899
900
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
901

Gilbert Lee's avatar
Gilbert Lee committed
902
  // Release GPU memory
903
cleanup:
Gilbert Lee's avatar
Gilbert Lee committed
904
905
  for (auto exeInfoPair : transferMap)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
906
907
908
909
    ExecutorInfo& exeInfo  = exeInfoPair.second;
    ExeType const exeType  = exeInfoPair.first.first;
    int     const exeIndex = RemappedIndex(exeInfoPair.first.second, IsCpuType(exeType));

Gilbert Lee's avatar
Gilbert Lee committed
910
911
    for (auto& transfer : exeInfo.transfers)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
912
913
914
915
916
917
918
919
920
921
922
      for (int iSrc = 0; iSrc < transfer->numSrcs; ++iSrc)
      {
        MemType const& srcType = transfer->srcType[iSrc];
        DeallocateMemory(srcType, transfer->srcMem[iSrc], transfer->numBytesActual + ev.byteOffset);
      }
      for (int iDst = 0; iDst < transfer->numDsts; ++iDst)
      {
        MemType const& dstType = transfer->dstType[iDst];
        DeallocateMemory(dstType, transfer->dstMem[iDst], transfer->numBytesActual + ev.byteOffset);
      }
      transfer->subExecParam.clear();
923
924
925
926
927
928
929

      if (exeType == EXE_GPU_DMA && transfer->exeSubIndex != -1)
      {
#if !defined(__NVCC__)
        HSA_CHECK(hsa_signal_destroy(transfer->signal));
#endif
      }
Gilbert Lee's avatar
Gilbert Lee committed
930
931
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
932
    if (IsGpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
933
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
934
935
      int const numStreams = (int)exeInfo.streams.size();
      for (int i = 0; i < numStreams; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
936
      {
Gilbert Lee's avatar
Gilbert Lee committed
937
938
939
        HIP_CALL(hipEventDestroy(exeInfo.startEvents[i]));
        HIP_CALL(hipEventDestroy(exeInfo.stopEvents[i]));
        HIP_CALL(hipStreamDestroy(exeInfo.streams[i]));
Gilbert Lee's avatar
Gilbert Lee committed
940
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
941
942
943

      if (exeType == EXE_GPU_GFX)
      {
944
#if !defined(__NVCC__)
gilbertlee-amd's avatar
gilbertlee-amd committed
945
        DeallocateMemory(MEM_GPU, exeInfo.subExecParamGpu);
946
#else
947
        DeallocateMemory(MEM_MANAGED, exeInfo.subExecParamGpu);
948
#endif
gilbertlee-amd's avatar
gilbertlee-amd committed
949
      }
Gilbert Lee's avatar
Gilbert Lee committed
950
951
952
953
954
955
    }
  }
}

void DisplayUsage(char const* cmdName)
{
Gilbert Lee's avatar
Gilbert Lee committed
956
  printf("TransferBench v%s\n", TB_VERSION);
Gilbert Lee's avatar
Gilbert Lee committed
957
958
959
960
961
962
963
964
965
966
967
968
969
  printf("========================================\n");

  if (numa_available() == -1)
  {
    printf("[ERROR] NUMA library not supported. Check to see if libnuma has been installed on this system\n");
    exit(1);
  }
  int numGpuDevices;
  HIP_CALL(hipGetDeviceCount(&numGpuDevices));
  int const numCpuDevices = numa_num_configured_nodes();

  printf("Usage: %s config <N>\n", cmdName);
  printf("  config: Either:\n");
Gilbert Lee's avatar
Gilbert Lee committed
970
  printf("          - Filename of configFile containing Transfers to execute (see example.cfg for format)\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
971
972
973
  printf("          - Name of preset config:\n");
  printf("              p2p          - Peer-to-peer benchmark tests\n");
  printf("              sweep/rsweep - Sweep/random sweep across possible sets of Transfers\n");
974
975
976
977
978
  printf("                             - 3rd optional arg: # GPU SubExecs per Transfer\n");
  printf("                             - 4th optional arg: # CPU SubExecs per Transfer\n");
  printf("              scaling      - GPU SubExec scaling copy test\n");
  printf("                             - 3th optional arg: Max # of SubExecs to use\n");
  printf("                             - 4rd optional arg: GPU index to use as executor\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
979
980
  printf("              a2a          - GPU All-To-All benchmark\n");
  printf("                             - 3rd optional arg: # of SubExecs to use\n");
981
  printf("              cmdline      - Read Transfers from command line arguments (after N)\n");
Gilbert Lee's avatar
Gilbert Lee committed
982
  printf("  N     : (Optional) Number of bytes to copy per Transfer.\n");
Gilbert Lee's avatar
Gilbert Lee committed
983
  printf("          If not specified, defaults to %lu bytes. Must be a multiple of 4 bytes\n",
Gilbert Lee's avatar
Gilbert Lee committed
984
         DEFAULT_BYTES_PER_TRANSFER);
Gilbert Lee's avatar
Gilbert Lee committed
985
986
987
988
989
990
991
  printf("          If 0 is specified, a range of Ns will be benchmarked\n");
  printf("          May append a suffix ('K', 'M', 'G') for kilobytes / megabytes / gigabytes\n");
  printf("\n");

  EnvVars::DisplayUsage();
}

gilbertlee-amd's avatar
gilbertlee-amd committed
992
int RemappedIndex(int const origIdx, bool const isCpuType)
Gilbert Lee's avatar
Gilbert Lee committed
993
{
994
995
  static std::vector<int> remappingCpu;
  static std::vector<int> remappingGpu;
Gilbert Lee's avatar
Gilbert Lee committed
996

997
998
999
1000
1001
1002
1003
1004
  // Build CPU remapping on first use
  // Skip numa nodes that are not configured
  if (remappingCpu.empty())
  {
    for (int node = 0; node <= numa_max_node(); node++)
      if (numa_bitmask_isbitset(numa_get_mems_allowed(), node))
        remappingCpu.push_back(node);
  }
Gilbert Lee's avatar
Gilbert Lee committed
1005

1006
1007
  // Build remappingGpu on first use
  if (remappingGpu.empty())
Gilbert Lee's avatar
Gilbert Lee committed
1008
1009
1010
  {
    int numGpuDevices;
    HIP_CALL(hipGetDeviceCount(&numGpuDevices));
1011
    remappingGpu.resize(numGpuDevices);
Gilbert Lee's avatar
Gilbert Lee committed
1012
1013
1014
1015

    int const usePcieIndexing = getenv("USE_PCIE_INDEX") ? atoi(getenv("USE_PCIE_INDEX")) : 0;
    if (!usePcieIndexing)
    {
1016
      // For HIP-based indexing no remappingGpu is necessary
Gilbert Lee's avatar
Gilbert Lee committed
1017
      for (int i = 0; i < numGpuDevices; ++i)
1018
        remappingGpu[i] = i;
Gilbert Lee's avatar
Gilbert Lee committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
    }
    else
    {
      // Collect PCIe address for each GPU
      std::vector<std::pair<std::string, int>> mapping;
      char pciBusId[20];
      for (int i = 0; i < numGpuDevices; ++i)
      {
        HIP_CALL(hipDeviceGetPCIBusId(pciBusId, 20, i));
        mapping.push_back(std::make_pair(pciBusId, i));
      }
      // Sort GPUs by PCIe address then use that as mapping
      std::sort(mapping.begin(), mapping.end());
      for (int i = 0; i < numGpuDevices; ++i)
1033
        remappingGpu[i] = mapping[i].second;
Gilbert Lee's avatar
Gilbert Lee committed
1034
1035
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1036
  return isCpuType ? remappingCpu[origIdx] : remappingGpu[origIdx];
Gilbert Lee's avatar
Gilbert Lee committed
1037
1038
1039
1040
}

void DisplayTopology(bool const outputToCsv)
{
1041

1042
  int numCpuDevices = numa_num_configured_nodes();
Gilbert Lee's avatar
Gilbert Lee committed
1043
1044
1045
1046
1047
  int numGpuDevices;
  HIP_CALL(hipGetDeviceCount(&numGpuDevices));

  if (outputToCsv)
  {
1048
    printf("NumCpus,%d\n", numCpuDevices);
Gilbert Lee's avatar
Gilbert Lee committed
1049
    printf("NumGpus,%d\n", numGpuDevices);
1050
1051
1052
  }
  else
  {
1053
1054
    printf("\nDetected topology: %d configured CPU NUMA node(s) [%d total]   %d GPU device(s)\n",
           numa_num_configured_nodes(), numa_max_node() + 1, numGpuDevices);
1055
1056
1057
1058
1059
1060
1061
1062
  }

  // Print out detected CPU topology
  if (outputToCsv)
  {
    printf("NUMA");
    for (int j = 0; j < numCpuDevices; j++)
      printf(",NUMA%02d", j);
1063
    printf(",# CPUs,ClosestGPUs,ActualNode\n");
1064
1065
1066
  }
  else
  {
1067
    printf("            |");
1068
    for (int j = 0; j < numCpuDevices; j++)
1069
1070
1071
1072
      printf("NUMA %02d|", j);
    printf(" #Cpus | Closest GPU(s)\n");

    printf("------------+");
1073
    for (int j = 0; j <= numCpuDevices; j++)
1074
1075
      printf("-------+");
    printf("---------------\n");
1076
1077
1078
1079
  }

  for (int i = 0; i < numCpuDevices; i++)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1080
    int nodeI = RemappedIndex(i, true);
1081
    printf("NUMA %02d (%02d)%s", i, nodeI, outputToCsv ? "," : "|");
1082
1083
    for (int j = 0; j < numCpuDevices; j++)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1084
      int nodeJ = RemappedIndex(j, true);
1085
      int numaDist = numa_distance(nodeI, nodeJ);
1086
      if (outputToCsv)
gilbertlee-amd's avatar
gilbertlee-amd committed
1087
        printf("%d,", numaDist);
1088
      else
1089
        printf(" %5d |", numaDist);
1090
1091
1092
1093
    }

    int numCpus = 0;
    for (int j = 0; j < numa_num_configured_cpus(); j++)
1094
      if (numa_node_of_cpu(j) == nodeI) numCpus++;
1095
1096
1097
    if (outputToCsv)
      printf("%d,", numCpus);
    else
1098
      printf(" %5d | ", numCpus);
1099

1100
#if !defined(__NVCC__)
1101
1102
1103
    bool isFirst = true;
    for (int j = 0; j < numGpuDevices; j++)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1104
      if (GetClosestNumaNode(RemappedIndex(j, false)) == i)
1105
1106
      {
        if (isFirst) isFirst = false;
gilbertlee-amd's avatar
gilbertlee-amd committed
1107
1108
        else printf(",");
        printf("%d", j);
1109
1110
      }
    }
1111
#endif
1112
1113
1114
1115
    printf("\n");
  }
  printf("\n");

1116
#if defined(__NVCC__)
1117
1118
1119
1120
1121
1122
1123
1124

  for (int i = 0; i < numGpuDevices; i++)
  {
    hipDeviceProp_t prop;
    HIP_CALL(hipGetDeviceProperties(&prop, i));
    printf(" GPU %02d | %s\n", i, prop.name);
  }

1125
1126
  // No further topology detection done for NVIDIA platforms
  return;
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
#else
    // Figure out DMA engines per GPU
  std::vector<std::set<int>> dmaEngineIdsPerDevice(numGpuDevices);
  {
    std::vector<hsa_agent_t> agentList;
    hsa_amd_pointer_info_t info;
    info.size = sizeof(info);
    for (int deviceId = 0; deviceId < numGpuDevices; deviceId++)
    {
      HIP_CALL(hipSetDevice(deviceId));
      int32_t* tempBuffer;
      HIP_CALL(hipMalloc((void**)&tempBuffer, 1024));
      HSA_CHECK(hsa_amd_pointer_info(tempBuffer, &info, NULL, NULL, NULL));
      agentList.push_back(info.agentOwner);
      HIP_CALL(hipFree(tempBuffer));
    }

    for (int srcDevice = 0; srcDevice < numGpuDevices; srcDevice++)
    {
      dmaEngineIdsPerDevice[srcDevice].clear();
      for (int dstDevice = 0; dstDevice < numGpuDevices; dstDevice++)
      {
        if (srcDevice == dstDevice) continue;
        uint32_t engineIdMask = 0;
        if (hsa_amd_memory_copy_engine_status(agentList[dstDevice],
                                              agentList[srcDevice],
                                              &engineIdMask) != HSA_STATUS_SUCCESS)
          continue;
        for (int engineId = 0; engineId < 32; engineId++)
        {
          if (engineIdMask & (1U << engineId))
            dmaEngineIdsPerDevice[srcDevice].insert(engineId);
        }
      }
    }
  }
1163

1164
1165
1166
  // Print out detected GPU topology
  if (outputToCsv)
  {
Gilbert Lee's avatar
Gilbert Lee committed
1167
1168
1169
    printf("GPU");
    for (int j = 0; j < numGpuDevices; j++)
      printf(",GPU %02d", j);
1170
    printf(",PCIe Bus ID,ClosestNUMA,DMA engines\n");
Gilbert Lee's avatar
Gilbert Lee committed
1171
1172
1173
  }
  else
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
    printf("        |");
    for (int j = 0; j < numGpuDevices; j++)
    {
      hipDeviceProp_t prop;
      HIP_CALL(hipGetDeviceProperties(&prop, j));
      std::string fullName = prop.gcnArchName;
      std::string archName = fullName.substr(0, fullName.find(':'));
      printf(" %6s |", archName.c_str());
    }
    printf("\n");
Gilbert Lee's avatar
Gilbert Lee committed
1184
1185
1186
    printf("        |");
    for (int j = 0; j < numGpuDevices; j++)
      printf(" GPU %02d |", j);
1187
    printf(" PCIe Bus ID  | #CUs | Closest NUMA | DMA engines\n");
Gilbert Lee's avatar
Gilbert Lee committed
1188
1189
    for (int j = 0; j <= numGpuDevices; j++)
      printf("--------+");
1190
    printf("--------------+------+-------------+------------\n");
Gilbert Lee's avatar
Gilbert Lee committed
1191
1192
1193
1194
1195
  }

  char pciBusId[20];
  for (int i = 0; i < numGpuDevices; i++)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1196
    int const deviceIdx = RemappedIndex(i, false);
Gilbert Lee's avatar
Gilbert Lee committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    printf("%sGPU %02d%s", outputToCsv ? "" : " ", i, outputToCsv ? "," : " |");
    for (int j = 0; j < numGpuDevices; j++)
    {
      if (i == j)
      {
        if (outputToCsv)
          printf("-,");
        else
          printf("    -   |");
      }
      else
      {
        uint32_t linkType, hopCount;
gilbertlee-amd's avatar
gilbertlee-amd committed
1210
1211
        HIP_CALL(hipExtGetLinkTypeAndHopCount(deviceIdx,
                                              RemappedIndex(j, false),
Gilbert Lee's avatar
Gilbert Lee committed
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
                                              &linkType, &hopCount));
        printf("%s%s-%d%s",
               outputToCsv ? "" : " ",
               linkType == HSA_AMD_LINK_INFO_TYPE_HYPERTRANSPORT ? "  HT" :
               linkType == HSA_AMD_LINK_INFO_TYPE_QPI            ? " QPI" :
               linkType == HSA_AMD_LINK_INFO_TYPE_PCIE           ? "PCIE" :
               linkType == HSA_AMD_LINK_INFO_TYPE_INFINBAND      ? "INFB" :
               linkType == HSA_AMD_LINK_INFO_TYPE_XGMI           ? "XGMI" : "????",
               hopCount, outputToCsv ? "," : " |");
      }
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1223
1224
1225
1226
1227
    HIP_CALL(hipDeviceGetPCIBusId(pciBusId, 20, deviceIdx));

    int numDeviceCUs = 0;
    HIP_CALL(hipDeviceGetAttribute(&numDeviceCUs, hipDeviceAttributeMultiprocessorCount, deviceIdx));

Gilbert Lee's avatar
Gilbert Lee committed
1228
    if (outputToCsv)
1229
      printf("%s,%d,%d,", pciBusId, numDeviceCUs, GetClosestNumaNode(deviceIdx));
Gilbert Lee's avatar
Gilbert Lee committed
1230
    else
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    {
      printf(" %11s | %4d | %-12d |", pciBusId, numDeviceCUs, GetClosestNumaNode(deviceIdx));

      bool isFirst = true;
      for (auto x : dmaEngineIdsPerDevice[deviceIdx])
      {
        if (isFirst) isFirst = false; else printf(",");
        printf("%d", x);
      }
      printf("\n");
    }
Gilbert Lee's avatar
Gilbert Lee committed
1242
  }
1243
#endif
Gilbert Lee's avatar
Gilbert Lee committed
1244
1245
}

1246
void ParseMemType(EnvVars const& ev, std::string const& token,
gilbertlee-amd's avatar
gilbertlee-amd committed
1247
                  std::vector<MemType>& memTypes, std::vector<int>& memIndices)
Gilbert Lee's avatar
Gilbert Lee committed
1248
1249
{
  char typeChar;
gilbertlee-amd's avatar
gilbertlee-amd committed
1250
1251
  int offset = 0, devIndex, inc;
  bool found = false;
Gilbert Lee's avatar
Gilbert Lee committed
1252

gilbertlee-amd's avatar
gilbertlee-amd committed
1253
1254
1255
  memTypes.clear();
  memIndices.clear();
  while (sscanf(token.c_str() + offset, " %c %d%n", &typeChar, &devIndex, &inc) == 2)
Gilbert Lee's avatar
Gilbert Lee committed
1256
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1257
1258
1259
    offset += inc;
    MemType memType = CharToMemType(typeChar);

1260
    if (IsCpuType(memType) && (devIndex < 0 || devIndex >= ev.numCpuDevices))
Gilbert Lee's avatar
Gilbert Lee committed
1261
    {
1262
      printf("[ERROR] CPU index must be between 0 and %d (instead of %d)\n", ev.numCpuDevices-1, devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1263
1264
      exit(1);
    }
1265
    if (IsGpuType(memType) && (devIndex < 0 || devIndex >= ev.numGpuDevices))
Gilbert Lee's avatar
Gilbert Lee committed
1266
    {
1267
      printf("[ERROR] GPU index must be between 0 and %d (instead of %d)\n", ev.numGpuDevices-1, devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1268
1269
      exit(1);
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285

    found = true;
    if (memType != MEM_NULL)
    {
      memTypes.push_back(memType);
      memIndices.push_back(devIndex);
    }
  }
  if (!found)
  {
    printf("[ERROR] Unable to parse memory type token %s.  Expected one of %s followed by an index\n",
           token.c_str(), MemTypeStr);
    exit(1);
  }
}

1286
1287
void ParseExeType(EnvVars const& ev, std::string const& token,
                  ExeType &exeType, int& exeIndex, int& exeSubIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
1288
1289
{
  char typeChar;
1290
1291
1292
  exeSubIndex = -1;
  int numTokensParsed = sscanf(token.c_str(), " %c%d.%d", &typeChar, &exeIndex, &exeSubIndex);
  if (numTokensParsed < 2)
gilbertlee-amd's avatar
gilbertlee-amd committed
1293
1294
1295
1296
1297
1298
1299
  {
    printf("[ERROR] Unable to parse valid executor token (%s).  Exepected one of %s followed by an index\n",
           token.c_str(), ExeTypeStr);
    exit(1);
  }
  exeType = CharToExeType(typeChar);

1300
  if (IsCpuType(exeType) && (exeIndex < 0 || exeIndex >= ev.numCpuDevices))
gilbertlee-amd's avatar
gilbertlee-amd committed
1301
  {
1302
    printf("[ERROR] CPU index must be between 0 and %d (instead of %d)\n", ev.numCpuDevices-1, exeIndex);
gilbertlee-amd's avatar
gilbertlee-amd committed
1303
1304
    exit(1);
  }
1305
  if (IsGpuType(exeType) && (exeIndex < 0 || exeIndex >= ev.numGpuDevices))
gilbertlee-amd's avatar
gilbertlee-amd committed
1306
  {
1307
    printf("[ERROR] GPU index must be between 0 and %d (instead of %d)\n", ev.numGpuDevices-1, exeIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1308
1309
    exit(1);
  }
1310
1311
1312
1313
1314
1315
1316
1317
1318
  if (exeType == EXE_GPU_GFX && exeSubIndex != -1)
  {
    int const idx = RemappedIndex(exeIndex, false);
    if (ev.xccIdsPerDevice[idx].count(exeSubIndex) == 0)
    {
      printf("[ERROR] GPU %d does not have subIndex %d\n", exeIndex, exeSubIndex);
      exit(1);
    }
  }
Gilbert Lee's avatar
Gilbert Lee committed
1319
1320
}

Gilbert Lee's avatar
Gilbert Lee committed
1321
// Helper function to parse a list of Transfer definitions
1322
void ParseTransfers(EnvVars const& ev, char* line, std::vector<Transfer>& transfers)
Gilbert Lee's avatar
Gilbert Lee committed
1323
1324
1325
1326
1327
{
  // Replace any round brackets or '->' with spaces,
  for (int i = 1; line[i]; i++)
    if (line[i] == '(' || line[i] == ')' || line[i] == '-' || line[i] == '>' ) line[i] = ' ';

Gilbert Lee's avatar
Gilbert Lee committed
1328
  transfers.clear();
Gilbert Lee's avatar
Gilbert Lee committed
1329

Gilbert Lee's avatar
Gilbert Lee committed
1330
  int numTransfers = 0;
Gilbert Lee's avatar
Gilbert Lee committed
1331
  std::istringstream iss(line);
Gilbert Lee's avatar
Gilbert Lee committed
1332
  iss >> numTransfers;
Gilbert Lee's avatar
Gilbert Lee committed
1333
1334
1335
1336
1337
  if (iss.fail()) return;

  std::string exeMem;
  std::string srcMem;
  std::string dstMem;
Gilbert Lee's avatar
Gilbert Lee committed
1338

gilbertlee-amd's avatar
gilbertlee-amd committed
1339
  // If numTransfers < 0, read 5-tuple (srcMem, exeMem, dstMem, #CUs, #Bytes)
Gilbert Lee's avatar
Gilbert Lee committed
1340
  // otherwise read triples (srcMem, exeMem, dstMem)
gilbertlee-amd's avatar
gilbertlee-amd committed
1341
  bool const advancedMode = (numTransfers < 0);
Gilbert Lee's avatar
Gilbert Lee committed
1342
1343
  numTransfers = abs(numTransfers);

gilbertlee-amd's avatar
gilbertlee-amd committed
1344
  int numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
1345
  if (!advancedMode)
Gilbert Lee's avatar
Gilbert Lee committed
1346
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1347
1348
    iss >> numSubExecs;
    if (numSubExecs <= 0 || iss.fail())
Gilbert Lee's avatar
Gilbert Lee committed
1349
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1350
      printf("Parsing error: Number of blocks to use (%d) must be greater than 0\n", numSubExecs);
Gilbert Lee's avatar
Gilbert Lee committed
1351
1352
1353
1354
      exit(1);
    }
  }

gilbertlee-amd's avatar
gilbertlee-amd committed
1355
  size_t numBytes = 0;
Gilbert Lee's avatar
Gilbert Lee committed
1356
1357
1358
  for (int i = 0; i < numTransfers; i++)
  {
    Transfer transfer;
gilbertlee-amd's avatar
gilbertlee-amd committed
1359
    transfer.numBytes = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
1360
    transfer.numBytesActual = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
1361
    if (!advancedMode)
Gilbert Lee's avatar
Gilbert Lee committed
1362
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
      iss >> srcMem >> exeMem >> dstMem;
      if (iss.fail())
      {
        printf("Parsing error: Unable to read valid Transfer %d (SRC EXE DST) triplet\n", i+1);
        exit(1);
      }
    }
    else
    {
      std::string numBytesToken;
gilbertlee-amd's avatar
gilbertlee-amd committed
1373
      iss >> srcMem >> exeMem >> dstMem >> numSubExecs >> numBytesToken;
gilbertlee-amd's avatar
gilbertlee-amd committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
      if (iss.fail())
      {
        printf("Parsing error: Unable to read valid Transfer %d (SRC EXE DST #CU #Bytes) tuple\n", i+1);
        exit(1);
      }
      if (sscanf(numBytesToken.c_str(), "%lu", &numBytes) != 1)
      {
        printf("Parsing error: '%s' is not a valid expression of numBytes for Transfer %d\n", numBytesToken.c_str(), i+1);
        exit(1);
      }
      char units = numBytesToken.back();
gilbertlee-amd's avatar
gilbertlee-amd committed
1385
      switch (toupper(units))
gilbertlee-amd's avatar
gilbertlee-amd committed
1386
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1387
1388
1389
      case 'K': numBytes *= 1024; break;
      case 'M': numBytes *= 1024*1024; break;
      case 'G': numBytes *= 1024*1024*1024; break;
gilbertlee-amd's avatar
gilbertlee-amd committed
1390
      }
Gilbert Lee's avatar
Gilbert Lee committed
1391
    }
Gilbert Lee's avatar
Gilbert Lee committed
1392

1393
1394
1395
    ParseMemType(ev, srcMem, transfer.srcType, transfer.srcIndex);
    ParseMemType(ev, dstMem, transfer.dstType, transfer.dstIndex);
    ParseExeType(ev, exeMem, transfer.exeType, transfer.exeIndex, transfer.exeSubIndex);
gilbertlee-amd's avatar
gilbertlee-amd committed
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411

    transfer.numSrcs = (int)transfer.srcType.size();
    transfer.numDsts = (int)transfer.dstType.size();
    if (transfer.numSrcs == 0 && transfer.numDsts == 0)
    {
      printf("[ERROR] Transfer must have at least one src or dst\n");
      exit(1);
    }

    if (transfer.exeType == EXE_GPU_DMA && (transfer.numSrcs > 1 || transfer.numDsts > 1))
    {
      printf("[ERROR] GPU DMA executor can only be used for single source / single dst Transfers\n");
      exit(1);
    }

    transfer.numSubExecs = numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
1412
    transfer.numBytes = numBytes;
Gilbert Lee's avatar
Gilbert Lee committed
1413
    transfers.push_back(transfer);
Gilbert Lee's avatar
Gilbert Lee committed
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
  }
}

void EnablePeerAccess(int const deviceId, int const peerDeviceId)
{
  int canAccess;
  HIP_CALL(hipDeviceCanAccessPeer(&canAccess, deviceId, peerDeviceId));
  if (!canAccess)
  {
    printf("[ERROR] Unable to enable peer access from GPU devices %d to %d\n", peerDeviceId, deviceId);
    exit(1);
  }
  HIP_CALL(hipSetDevice(deviceId));
Gilbert Lee's avatar
Gilbert Lee committed
1427
1428
1429
1430
1431
1432
1433
  hipError_t error = hipDeviceEnablePeerAccess(peerDeviceId, 0);
  if (error != hipSuccess && error != hipErrorPeerAccessAlreadyEnabled)
  {
    printf("[ERROR] Unable to enable peer to peer access from %d to %d (%s)\n",
           deviceId, peerDeviceId, hipGetErrorString(error));
    exit(1);
  }
Gilbert Lee's avatar
Gilbert Lee committed
1434
1435
1436
1437
1438
1439
1440
1441
1442
}

void AllocateMemory(MemType memType, int devIndex, size_t numBytes, void** memPtr)
{
  if (numBytes == 0)
  {
    printf("[ERROR] Unable to allocate 0 bytes\n");
    exit(1);
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1443
  *memPtr = nullptr;
gilbertlee-amd's avatar
gilbertlee-amd committed
1444
  if (IsCpuType(memType))
Gilbert Lee's avatar
Gilbert Lee committed
1445
1446
  {
    // Set numa policy prior to call to hipHostMalloc
1447
    numa_set_preferred(devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1448
1449
1450
1451

    // Allocate host-pinned memory (should respect NUMA mem policy)
    if (memType == MEM_CPU_FINE)
    {
1452
1453
1454
1455
#if defined (__NVCC__)
      printf("[ERROR] Fine-grained CPU memory not supported on NVIDIA platform\n");
      exit(1);
#else
Gilbert Lee's avatar
Gilbert Lee committed
1456
      HIP_CALL(hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser));
1457
#endif
Gilbert Lee's avatar
Gilbert Lee committed
1458
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1459
    else if (memType == MEM_CPU)
Gilbert Lee's avatar
Gilbert Lee committed
1460
    {
1461
1462
1463
#if defined (__NVCC__)
      if (hipHostMalloc((void **)memPtr, numBytes, 0) != hipSuccess)
#else
1464
      if (hipHostMalloc((void **)memPtr, numBytes, hipHostMallocNumaUser | hipHostMallocNonCoherent) != hipSuccess)
1465
#endif
1466
1467
1468
1469
      {
        printf("[ERROR] Unable to allocate non-coherent host memory on NUMA node %d\n", devIndex);
        exit(1);
      }
Gilbert Lee's avatar
Gilbert Lee committed
1470
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1471
1472
1473
1474
    else if (memType == MEM_CPU_UNPINNED)
    {
      *memPtr = numa_alloc_onnode(numBytes, devIndex);
    }
Gilbert Lee's avatar
Gilbert Lee committed
1475
1476

    // Check that the allocated pages are actually on the correct NUMA node
gilbertlee-amd's avatar
gilbertlee-amd committed
1477
    memset(*memPtr, 0, numBytes);
1478

gilbertlee-amd's avatar
gilbertlee-amd committed
1479
    CheckPages((char*)*memPtr, numBytes, devIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1480
1481

    // Reset to default numa mem policy
1482
    numa_set_preferred(-1);
Gilbert Lee's avatar
Gilbert Lee committed
1483
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1484
  else if (IsGpuType(memType))
Gilbert Lee's avatar
Gilbert Lee committed
1485
  {
1486
1487
1488
1489
1490
1491
1492
1493
    if (memType == MEM_GPU)
    {
      // Allocate GPU memory on appropriate device
      HIP_CALL(hipSetDevice(devIndex));
      HIP_CALL(hipMalloc((void**)memPtr, numBytes));
    }
    else if (memType == MEM_GPU_FINE)
    {
1494
#if defined (__NVCC__)
1495
1496
      printf("[ERROR] Fine-grained GPU memory not supported on NVIDIA platform\n");
      exit(1);
1497
#else
1498
      HIP_CALL(hipSetDevice(devIndex));
1499
      int flag = hipDeviceMallocUncached;
gilbertlee-amd's avatar
gilbertlee-amd committed
1500
      HIP_CALL(hipExtMallocWithFlags((void**)memPtr, numBytes, flag));
1501
#endif
1502
    }
1503
1504
1505
1506
1507
    else if (memType == MEM_MANAGED)
    {
      HIP_CALL(hipSetDevice(devIndex));
      HIP_CALL(hipMallocManaged((void**)memPtr, numBytes));
    }
1508
    HIP_CALL(hipMemset(*memPtr, 0, numBytes));
gilbertlee-amd's avatar
gilbertlee-amd committed
1509
    HIP_CALL(hipDeviceSynchronize());
Gilbert Lee's avatar
Gilbert Lee committed
1510
1511
1512
1513
1514
1515
1516
1517
  }
  else
  {
    printf("[ERROR] Unsupported memory type %d\n", memType);
    exit(1);
  }
}

gilbertlee-amd's avatar
gilbertlee-amd committed
1518
void DeallocateMemory(MemType memType, void* memPtr, size_t const bytes)
Gilbert Lee's avatar
Gilbert Lee committed
1519
1520
1521
{
  if (memType == MEM_CPU || memType == MEM_CPU_FINE)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1522
1523
1524
1525
1526
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null CPU pointer for %lu bytes.  Skipping hipHostFree\n", bytes);
      return;
    }
Gilbert Lee's avatar
Gilbert Lee committed
1527
1528
    HIP_CALL(hipHostFree(memPtr));
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1529
1530
  else if (memType == MEM_CPU_UNPINNED)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1531
1532
1533
1534
1535
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null unpinned CPU pointer for %lu bytes.  Skipping numa_free\n", bytes);
      return;
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
1536
1537
    numa_free(memPtr, bytes);
  }
Gilbert Lee's avatar
Gilbert Lee committed
1538
1539
  else if (memType == MEM_GPU || memType == MEM_GPU_FINE)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
1540
1541
1542
1543
1544
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null GPU pointer for %lu bytes. Skipping hipFree\n", bytes);
      return;
    }
Gilbert Lee's avatar
Gilbert Lee committed
1545
1546
    HIP_CALL(hipFree(memPtr));
  }
1547
1548
1549
1550
1551
1552
1553
1554
1555
  else if (memType == MEM_MANAGED)
  {
    if (memPtr == nullptr)
    {
      printf("[ERROR] Attempting to free null managed pointer for %lu bytes. Skipping hipMFree\n", bytes);
      return;
    }
    HIP_CALL(hipFree(memPtr));
  }
Gilbert Lee's avatar
Gilbert Lee committed
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
}

void CheckPages(char* array, size_t numBytes, int targetId)
{
  unsigned long const pageSize = getpagesize();
  unsigned long const numPages = (numBytes + pageSize - 1) / pageSize;

  std::vector<void *> pages(numPages);
  std::vector<int> status(numPages);

  pages[0] = array;
  for (int i = 1; i < numPages; i++)
  {
    pages[i] = (char*)pages[i-1] + pageSize;
  }

  long const retCode = move_pages(0, numPages, pages.data(), NULL, status.data(), 0);
  if (retCode)
  {
    printf("[ERROR] Unable to collect page info\n");
    exit(1);
  }

  size_t mistakeCount = 0;
  for (int i = 0; i < numPages; i++)
  {
    if (status[i] < 0)
    {
      printf("[ERROR] Unexpected page status %d for page %d\n", status[i], i);
      exit(1);
    }
    if (status[i] != targetId) mistakeCount++;
  }
  if (mistakeCount > 0)
  {
    printf("[ERROR] %lu out of %lu pages for memory allocation were not on NUMA node %d\n", mistakeCount, numPages, targetId);
    exit(1);
  }
}

1596
1597
uint32_t GetId(uint32_t hwId)
{
1598
1599
1600
#if defined(__NVCC_)
  return hwId;
#else
1601
  // Based on instinct-mi200-cdna2-instruction-set-architecture.pdf
1602
1603
1604
  int const shId = (hwId >> 12) &  1;
  int const cuId = (hwId >>  8) & 15;
  int const seId = (hwId >> 13) &  3;
1605
  return (shId << 5) + (cuId << 2) + seId;
1606
#endif
1607
1608
}

1609
void RunTransfer(EnvVars const& ev, int const iteration,
Gilbert Lee's avatar
Gilbert Lee committed
1610
                 ExecutorInfo& exeInfo, int const transferIdx)
Gilbert Lee's avatar
Gilbert Lee committed
1611
{
gilbertlee-amd's avatar
gilbertlee-amd committed
1612
  Transfer* transfer = exeInfo.transfers[transferIdx];
Gilbert Lee's avatar
Gilbert Lee committed
1613

gilbertlee-amd's avatar
gilbertlee-amd committed
1614
  if (transfer->exeType == EXE_GPU_GFX)
Gilbert Lee's avatar
Gilbert Lee committed
1615
1616
  {
    // Switch to executing GPU
gilbertlee-amd's avatar
gilbertlee-amd committed
1617
    int const exeIndex = RemappedIndex(transfer->exeIndex, false);
Gilbert Lee's avatar
Gilbert Lee committed
1618
1619
    HIP_CALL(hipSetDevice(exeIndex));

Gilbert Lee's avatar
Gilbert Lee committed
1620
1621
1622
    hipStream_t& stream     = exeInfo.streams[transferIdx];
    hipEvent_t&  startEvent = exeInfo.startEvents[transferIdx];
    hipEvent_t&  stopEvent  = exeInfo.stopEvents[transferIdx];
Gilbert Lee's avatar
Gilbert Lee committed
1623

gilbertlee-amd's avatar
gilbertlee-amd committed
1624
1625
1626
1627
    // Figure out how many threadblocks to use.
    // In single stream mode, all the threadblocks for this GPU are launched
    // Otherwise, just launch the threadblocks associated with this single Transfer
    int const numBlocksToRun = ev.useSingleStream ? exeInfo.totalSubExecs : transfer->numSubExecs;
1628
    int const numXCCs = (ev.useXccFilter ? ev.xccIdsPerDevice[exeIndex].size() : 1);
1629
1630
    dim3 const gridSize(numXCCs, numBlocksToRun, 1);
    dim3 const blockSize(ev.gfxBlockSize, 1, 1);
1631

1632
1633
#if defined(__NVCC__)
    HIP_CALL(hipEventRecord(startEvent, stream));
1634
1635
    GpuKernelTable[ev.gfxBlockSize/64 - 1][ev.gfxUnroll - 1]
      <<<gridSize, blockSize, ev.sharedMemBytes, stream>>>(transfer->subExecParamGpuPtr, ev.gfxWaveOrder);
1636
1637
    HIP_CALL(hipEventRecord(stopEvent, stream));
#else
1638
1639
    hipExtLaunchKernelGGL(GpuKernelTable[ev.gfxBlockSize/64 - 1][ev.gfxUnroll - 1],
                          gridSize, blockSize,
gilbertlee-amd's avatar
gilbertlee-amd committed
1640
1641
                          ev.sharedMemBytes, stream,
                          startEvent, stopEvent,
gilbertlee-amd's avatar
gilbertlee-amd committed
1642
                          0, transfer->subExecParamGpuPtr, ev.gfxWaveOrder);
1643
#endif
Gilbert Lee's avatar
Gilbert Lee committed
1644
1645
    // Synchronize per iteration, unless in single sync mode, in which case
    // synchronize during last warmup / last actual iteration
Gilbert Lee's avatar
Gilbert Lee committed
1646
    HIP_CALL(hipStreamSynchronize(stream));
Gilbert Lee's avatar
Gilbert Lee committed
1647
1648
1649
1650

    if (iteration >= 0)
    {
      // Record GPU timing
Gilbert Lee's avatar
Gilbert Lee committed
1651
1652
      float gpuDeltaMsec;
      HIP_CALL(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
Gilbert Lee's avatar
Gilbert Lee committed
1653

Gilbert Lee's avatar
Gilbert Lee committed
1654
1655
      if (ev.useSingleStream)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1656
        // Figure out individual timings for Transfers that were all launched together
gilbertlee-amd's avatar
gilbertlee-amd committed
1657
        for (Transfer* currTransfer : exeInfo.transfers)
Gilbert Lee's avatar
Gilbert Lee committed
1658
        {
1659
1660
1661
          long long minStartCycle = std::numeric_limits<long long>::max();
          long long maxStopCycle  = std::numeric_limits<long long>::min();

gilbertlee-amd's avatar
gilbertlee-amd committed
1662
          std::set<std::pair<int,int>> CUs;
1663
          for (auto subExecIdx : currTransfer->subExecIdx)
Gilbert Lee's avatar
Gilbert Lee committed
1664
          {
1665
1666
1667
            minStartCycle = std::min(minStartCycle, exeInfo.subExecParamGpu[subExecIdx].startCycle);
            maxStopCycle  = std::max(maxStopCycle,  exeInfo.subExecParamGpu[subExecIdx].stopCycle);
            if (ev.showIterations)
gilbertlee-amd's avatar
gilbertlee-amd committed
1668
1669
              CUs.insert(std::make_pair(exeInfo.subExecParamGpu[subExecIdx].xccId,
                                        GetId(exeInfo.subExecParamGpu[subExecIdx].hwId)));
Gilbert Lee's avatar
Gilbert Lee committed
1670
          }
1671
          int const wallClockRate = ev.wallClockPerDeviceMhz[exeIndex];
Gilbert Lee's avatar
Gilbert Lee committed
1672
          double iterationTimeMs = (maxStopCycle - minStartCycle) / (double)(wallClockRate);
gilbertlee-amd's avatar
gilbertlee-amd committed
1673
          currTransfer->transferTime += iterationTimeMs;
1674
          if (ev.showIterations)
1675
          {
1676
            currTransfer->perIterationTime.push_back(iterationTimeMs);
1677
1678
            currTransfer->perIterationCUs.push_back(CUs);
          }
Gilbert Lee's avatar
Gilbert Lee committed
1679
        }
Gilbert Lee's avatar
Gilbert Lee committed
1680
1681
1682
1683
        exeInfo.totalTime += gpuDeltaMsec;
      }
      else
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1684
        transfer->transferTime += gpuDeltaMsec;
1685
        if (ev.showIterations)
1686
        {
1687
          transfer->perIterationTime.push_back(gpuDeltaMsec);
gilbertlee-amd's avatar
gilbertlee-amd committed
1688
          std::set<std::pair<int,int>> CUs;
1689
          for (int i = 0; i < transfer->numSubExecs; i++)
gilbertlee-amd's avatar
gilbertlee-amd committed
1690
1691
            CUs.insert(std::make_pair(transfer->subExecParamGpuPtr[i].xccId,
                                      GetId(transfer->subExecParamGpuPtr[i].hwId)));
1692
1693
          transfer->perIterationCUs.push_back(CUs);
        }
Gilbert Lee's avatar
Gilbert Lee committed
1694
1695
1696
      }
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
1697
1698
1699
1700
  else if (transfer->exeType == EXE_GPU_DMA)
  {
    int const exeIndex = RemappedIndex(transfer->exeIndex, false);

1701
    if (transfer->exeSubIndex == -1)
gilbertlee-amd's avatar
gilbertlee-amd committed
1702
    {
1703
1704
1705
1706
1707
      // Switch to executing GPU
      HIP_CALL(hipSetDevice(exeIndex));
      hipStream_t& stream     = exeInfo.streams[transferIdx];
      hipEvent_t&  startEvent = exeInfo.startEvents[transferIdx];
      hipEvent_t&  stopEvent  = exeInfo.stopEvents[transferIdx];
gilbertlee-amd's avatar
gilbertlee-amd committed
1708

1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
      HIP_CALL(hipEventRecord(startEvent, stream));
      if (transfer->numSrcs == 0 && transfer->numDsts == 1)
      {
        HIP_CALL(hipMemsetAsync(transfer->dstMem[0],
                                MEMSET_CHAR, transfer->numBytesActual, stream));
      }
      else if (transfer->numSrcs == 1 && transfer->numDsts == 1)
      {
        HIP_CALL(hipMemcpyAsync(transfer->dstMem[0], transfer->srcMem[0],
                                transfer->numBytesActual, hipMemcpyDefault,
                                stream));
      }
      HIP_CALL(hipEventRecord(stopEvent, stream));
      HIP_CALL(hipStreamSynchronize(stream));

      if (iteration >= 0)
      {
        // Record GPU timing
        float gpuDeltaMsec;
        HIP_CALL(hipEventElapsedTime(&gpuDeltaMsec, startEvent, stopEvent));
        transfer->transferTime += gpuDeltaMsec;
        if (ev.showIterations)
          transfer->perIterationTime.push_back(gpuDeltaMsec);
      }
    }
    else
gilbertlee-amd's avatar
gilbertlee-amd committed
1735
    {
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
#if defined(__NVCC__)
      printf("[ERROR] CUDA does not support targeting specific DMA engines\n");
      exit(1);
#else
      // Target specific DMA engine

      // Atomically set signal to 1
      HSA_CALL(hsa_signal_store_screlease(transfer->signal, 1));

      auto cpuStart = std::chrono::high_resolution_clock::now();
      HSA_CALL(hsa_amd_memory_async_copy_on_engine(transfer->dstMem[0], transfer->dstAgent,
                                                   transfer->srcMem[0], transfer->srcAgent,
                                                   transfer->numBytesActual, 0, NULL,
                                                   transfer->signal,
                                                   transfer->sdmaEngineId, true));
      // Wait for SDMA transfer to complete
      // NOTE: "A wait operation can spuriously resume at any time sooner than the timeout
      //        (for example, due to system or other external factors) even when the
      //         condition has not been met.)
      while(hsa_signal_wait_scacquire(transfer->signal,
                                      HSA_SIGNAL_CONDITION_LT, 1, UINT64_MAX,
                                      HSA_WAIT_STATE_ACTIVE) >= 1);
      if (iteration >= 0)
      {
        // Record GPU timing
        auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
        double deltaMsec = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0;
        transfer->transferTime += deltaMsec;
        if (ev.showIterations)
          transfer->perIterationTime.push_back(deltaMsec);
      }
#endif
gilbertlee-amd's avatar
gilbertlee-amd committed
1768
1769
1770
    }
  }
  else if (transfer->exeType == EXE_CPU) // CPU execution agent
Gilbert Lee's avatar
Gilbert Lee committed
1771
1772
  {
    // Force this thread and all child threads onto correct NUMA node
gilbertlee-amd's avatar
gilbertlee-amd committed
1773
    int const exeIndex = RemappedIndex(transfer->exeIndex, true);
1774
    if (numa_run_on_node(exeIndex))
Gilbert Lee's avatar
Gilbert Lee committed
1775
    {
1776
      printf("[ERROR] Unable to set CPU to NUMA node %d\n", exeIndex);
Gilbert Lee's avatar
Gilbert Lee committed
1777
1778
1779
1780
1781
1782
1783
      exit(1);
    }

    std::vector<std::thread> childThreads;

    auto cpuStart = std::chrono::high_resolution_clock::now();

gilbertlee-amd's avatar
gilbertlee-amd committed
1784
1785
1786
    // Launch each subExecutor in child-threads to perform memcopies
    for (int i = 0; i < transfer->numSubExecs; ++i)
      childThreads.push_back(std::thread(CpuReduceKernel, std::ref(transfer->subExecParam[i])));
Gilbert Lee's avatar
Gilbert Lee committed
1787
1788

    // Wait for child-threads to finish
gilbertlee-amd's avatar
gilbertlee-amd committed
1789
    for (int i = 0; i < transfer->numSubExecs; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
1790
1791
1792
1793
1794
1795
      childThreads[i].join();

    auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;

    // Record time if not a warmup iteration
    if (iteration >= 0)
1796
1797
1798
1799
1800
1801
    {
      double const delta = (std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count() * 1000.0);
      transfer->transferTime += delta;
      if (ev.showIterations)
        transfer->perIterationTime.push_back(delta);
    }
Gilbert Lee's avatar
Gilbert Lee committed
1802
1803
1804
  }
}

gilbertlee-amd's avatar
gilbertlee-amd committed
1805
void RunPeerToPeerBenchmarks(EnvVars const& ev, size_t N)
Gilbert Lee's avatar
Gilbert Lee committed
1806
{
gilbertlee-amd's avatar
gilbertlee-amd committed
1807
1808
  ev.DisplayP2PBenchmarkEnvVars();

1809
1810
1811
  char const separator = ev.outputToCsv ? ',' : ' ';
  printf("Bytes Per Direction%c%lu\n", separator, N * sizeof(float));

Gilbert Lee's avatar
Gilbert Lee committed
1812
  // Collect the number of available CPUs/GPUs on this machine
gilbertlee-amd's avatar
gilbertlee-amd committed
1813
1814
  int const numCpus    = ev.numCpuDevices;
  int const numGpus    = ev.numGpuDevices;
Gilbert Lee's avatar
Gilbert Lee committed
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
  int const numDevices = numCpus + numGpus;

  // Enable peer to peer for each GPU
  for (int i = 0; i < numGpus; i++)
    for (int j = 0; j < numGpus; j++)
      if (i != j) EnablePeerAccess(i, j);

  // Perform unidirectional / bidirectional
  for (int isBidirectional = 0; isBidirectional <= 1; isBidirectional++)
  {
1825
1826
1827
    if (ev.p2pMode == 1 && isBidirectional == 1 ||
        ev.p2pMode == 2 && isBidirectional == 0) continue;

1828
1829
1830
1831
1832
    printf("%sdirectional copy peak bandwidth GB/s [%s read / %s write] (GPU-Executor: %s)\n", isBidirectional ? "Bi" : "Uni",
           ev.useRemoteRead ? "Remote" : "Local",
           ev.useRemoteRead ? "Local" : "Remote",
           ev.useDmaCopy    ? "DMA"   : "GFX");

Gilbert Lee's avatar
Gilbert Lee committed
1833
    // Print header
1834
    if (isBidirectional)
Gilbert Lee's avatar
Gilbert Lee committed
1835
    {
1836
1837
1838
1839
1840
1841
      printf("%12s", "SRC\\DST");
    }
    else
    {
      if (ev.useRemoteRead)
        printf("%12s", "SRC\\EXE+DST");
1842
      else
1843
1844
1845
1846
1847
1848
1849
1850
        printf("%12s", "SRC+EXE\\DST");
    }
    if (ev.outputToCsv) printf(",");
    for (int i = 0; i < numCpus; i++)
    {
      printf("%7s %02d", "CPU", i);
      if (ev.outputToCsv) printf(",");
    }
1851
    if (numCpus > 0) printf("   ");
1852
1853
1854
1855
    for (int i = 0; i < numGpus; i++)
    {
      printf("%7s %02d", "GPU", i);
      if (ev.outputToCsv) printf(",");
Gilbert Lee's avatar
Gilbert Lee committed
1856
    }
1857
1858
    printf("\n");

1859
1860
1861
    double avgBwSum[2][2] = {};
    int    avgCount[2][2] = {};

1862
    ExeType const gpuExeType = ev.useDmaCopy ? EXE_GPU_DMA : EXE_GPU_GFX;
Gilbert Lee's avatar
Gilbert Lee committed
1863
1864
1865
    // Loop over all possible src/dst pairs
    for (int src = 0; src < numDevices; src++)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
1866
1867
      MemType const srcType  = (src < numCpus ? MEM_CPU : MEM_GPU);
      int     const srcIndex = (srcType == MEM_CPU ? src : src - numCpus);
1868
1869
1870
      MemType const srcTypeActual = ((ev.useFineGrain && srcType == MEM_CPU) ? MEM_CPU_FINE :
                                     (ev.useFineGrain && srcType == MEM_GPU) ? MEM_GPU_FINE :
                                                                               srcType);
1871
1872
1873
1874
      std::vector<std::vector<double>> avgBandwidth(isBidirectional + 1);
      std::vector<std::vector<double>> minBandwidth(isBidirectional + 1);
      std::vector<std::vector<double>> maxBandwidth(isBidirectional + 1);
      std::vector<std::vector<double>> stdDev(isBidirectional + 1);
gilbertlee-amd's avatar
gilbertlee-amd committed
1875

1876
      if (src == numCpus && src != 0) printf("\n");
Gilbert Lee's avatar
Gilbert Lee committed
1877
1878
      for (int dst = 0; dst < numDevices; dst++)
      {
gilbertlee-amd's avatar
gilbertlee-amd committed
1879
1880
        MemType const dstType  = (dst < numCpus ? MEM_CPU : MEM_GPU);
        int     const dstIndex = (dstType == MEM_CPU ? dst : dst - numCpus);
1881
1882
1883
        MemType const dstTypeActual = ((ev.useFineGrain && dstType == MEM_CPU) ? MEM_CPU_FINE :
                                       (ev.useFineGrain && dstType == MEM_GPU) ? MEM_GPU_FINE :
                                                                                 dstType);
1884
1885
1886
1887
1888
        // Prepare Transfers
        std::vector<Transfer> transfers(isBidirectional + 1);

        // SRC -> DST
        transfers[0].numBytes = N * sizeof(float);
1889
1890
        transfers[0].srcType.push_back(srcTypeActual);
        transfers[0].dstType.push_back(dstTypeActual);
1891
1892
1893
1894
1895
        transfers[0].srcIndex.push_back(srcIndex);
        transfers[0].dstIndex.push_back(dstIndex);
        transfers[0].numSrcs = transfers[0].numDsts = 1;
        transfers[0].exeType = IsGpuType(ev.useRemoteRead ? dstType : srcType) ? gpuExeType : EXE_CPU;
        transfers[0].exeIndex = (ev.useRemoteRead ? dstIndex : srcIndex);
1896
        transfers[0].exeSubIndex = -1;
1897
1898
1899
1900
1901
1902
1903
        transfers[0].numSubExecs = IsGpuType(transfers[0].exeType) ? ev.numGpuSubExecs : ev.numCpuSubExecs;

        // DST -> SRC
        if (isBidirectional)
        {
          transfers[1].numBytes = N * sizeof(float);
          transfers[1].numSrcs = transfers[1].numDsts = 1;
1904
1905
          transfers[1].srcType.push_back(dstTypeActual);
          transfers[1].dstType.push_back(srcTypeActual);
1906
1907
1908
1909
          transfers[1].srcIndex.push_back(dstIndex);
          transfers[1].dstIndex.push_back(srcIndex);
          transfers[1].exeType = IsGpuType(ev.useRemoteRead ? srcType : dstType) ? gpuExeType : EXE_CPU;
          transfers[1].exeIndex = (ev.useRemoteRead ? srcIndex : dstIndex);
1910
          transfers[1].exeSubIndex = -1;
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
          transfers[1].numSubExecs = IsGpuType(transfers[1].exeType) ? ev.numGpuSubExecs : ev.numCpuSubExecs;
        }

        bool skipTest = false;

        // Abort if executing on NUMA node with no CPUs
        for (int i = 0; i <= isBidirectional; i++)
        {
          if (transfers[i].exeType == EXE_CPU && ev.numCpusPerNuma[transfers[i].exeIndex] == 0)
          {
            skipTest = true;
            break;
          }

#if defined(__NVCC__)
          // NVIDIA platform cannot access GPU memory directly from CPU executors
          if (transfers[i].exeType == EXE_CPU && (IsGpuType(srcType) || IsGpuType(dstType)))
          {
            skipTest = true;
            break;
          }
#endif
        }

        if (isBidirectional && srcType == dstType && srcIndex == dstIndex) skipTest = true;

        if (!skipTest)
        {
          ExecuteTransfers(ev, 0, N, transfers, false);

          for (int dir = 0; dir <= isBidirectional; dir++)
          {
1943
            double const avgTime = transfers[dir].transferTime;
1944
1945
1946
            double const avgBw   = (transfers[dir].numBytesActual / 1.0E9) / avgTime * 1000.0f;
            avgBandwidth[dir].push_back(avgBw);

1947
1948
1949
1950
1951
1952
            if (!(srcType == dstType && srcIndex == dstIndex))
            {
              avgBwSum[srcType][dstType] += avgBw;
              avgCount[srcType][dstType]++;
            }

1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
            if (ev.showIterations)
            {
              double minTime = transfers[dir].perIterationTime[0];
              double maxTime = transfers[dir].perIterationTime[0];
              double varSum  = 0;
              for (int i = 0; i < transfers[dir].perIterationTime.size(); i++)
              {
                minTime = std::min(minTime, transfers[dir].perIterationTime[i]);
                maxTime = std::max(maxTime, transfers[dir].perIterationTime[i]);
                double const bw  = (transfers[dir].numBytesActual / 1.0E9) / transfers[dir].perIterationTime[i] * 1000.0f;
                double const delta = (avgBw - bw);
                varSum += delta * delta;
              }
              double const minBw = (transfers[dir].numBytesActual / 1.0E9) / maxTime * 1000.0f;
              double const maxBw = (transfers[dir].numBytesActual / 1.0E9) / minTime * 1000.0f;
              double const stdev = sqrt(varSum / transfers[dir].perIterationTime.size());
              minBandwidth[dir].push_back(minBw);
              maxBandwidth[dir].push_back(maxBw);
              stdDev[dir].push_back(stdev);
            }
          }
        }
        else
Gilbert Lee's avatar
Gilbert Lee committed
1976
        {
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
          for (int dir = 0; dir <= isBidirectional; dir++)
          {
            avgBandwidth[dir].push_back(0);
            minBandwidth[dir].push_back(0);
            maxBandwidth[dir].push_back(0);
            stdDev[dir].push_back(-1.0);
          }
        }
      }

      for (int dir = 0; dir <= isBidirectional; dir++)
      {
        printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, dir ? "<- " : " ->");
        if (ev.outputToCsv) printf(",");

        for (int dst = 0; dst < numDevices; dst++)
        {
1994
          if (dst == numCpus && dst != 0) printf("   ");
1995
1996
1997
          double const avgBw = avgBandwidth[dir][dst];

          if (avgBw == 0.0)
Gilbert Lee's avatar
Gilbert Lee committed
1998
1999
            printf("%10s", "N/A");
          else
2000
2001
            printf("%10.2f", avgBw);
          if (ev.outputToCsv) printf(",");
Gilbert Lee's avatar
Gilbert Lee committed
2002
        }
2003
2004
2005
        printf("\n");

        if (ev.showIterations)
Gilbert Lee's avatar
Gilbert Lee committed
2006
        {
2007
2008
2009
2010
2011
2012
          // minBw
          printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "min");
          if (ev.outputToCsv) printf(",");
          for (int i = 0; i < numDevices; i++)
          {
            double const minBw = minBandwidth[dir][i];
2013
            if (i == numCpus && i != 0) printf("   ");
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
            if (minBw == 0.0)
              printf("%10s", "N/A");
            else
              printf("%10.2f", minBw);
            if (ev.outputToCsv) printf(",");
          }
          printf("\n");

          // maxBw
          printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "max");
          if (ev.outputToCsv) printf(",");
          for (int i = 0; i < numDevices; i++)
          {
            double const maxBw = maxBandwidth[dir][i];
2028
            if (i == numCpus && i != 0) printf("   ");
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
            if (maxBw == 0.0)
              printf("%10s", "N/A");
            else
              printf("%10.2f", maxBw);
            if (ev.outputToCsv) printf(",");
          }
          printf("\n");

          // stddev
          printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, " sd");
          if (ev.outputToCsv) printf(",");
          for (int i = 0; i < numDevices; i++)
          {
            double const sd = stdDev[dir][i];
2043
            if (i == numCpus && i != 0) printf("   ");
2044
2045
2046
2047
2048
2049
2050
            if (sd == -1.0)
              printf("%10s", "N/A");
            else
              printf("%10.2f", sd);
            if (ev.outputToCsv) printf(",");
          }
          printf("\n");
Gilbert Lee's avatar
Gilbert Lee committed
2051
2052
2053
        }
        fflush(stdout);
      }
2054
2055
2056
2057
2058
2059
2060
2061

      if (isBidirectional)
      {
        printf("%5s %02d %3s", (srcType == MEM_CPU) ? "CPU" : "GPU", srcIndex, "<->");
        if (ev.outputToCsv) printf(",");
        for (int dst = 0; dst < numDevices; dst++)
        {
          double const sumBw = avgBandwidth[0][dst] + avgBandwidth[1][dst];
2062
          if (dst == numCpus && dst != 0) printf("   ");
2063
2064
2065
2066
2067
2068
          if (sumBw == 0.0)
            printf("%10s", "N/A");
          else
            printf("%10.2f", sumBw);
          if (ev.outputToCsv) printf(",");
        }
2069
2070
        printf("\n");
        if (src < numDevices - 1) printf("\n");
2071
      }
Gilbert Lee's avatar
Gilbert Lee committed
2072
    }
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092

    if (!ev.outputToCsv)
    {
      printf("                         ");
      for (int srcType : {MEM_CPU, MEM_GPU})
        for (int dstType : {MEM_CPU, MEM_GPU})
          printf("  %cPU->%cPU", srcType == MEM_CPU ? 'C' : 'G', dstType == MEM_CPU ? 'C' : 'G');
      printf("\n");

      printf("Averages (During %s):",  isBidirectional ? " BiDir" : "UniDir");
      for (int srcType : {MEM_CPU, MEM_GPU})
        for (int dstType : {MEM_CPU, MEM_GPU})
        {
          if (avgCount[srcType][dstType])
            printf("%10.2f", avgBwSum[srcType][dstType] / avgCount[srcType][dstType]);
          else
            printf("%10s", "N/A");
        }
      printf("\n\n");
    }
Gilbert Lee's avatar
Gilbert Lee committed
2093
2094
2095
  }
}

2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
void RunScalingBenchmark(EnvVars const& ev, size_t N, int const exeIndex, int const maxSubExecs)
{
  ev.DisplayEnvVars();

  // Collect the number of available CPUs/GPUs on this machine
  int const numCpus    = ev.numCpuDevices;
  int const numGpus    = ev.numGpuDevices;
  int const numDevices = numCpus + numGpus;

  // Enable peer to peer for each GPU
  for (int i = 0; i < numGpus; i++)
    for (int j = 0; j < numGpus; j++)
      if (i != j) EnablePeerAccess(i, j);

  char separator = (ev.outputToCsv ? ',' : ' ');

  std::vector<Transfer> transfers(1);
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
  Transfer& t = transfers[0];
  t.numBytes = N * sizeof(float);
  t.numSrcs  = 1;
  t.numDsts  = 1;
  t.exeType  = EXE_GPU_GFX;
  t.exeIndex = exeIndex;
  t.exeSubIndex = -1;
  t.srcType.resize(1, MEM_GPU);
  t.dstType.resize(1, MEM_GPU);
  t.srcIndex.resize(1);
  t.dstIndex.resize(1);
2124
2125
2126

  printf("GPU-GFX Scaling benchmark:\n");
  printf("==========================\n");
2127
  printf("- Copying %lu bytes from GPU %d to other devices\n", t.numBytes, exeIndex);
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
  printf("- All numbers reported as GB/sec\n\n");

  printf("NumCUs");
  for (int i = 0; i < numDevices; i++)
    printf("%c  %s%02d     ", separator, i < numCpus ? "CPU" : "GPU", i < numCpus ? i : i - numCpus);
  printf("\n");

  std::vector<std::pair<double, int>> bestResult(numDevices);
  for (int numSubExec = 1; numSubExec <= maxSubExecs; numSubExec++)
  {
2138
    t.numSubExecs = numSubExec;
2139
2140
2141
2142
    printf("%4d  ", numSubExec);

    for (int i = 0; i < numDevices; i++)
    {
2143
2144
      t.dstType[0]  = i < numCpus ? MEM_CPU : MEM_GPU;
      t.dstIndex[0] = i < numCpus ? i : i - numCpus;
2145
2146

      ExecuteTransfers(ev, 0, N, transfers, false);
2147
      printf("%c%7.2f     ", separator, t.transferBandwidth);
2148

2149
      if (t.transferBandwidth > bestResult[i].first)
2150
      {
2151
        bestResult[i].first  = t.transferBandwidth;
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
        bestResult[i].second = numSubExec;
      }
    }
    printf("\n");
  }

  printf(" Best ");
  for (int i = 0; i < numDevices; i++)
  {
    printf("%c%7.2f(%3d)", separator, bestResult[i].first, bestResult[i].second);
  }
  printf("\n");
}

gilbertlee-amd's avatar
gilbertlee-amd committed
2166
2167
void RunAllToAllBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int const numSubExecs)
{
2168
  ev.DisplayA2AEnvVars();
gilbertlee-amd's avatar
gilbertlee-amd committed
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182

  // Collect the number of GPU devices to use
  int const numGpus = ev.numGpuDevices;

  // Enable peer to peer for each GPU
  for (int i = 0; i < numGpus; i++)
    for (int j = 0; j < numGpus; j++)
      if (i != j) EnablePeerAccess(i, j);

  char separator = (ev.outputToCsv ? ',' : ' ');

  Transfer transfer;
  transfer.numBytes    = numBytesPerTransfer;
  transfer.numSubExecs = numSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
2183
2184
  transfer.numSrcs     = ev.a2aMode == 2 ? 0 : 1;
  transfer.numDsts     = ev.a2aMode == 1 ? 0 : 1;
gilbertlee-amd's avatar
gilbertlee-amd committed
2185
  transfer.exeType     = EXE_GPU_GFX;
2186
  transfer.exeSubIndex = -1;
2187
2188
  transfer.srcType.resize(1, ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
  transfer.dstType.resize(1, ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
gilbertlee-amd's avatar
gilbertlee-amd committed
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
  transfer.srcIndex.resize(1);
  transfer.dstIndex.resize(1);

  std::vector<Transfer> transfers;
  for (int i = 0; i < numGpus; i++)
  {
    transfer.srcIndex[0] = i;
    for (int j = 0; j < numGpus; j++)
    {
      transfer.dstIndex[0] = j;
2199
2200
      transfer.exeIndex    = (ev.useRemoteRead ? j : i);

2201
2202
2203
2204
      if (ev.a2aDirect)
      {
        if (i == j) continue;

2205
#if !defined(__NVCC__)
2206
2207
2208
2209
2210
2211
2212
        uint32_t linkType, hopCount;
        HIP_CALL(hipExtGetLinkTypeAndHopCount(RemappedIndex(i, false),
                                              RemappedIndex(j, false),
                                              &linkType, &hopCount));
        if (hopCount != 1) continue;
#endif
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
2213
2214
2215
2216
2217
2218
      transfers.push_back(transfer);
    }
  }

  printf("GPU-GFX All-To-All benchmark:\n");
  printf("==========================\n");
2219
2220
2221
  printf("- Copying %lu bytes between %s pairs of GPUs using %d CUs (%lu Transfers)\n",
         numBytesPerTransfer, ev.a2aDirect ? "directly connected" : "all", numSubExecs, transfers.size());
  if (transfers.size() == 0) return;
gilbertlee-amd's avatar
gilbertlee-amd committed
2222
2223

  double totalBandwidthCpu = 0;
2224
  ExecuteTransfers(ev, 0, numBytesPerTransfer / sizeof(float), transfers, !ev.hideEnv, &totalBandwidthCpu);
gilbertlee-amd's avatar
gilbertlee-amd committed
2225
2226
2227

  printf("\nSummary:\n");
  printf("==========================================================\n");
2228
  printf("SRC\\DST ");
gilbertlee-amd's avatar
gilbertlee-amd committed
2229
  for (int dst = 0; dst < numGpus; dst++)
2230
2231
    printf("%cGPU %02d    ", separator, dst);
  printf("   %cSTotal     %cActual\n", separator, separator);
2232
2233
2234
2235
2236
2237
2238

  std::map<std::pair<int, int>, int> reIndex;
  for (int i = 0; i < transfers.size(); i++)
  {
    Transfer const& t = transfers[i];
    reIndex[std::make_pair(t.srcIndex[0], t.dstIndex[0])] = i;
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
2239

2240
  double totalBandwidthGpu = 0.0;
2241
2242
  double minExecutorBandwidth = std::numeric_limits<double>::max();
  double maxExecutorBandwidth = 0.0;
2243
  std::vector<double> colTotalBandwidth(numGpus+1, 0.0);
gilbertlee-amd's avatar
gilbertlee-amd committed
2244
2245
  for (int src = 0; src < numGpus; src++)
  {
2246
    double rowTotalBandwidth = 0;
2247
    double executorBandwidth = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
2248
2249
2250
    printf("GPU %02d", src);
    for (int dst = 0; dst < numGpus; dst++)
    {
2251
2252
2253
      if (reIndex.count(std::make_pair(src, dst)))
      {
        Transfer const& transfer = transfers[reIndex[std::make_pair(src,dst)]];
2254
2255
2256
2257
2258
        colTotalBandwidth[dst]  += transfer.transferBandwidth;
        rowTotalBandwidth       += transfer.transferBandwidth;
        totalBandwidthGpu       += transfer.transferBandwidth;
        executorBandwidth        = std::max(executorBandwidth, transfer.executorBandwidth);
        printf("%c%8.3f  ", separator, transfer.transferBandwidth);
2259
2260
2261
      }
      else
      {
2262
        printf("%c%8s  ", separator, "N/A");
2263
      }
gilbertlee-amd's avatar
gilbertlee-amd committed
2264
    }
2265
2266
2267
    printf("   %c%8.3f   %c%8.3f\n", separator, rowTotalBandwidth, separator, executorBandwidth);
    minExecutorBandwidth = std::min(minExecutorBandwidth, executorBandwidth);
    maxExecutorBandwidth = std::max(maxExecutorBandwidth, executorBandwidth);
2268
    colTotalBandwidth[numGpus] += rowTotalBandwidth;
gilbertlee-amd's avatar
gilbertlee-amd committed
2269
  }
2270
2271
2272
  printf("\nRTotal");
  for (int dst = 0; dst < numGpus; dst++)
  {
2273
    printf("%c%8.3f  ", separator, colTotalBandwidth[dst]);
2274
  }
2275
2276
  printf("   %c%8.3f   %c%8.3f   %c%8.3f\n", separator, colTotalBandwidth[numGpus],
         separator, minExecutorBandwidth, separator, maxExecutorBandwidth);
2277
2278
  printf("\n");

2279
2280
2281
  printf("Average   bandwidth (GPU Timed): %8.3f GB/s\n", totalBandwidthGpu / transfers.size());
  printf("Aggregate bandwidth (GPU Timed): %8.3f GB/s\n", totalBandwidthGpu);
  printf("Aggregate bandwidth (CPU Timed): %8.3f GB/s\n", totalBandwidthCpu);
gilbertlee-amd's avatar
gilbertlee-amd committed
2282
2283
}

gilbertlee-amd's avatar
gilbertlee-amd committed
2284
void Transfer::PrepareSubExecParams(EnvVars const& ev)
Gilbert Lee's avatar
Gilbert Lee committed
2285
{
gilbertlee-amd's avatar
gilbertlee-amd committed
2286
2287
2288
2289
2290
2291
2292
  // Each subExecutor needs to know src/dst pointers and how many elements to transfer
  // Figure out the sub-array each subExecutor works on for this Transfer
  // - Partition N as evenly as possible, but try to keep subarray sizes as multiples of BLOCK_BYTES bytes,
  //   except the very last one, for alignment reasons
  size_t const N              = this->numBytesActual / sizeof(float);
  int    const initOffset     = ev.byteOffset / sizeof(float);
  int    const targetMultiple = ev.blockBytes / sizeof(float);
Gilbert Lee's avatar
Gilbert Lee committed
2293

gilbertlee-amd's avatar
gilbertlee-amd committed
2294
  // In some cases, there may not be enough data for all subExectors
2295
  int const maxSubExecToUse = std::min((size_t)(N + targetMultiple - 1) / targetMultiple, (size_t)this->numSubExecs);
gilbertlee-amd's avatar
gilbertlee-amd committed
2296
2297
  this->subExecParam.clear();
  this->subExecParam.resize(this->numSubExecs);
Gilbert Lee's avatar
Gilbert Lee committed
2298
2299

  size_t assigned = 0;
gilbertlee-amd's avatar
gilbertlee-amd committed
2300
2301
  for (int i = 0; i < this->numSubExecs; ++i)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2302
2303
2304
    SubExecParam& p  = this->subExecParam[i];
    p.numSrcs        = this->numSrcs;
    p.numDsts        = this->numDsts;
gilbertlee-amd's avatar
gilbertlee-amd committed
2305

gilbertlee-amd's avatar
gilbertlee-amd committed
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
    if (ev.gfxSingleTeam && this->exeType == EXE_GPU_GFX)
    {
      p.N           = N;
      p.teamSize    = this->numSubExecs;
      p.teamIdx     = i;
      for (int iSrc = 0; iSrc < this->numSrcs; ++iSrc) p.src[iSrc] = this->srcMem[iSrc] + initOffset;
      for (int iDst = 0; iDst < this->numDsts; ++iDst) p.dst[iDst] = this->dstMem[iDst] + initOffset;
    }
    else
    {
      int    const subExecLeft = std::max(0, maxSubExecToUse - i);
      size_t const leftover    = N - assigned;
      size_t const roundedN    = (leftover + targetMultiple - 1) / targetMultiple;
gilbertlee-amd's avatar
gilbertlee-amd committed
2319

gilbertlee-amd's avatar
gilbertlee-amd committed
2320
2321
2322
2323
2324
2325
2326
2327
      p.N           = subExecLeft ? std::min(leftover, ((roundedN / subExecLeft) * targetMultiple)) : 0;
      p.teamSize    = 1;
      p.teamIdx     = 0;
      for (int iSrc = 0; iSrc < this->numSrcs; ++iSrc) p.src[iSrc] = this->srcMem[iSrc] + initOffset + assigned;
      for (int iDst = 0; iDst < this->numDsts; ++iDst) p.dst[iDst] = this->dstMem[iDst] + initOffset + assigned;

      assigned += p.N;
    }
2328

gilbertlee-amd's avatar
gilbertlee-amd committed
2329
    p.preferredXccId = -1;
2330
    if (ev.useXccFilter && this->exeType == EXE_GPU_GFX)
2331
    {
2332
2333
2334
2335
2336
2337
2338
2339
      std::uniform_int_distribution<int> distribution(0, ev.xccIdsPerDevice[this->exeIndex].size() - 1);

      // Use this tranfer's executor subIndex if set
      if (this->exeSubIndex != -1)
      {
        p.preferredXccId = this->exeSubIndex;
      }
      else if (this->numDsts >= 1 && IsGpuType(this->dstType[0]))
2340
2341
2342
      {
        p.preferredXccId = ev.prefXccTable[this->exeIndex][this->dstIndex[0]];
      }
2343
2344
2345
2346
2347

      if (p.preferredXccId == -1)
      {
        p.preferredXccId = distribution(*ev.generator);
      }
2348
2349
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
2350
2351
2352
2353
2354
    if (ev.enableDebug)
    {
      printf("Transfer %02d SE:%02d: %10lu floats: %10lu to %10lu\n",
             this->transferIndex, i, p.N, assigned, assigned + p.N);
    }
Gilbert Lee's avatar
Gilbert Lee committed
2355

gilbertlee-amd's avatar
gilbertlee-amd committed
2356
2357
    p.startCycle = 0;
    p.stopCycle  = 0;
Gilbert Lee's avatar
Gilbert Lee committed
2358
2359
  }

Gilbert Lee's avatar
Gilbert Lee committed
2360
  this->transferTime = 0.0;
2361
  this->perIterationTime.clear();
Gilbert Lee's avatar
Gilbert Lee committed
2362
2363
}

gilbertlee-amd's avatar
gilbertlee-amd committed
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
void Transfer::PrepareReference(EnvVars const& ev, std::vector<float>& buffer, int bufferIdx)
{
  size_t N = buffer.size();
  if (bufferIdx >= 0)
  {
    size_t patternLen = ev.fillPattern.size();
    if (patternLen > 0)
    {
      for (size_t i = 0; i < N; ++i)
        buffer[i] = ev.fillPattern[i % patternLen];
    }
    else
    {
      for (size_t i = 0; i < N; ++i)
2378
        buffer[i] = PrepSrcValue(bufferIdx, i);
gilbertlee-amd's avatar
gilbertlee-amd committed
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
    }
  }
  else // Destination buffer
  {
    if (this->numSrcs == 0)
    {
      // Note: 0x75757575 = 13323083.0
      memset(buffer.data(), MEMSET_CHAR, N * sizeof(float));
    }
    else
    {
      PrepareReference(ev, buffer, 0);

      if (this->numSrcs > 1)
      {
        std::vector<float> temp(N);
        for (int srcIdx = 1; srcIdx < this->numSrcs; ++srcIdx)
        {
          PrepareReference(ev, temp, srcIdx);
          for (int i = 0; i < N; ++i)
          {
            buffer[i] += temp[i];
          }
        }
      }
    }
  }
}

2408
bool Transfer::PrepareSrc(EnvVars const& ev)
gilbertlee-amd's avatar
gilbertlee-amd committed
2409
{
2410
  if (this->numSrcs == 0) return true;
gilbertlee-amd's avatar
gilbertlee-amd committed
2411
2412
2413
2414
2415
2416
  size_t const N = this->numBytesActual / sizeof(float);
  int const initOffset = ev.byteOffset / sizeof(float);

  std::vector<float> reference(N);
  for (int srcIdx = 0; srcIdx < this->numSrcs; ++srcIdx)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2417
    float* srcPtr = this->srcMem[srcIdx] + initOffset;
2418
    PrepareReference(ev, reference, srcIdx);
gilbertlee-amd's avatar
gilbertlee-amd committed
2419
2420
2421

    // Initialize source memory array with reference pattern
    if (IsGpuType(this->srcType[srcIdx]))
2422
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2423
2424
2425
      int const deviceIdx = RemappedIndex(this->srcIndex[srcIdx], false);
      HIP_CALL(hipSetDevice(deviceIdx));
      if (ev.usePrepSrcKernel)
gilbertlee-amd's avatar
gilbertlee-amd committed
2426
        PrepSrcDataKernel<<<32, ev.gfxBlockSize>>>(srcPtr, N, srcIdx);
gilbertlee-amd's avatar
gilbertlee-amd committed
2427
2428
      else
        HIP_CALL(hipMemcpy(srcPtr, reference.data(), this->numBytesActual, hipMemcpyDefault));
2429
2430
      HIP_CALL(hipDeviceSynchronize());
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
2431
    else if (IsCpuType(this->srcType[srcIdx]))
2432
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2433
      memcpy(srcPtr, reference.data(), this->numBytesActual);
2434
    }
2435
2436

    // Perform check just to make sure that data has been copied properly
gilbertlee-amd's avatar
gilbertlee-amd committed
2437
    float* srcCheckPtr = srcPtr;
2438
    std::vector<float> srcCopy(N);
gilbertlee-amd's avatar
gilbertlee-amd committed
2439
2440
2441
2442
2443
2444
2445
2446
2447
    if (IsGpuType(this->srcType[srcIdx]))
    {
      if (!ev.validateDirect)
      {
        HIP_CALL(hipMemcpy(srcCopy.data(), srcPtr, this->numBytesActual, hipMemcpyDefault));
        HIP_CALL(hipDeviceSynchronize());
        srcCheckPtr = srcCopy.data();
      }
    }
2448
2449
2450

    for (size_t i = 0; i < N; ++i)
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2451
      if (reference[i] != srcCheckPtr[i])
2452
2453
      {
        printf("\n[ERROR] Unexpected mismatch at index %lu of source array %d:\n", i, srcIdx);
2454
2455
2456
#if !defined(__NVCC__)
        float const val = this->srcMem[srcIdx][initOffset + i];
        printf("[ERROR] SRC %02d   value: %10.5f [%08X] Direct: %10.5f [%08X]\n",
gilbertlee-amd's avatar
gilbertlee-amd committed
2457
               srcIdx, srcCheckPtr[i], *(unsigned int*)&srcCheckPtr[i], val, *(unsigned int*)&val);
2458
#else
gilbertlee-amd's avatar
gilbertlee-amd committed
2459
        printf("[ERROR] SRC %02d   value: %10.5f [%08X]\n", srcIdx, srcCheckPtr[i], *(unsigned int*)&srcCheckPtr[i]);
2460
#endif
2461
2462
2463
2464
2465
2466
2467
        printf("[ERROR] EXPECTED value: %10.5f [%08X]\n", reference[i], *(unsigned int*)&reference[i]);
        printf("[ERROR] Failed Transfer details: #%d: %s -> [%c%d:%d] -> %s\n",
               this->transferIndex,
               this->SrcToStr().c_str(),
               ExeTypeStr[this->exeType], this->exeIndex,
               this->numSubExecs,
               this->DstToStr().c_str());
2468
2469
        printf("[ERROR] Possible cause is misconfigured IOMMU (AMD Instinct cards require amd_iommu=on and iommu=pt)\n");
        printf("[ERROR] Please see https://community.amd.com/t5/knowledge-base/iommu-advisory-for-amd-instinct/ta-p/484601 for more details\n");
2470
2471
        if (!ev.continueOnError)
          exit(1);
2472
        return false;
2473
2474
      }
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
2475
  }
2476
  return true;
gilbertlee-amd's avatar
gilbertlee-amd committed
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
}

void Transfer::ValidateDst(EnvVars const& ev)
{
  if (this->numDsts == 0) return;
  size_t const N = this->numBytesActual / sizeof(float);
  int const initOffset = ev.byteOffset / sizeof(float);

  std::vector<float> reference(N);
  PrepareReference(ev, reference, -1);

  std::vector<float> hostBuffer(N);
  for (int dstIdx = 0; dstIdx < this->numDsts; ++dstIdx)
  {
    float* output;
2492
    if (IsCpuType(this->dstType[dstIdx]) || ev.validateDirect)
gilbertlee-amd's avatar
gilbertlee-amd committed
2493
2494
2495
2496
2497
    {
      output = this->dstMem[dstIdx] + initOffset;
    }
    else
    {
gilbertlee-amd's avatar
gilbertlee-amd committed
2498
2499
      int const deviceIdx = RemappedIndex(this->dstIndex[dstIdx], false);
      HIP_CALL(hipSetDevice(deviceIdx));
gilbertlee-amd's avatar
gilbertlee-amd committed
2500
      HIP_CALL(hipMemcpy(hostBuffer.data(), this->dstMem[dstIdx] + initOffset, this->numBytesActual, hipMemcpyDefault));
gilbertlee-amd's avatar
gilbertlee-amd committed
2501
      HIP_CALL(hipDeviceSynchronize());
gilbertlee-amd's avatar
gilbertlee-amd committed
2502
2503
2504
2505
2506
2507
2508
      output = hostBuffer.data();
    }

    for (size_t i = 0; i < N; ++i)
    {
      if (reference[i] != output[i])
      {
2509
2510
2511
2512
2513
        printf("\n[ERROR] Unexpected mismatch at index %lu of destination array %d:\n", i, dstIdx);
        for (int srcIdx = 0; srcIdx < this->numSrcs; ++srcIdx)
        {
          float srcVal;
          HIP_CALL(hipMemcpy(&srcVal, this->srcMem[srcIdx] + initOffset + i, sizeof(float), hipMemcpyDefault));
2514
2515
2516
2517
2518
#if !defined(__NVCC__)
          float val = this->srcMem[srcIdx][initOffset + i];
          printf("[ERROR] SRC %02dD  value: %10.5f [%08X] Direct: %10.5f [%08X]\n",
                 srcIdx, srcVal, *(unsigned int*)&srcVal, val, *(unsigned int*)&val);
#else
2519
          printf("[ERROR] SRC %02d   value: %10.5f [%08X]\n", srcIdx, srcVal, *(unsigned int*)&srcVal);
2520
#endif
2521
        }
2522
        printf("[ERROR] EXPECTED value: %10.5f [%08X]\n", reference[i], *(unsigned int*)&reference[i]);
2523
2524
2525
2526
2527
#if !defined(__NVCC__)
        float dstVal = this->dstMem[dstIdx][initOffset + i];
        printf("[ERROR] DST %02d   value: %10.5f [%08X] Direct: %10.5f [%08X]\n",
               dstIdx, output[i], *(unsigned int*)&output[i], dstVal, *(unsigned int*)&dstVal);
#else
2528
        printf("[ERROR] DST %02d   value: %10.5f [%08X]\n", dstIdx, output[i], *(unsigned int*)&output[i]);
2529
#endif
gilbertlee-amd's avatar
gilbertlee-amd committed
2530
2531
2532
2533
2534
2535
        printf("[ERROR] Failed Transfer details: #%d: %s -> [%c%d:%d] -> %s\n",
               this->transferIndex,
               this->SrcToStr().c_str(),
               ExeTypeStr[this->exeType], this->exeIndex,
               this->numSubExecs,
               this->DstToStr().c_str());
2536
2537
        if (!ev.continueOnError)
          exit(1);
2538
2539
        else
          break;
gilbertlee-amd's avatar
gilbertlee-amd committed
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
      }
    }
  }
}

std::string Transfer::SrcToStr() const
{
  if (numSrcs == 0) return "N";
  std::stringstream ss;
  for (int i = 0; i < numSrcs; ++i)
    ss << MemTypeStr[srcType[i]] << srcIndex[i];
  return ss.str();
}

std::string Transfer::DstToStr() const
{
  if (numDsts == 0) return "N";
  std::stringstream ss;
  for (int i = 0; i < numDsts; ++i)
    ss << MemTypeStr[dstType[i]] << dstIndex[i];
  return ss.str();
}

2563
2564
void RunSchmooBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int const localIdx, int const remoteIdx, int const maxSubExecs)
{
2565
  char memType = ev.useFineGrain ? 'F' : 'G';
2566
  printf("Bytes to transfer: %lu Local GPU: %d Remote GPU: %d\n", numBytesPerTransfer, localIdx, remoteIdx);
2567
2568
  printf("       | Local Read  | Local Write | Local Copy  | Remote Read | Remote Write| Remote Copy |\n");
  printf("  #CUs |%c%02d->G%02d->N00|N00->G%02d->%c%02d|%c%02d->G%02d->%c%02d|%c%02d->G%02d->N00|N00->G%02d->%c%02d|%c%02d->G%02d->%c%02d|\n",
2569
2570
2571
2572
2573
2574
         memType, localIdx, localIdx,
         localIdx, memType, localIdx,
         memType, localIdx, localIdx, memType, localIdx,
         memType, remoteIdx, localIdx,
         localIdx, memType, remoteIdx,
         memType, localIdx, localIdx, memType, remoteIdx);
2575
  printf("|------|-------------|-------------|-------------|-------------|-------------|-------------|\n");
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663

  std::vector<Transfer> transfers(1);
  Transfer& t   = transfers[0];
  t.exeType     = EXE_GPU_GFX;
  t.exeIndex    = localIdx;
  t.exeSubIndex = -1;
  t.numBytes    = numBytesPerTransfer;

  for (int numCUs = 1; numCUs <= maxSubExecs; numCUs++)
  {
    t.numSubExecs = numCUs;

    // Local Read
    t.numSrcs = 1;
    t.numDsts = 0;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = localIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const localRead = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Local Write
    t.numSrcs = 0;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = localIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const localWrite = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Local Copy
    t.numSrcs = 1;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = localIdx;
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = localIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const localCopy = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Remote Read
    t.numSrcs = 1;
    t.numDsts = 0;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = remoteIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const remoteRead = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Remote Write
    t.numSrcs = 0;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = remoteIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const remoteWrite = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

    // Remote Copy
    t.numSrcs = 1;
    t.numDsts = 1;
    t.srcType.resize(t.numSrcs);
    t.dstType.resize(t.numDsts);
    t.srcIndex.resize(t.numSrcs);
    t.dstIndex.resize(t.numDsts);
    t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.srcIndex[0] = localIdx;
    t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
    t.dstIndex[0] = remoteIdx;
    ExecuteTransfers(ev, 0, 0, transfers, false);
    double const remoteCopy = (t.numBytesActual / 1.0E9) / t.transferTime * 1000.0f;

2664
    printf("   %3d   %11.3f   %11.3f   %11.3f   %11.3f   %11.3f   %11.3f  \n",
2665
2666
2667
2668
           numCUs, localRead, localWrite, localCopy, remoteRead, remoteWrite, remoteCopy);
  }
}

2669
2670
void RunRemoteWriteBenchmark(EnvVars const& ev, size_t const numBytesPerTransfer, int numSubExecs, int const srcIdx, int minGpus, int maxGpus)
{
2671
2672
  printf("Bytes to %s: %lu from GPU %d using %d CUs [Sweeping %d to %d parallel writes]\n",
         ev.useRemoteRead ? "read" : "write", numBytesPerTransfer, srcIdx, numSubExecs, minGpus, maxGpus);
2673

gilbertlee-amd's avatar
gilbertlee-amd committed
2674
2675
  char sep = (ev.outputToCsv ? ',' : ' ');

2676
2677
2678
  for (int i = 0; i < ev.numGpuDevices; i++)
  {
    if (i == srcIdx) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
2679
    printf("   GPU %-3d  %c", i, sep);
2680
2681
  }
  printf("\n");
gilbertlee-amd's avatar
gilbertlee-amd committed
2682
  if (!ev.outputToCsv)
2683
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2684
2685
2686
2687
2688
    for (int i = 0; i < ev.numGpuDevices-1; i++)
    {
      printf("-------------");
    }
    printf("\n");
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
  }

  for (int p = minGpus; p <= maxGpus; p++)
  {
    for (int bitmask = 0; bitmask < (1<<ev.numGpuDevices); bitmask++)
    {
      if (bitmask & (1<<srcIdx)) continue;
      if (__builtin_popcount(bitmask) == p)
      {
        std::vector<Transfer> transfers;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
          {
            Transfer t;
            t.exeType     = EXE_GPU_GFX;
            t.exeSubIndex = -1;
            t.numSubExecs = numSubExecs;
            t.numBytes    = numBytesPerTransfer;
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728

            if (ev.useRemoteRead)
            {
              t.numSrcs  = 1;
              t.numDsts  = 0;
              t.exeIndex = i;
              t.srcType.resize(1);
              t.srcType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
              t.srcIndex.resize(1);
              t.srcIndex[0] = srcIdx;
            }
            else
            {
              t.numSrcs     = 0;
              t.numDsts     = 1;
              t.exeIndex    = srcIdx;
              t.dstType.resize(1);
              t.dstType[0]  = (ev.useFineGrain ? MEM_GPU_FINE : MEM_GPU);
              t.dstIndex.resize(1);
              t.dstIndex[0] = i;
            }
2729
2730
2731
2732
2733
2734
2735
2736
2737
            transfers.push_back(t);
          }
        }
        ExecuteTransfers(ev, 0, 0, transfers, false);

        int counter = 0;
        for (int i = 0; i < ev.numGpuDevices; i++)
        {
          if (bitmask & (1<<i))
gilbertlee-amd's avatar
gilbertlee-amd committed
2738
            printf("  %8.3f  %c", transfers[counter++].transferBandwidth, sep);
2739
          else if (i != srcIdx)
gilbertlee-amd's avatar
gilbertlee-amd committed
2740
            printf("            %c", sep);
2741
2742
        }

gilbertlee-amd's avatar
gilbertlee-amd committed
2743
        printf(" %d %d", p, numSubExecs);
2744
2745
        for (auto i = 0; i < transfers.size(); i++)
        {
2746
2747
2748
2749
          printf(" (%s %c%d %s)",
                 transfers[i].SrcToStr().c_str(),
                 MemTypeStr[transfers[i].exeType], transfers[i].exeIndex,
                 transfers[i].DstToStr().c_str());
2750
2751
2752
2753
2754
2755
        }
        printf("\n");
      }
    }
  }
}
2756

gilbertlee-amd's avatar
gilbertlee-amd committed
2757
void RunSweepPreset(EnvVars const& ev, size_t const numBytesPerTransfer, int const numGpuSubExecs, int const numCpuSubExecs, bool const isRandom)
Gilbert Lee's avatar
Gilbert Lee committed
2758
2759
2760
2761
{
  ev.DisplaySweepEnvVars();

  // Compute how many possible Transfers are permitted (unique SRC/EXE/DST triplets)
gilbertlee-amd's avatar
gilbertlee-amd committed
2762
  std::vector<std::pair<ExeType, int>> exeList;
Gilbert Lee's avatar
Gilbert Lee committed
2763
2764
  for (auto exe : ev.sweepExe)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2765
2766
    ExeType const exeType = CharToExeType(exe);
    if (IsGpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
2767
    {
2768
      for (int exeIndex = 0; exeIndex < ev.numGpuDevices; ++exeIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
2769
        exeList.push_back(std::make_pair(exeType, exeIndex));
Gilbert Lee's avatar
Gilbert Lee committed
2770
    }
gilbertlee-amd's avatar
gilbertlee-amd committed
2771
    else if (IsCpuType(exeType))
Gilbert Lee's avatar
Gilbert Lee committed
2772
    {
2773
2774
2775
2776
      for (int exeIndex = 0; exeIndex < ev.numCpuDevices; ++exeIndex)
      {
        // Skip NUMA nodes that have no CPUs (e.g. CXL)
        if (ev.numCpusPerNuma[exeIndex] == 0) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
2777
        exeList.push_back(std::make_pair(exeType, exeIndex));
2778
      }
Gilbert Lee's avatar
Gilbert Lee committed
2779
2780
    }
  }
2781
  int numExes = exeList.size();
Gilbert Lee's avatar
Gilbert Lee committed
2782
2783
2784
2785

  std::vector<std::pair<MemType, int>> srcList;
  for (auto src : ev.sweepSrc)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2786
2787
    MemType const srcType = CharToMemType(src);
    int const numDevices = IsGpuType(srcType) ? ev.numGpuDevices : ev.numCpuDevices;
2788

Gilbert Lee's avatar
Gilbert Lee committed
2789
    for (int srcIndex = 0; srcIndex < numDevices; ++srcIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
2790
      srcList.push_back(std::make_pair(srcType, srcIndex));
Gilbert Lee's avatar
Gilbert Lee committed
2791
2792
2793
2794
2795
2796
2797
  }
  int numSrcs = srcList.size();


  std::vector<std::pair<MemType, int>> dstList;
  for (auto dst : ev.sweepDst)
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2798
2799
    MemType const dstType = CharToMemType(dst);
    int const numDevices = IsGpuType(dstType) ? ev.numGpuDevices : ev.numCpuDevices;
Gilbert Lee's avatar
Gilbert Lee committed
2800
2801

    for (int dstIndex = 0; dstIndex < numDevices; ++dstIndex)
gilbertlee-amd's avatar
gilbertlee-amd committed
2802
      dstList.push_back(std::make_pair(dstType, dstIndex));
Gilbert Lee's avatar
Gilbert Lee committed
2803
2804
2805
  }
  int numDsts = dstList.size();

2806
2807
  // Build array of possibilities, respecting any additional restrictions (e.g. XGMI hop count)
  struct TransferInfo
Gilbert Lee's avatar
Gilbert Lee committed
2808
  {
gilbertlee-amd's avatar
gilbertlee-amd committed
2809
2810
2811
    MemType srcType; int srcIndex;
    ExeType exeType; int exeIndex;
    MemType dstType; int dstIndex;
2812
2813
2814
2815
2816
2817
2818
2819
  };

  // If either XGMI minimum is non-zero, or XGMI maximum is specified and non-zero then both links must be XGMI
  bool const useXgmiOnly = (ev.sweepXgmiMin > 0 || ev.sweepXgmiMax > 0);

  std::vector<TransferInfo> possibleTransfers;
  TransferInfo tinfo;
  for (int i = 0; i < numExes; ++i)
Gilbert Lee's avatar
Gilbert Lee committed
2820
  {
2821
2822
    // Skip CPU executors if XGMI link must be used
    if (useXgmiOnly && !IsGpuType(exeList[i].first)) continue;
gilbertlee-amd's avatar
gilbertlee-amd committed
2823
2824
    tinfo.exeType  = exeList[i].first;
    tinfo.exeIndex = exeList[i].second;
2825

gilbertlee-amd's avatar
gilbertlee-amd committed
2826
    bool isXgmiSrc  = false;
2827
2828
2829
2830
2831
2832
2833
    int  numHopsSrc = 0;
    for (int j = 0; j < numSrcs; ++j)
    {
      if (IsGpuType(exeList[i].first) && IsGpuType(srcList[j].first))
      {
        if (exeList[i].second != srcList[j].second)
        {
2834
2835
2836
#if defined(__NVCC__)
          isXgmiSrc = false;
#else
2837
          uint32_t exeToSrcLinkType, exeToSrcHopCount;
gilbertlee-amd's avatar
gilbertlee-amd committed
2838
2839
          HIP_CALL(hipExtGetLinkTypeAndHopCount(RemappedIndex(exeList[i].second, false),
                                                RemappedIndex(srcList[j].second, false),
2840
2841
2842
2843
                                                &exeToSrcLinkType,
                                                &exeToSrcHopCount));
          isXgmiSrc = (exeToSrcLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
          if (isXgmiSrc) numHopsSrc = exeToSrcHopCount;
2844
#endif
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
        }
        else
        {
          isXgmiSrc = true;
          numHopsSrc = 0;
        }

        // Skip this SRC if it is not XGMI but only XGMI links may be used
        if (useXgmiOnly && !isXgmiSrc) continue;

        // Skip this SRC if XGMI distance is already past limit
        if (ev.sweepXgmiMax >= 0 && isXgmiSrc && numHopsSrc > ev.sweepXgmiMax) continue;
      }
      else if (useXgmiOnly) continue;

gilbertlee-amd's avatar
gilbertlee-amd committed
2860
2861
      tinfo.srcType  = srcList[j].first;
      tinfo.srcIndex = srcList[j].second;
2862
2863
2864
2865
2866
2867
2868
2869
2870

      bool isXgmiDst = false;
      int  numHopsDst = 0;
      for (int k = 0; k < numDsts; ++k)
      {
        if (IsGpuType(exeList[i].first) && IsGpuType(dstList[k].first))
        {
          if (exeList[i].second != dstList[k].second)
          {
2871
2872
2873
#if defined(__NVCC__)
            isXgmiSrc = false;
#else
2874
            uint32_t exeToDstLinkType, exeToDstHopCount;
gilbertlee-amd's avatar
gilbertlee-amd committed
2875
2876
            HIP_CALL(hipExtGetLinkTypeAndHopCount(RemappedIndex(exeList[i].second, false),
                                                  RemappedIndex(dstList[k].second, false),
2877
2878
2879
2880
                                                  &exeToDstLinkType,
                                                  &exeToDstHopCount));
            isXgmiDst = (exeToDstLinkType == HSA_AMD_LINK_INFO_TYPE_XGMI);
            if (isXgmiDst) numHopsDst = exeToDstHopCount;
2881
#endif
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
          }
          else
          {
            isXgmiDst = true;
            numHopsDst = 0;
          }
        }

        // Skip this DST if it is not XGMI but only XGMI links may be used
        if (useXgmiOnly && !isXgmiDst) continue;

        // Skip this DST if total XGMI distance (SRC + DST) is less than min limit
        if (ev.sweepXgmiMin > 0 && (numHopsSrc + numHopsDst < ev.sweepXgmiMin)) continue;

        // Skip this DST if total XGMI distance (SRC + DST) is greater than max limit
        if (ev.sweepXgmiMax >= 0 && (numHopsSrc + numHopsDst) > ev.sweepXgmiMax) continue;

2899
2900
2901
2902
2903
2904
#if defined(__NVCC__)
        // Skip CPU executors on GPU memory on NVIDIA platform
        if (IsCpuType(exeList[i].first) && (IsGpuType(dstList[j].first) || IsGpuType(dstList[k].first)))
          continue;
#endif

gilbertlee-amd's avatar
gilbertlee-amd committed
2905
2906
        tinfo.dstType  = dstList[k].first;
        tinfo.dstIndex = dstList[k].second;
2907
2908
2909
2910

        possibleTransfers.push_back(tinfo);
      }
    }
Gilbert Lee's avatar
Gilbert Lee committed
2911
2912
  }

2913
2914
2915
  int const numPossible = (int)possibleTransfers.size();
  int maxParallelTransfers = (ev.sweepMax == 0 ? numPossible : ev.sweepMax);

Gilbert Lee's avatar
Gilbert Lee committed
2916
2917
2918
2919
2920
2921
  if (ev.sweepMin > numPossible)
  {
    printf("No valid test configurations exist\n");
    return;
  }

2922
2923
2924
2925
2926
2927
  if (ev.outputToCsv)
  {
    printf("\nTest#,Transfer#,NumBytes,Src,Exe,Dst,CUs,BW(GB/s),Time(ms),"
           "ExeToSrcLinkType,ExeToDstLinkType,SrcAddr,DstAddr\n");
  }

Gilbert Lee's avatar
Gilbert Lee committed
2928
2929
  int numTestsRun = 0;
  int M = ev.sweepMin;
gilbertlee-amd's avatar
gilbertlee-amd committed
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
  std::uniform_int_distribution<int> randSize(1, numBytesPerTransfer / sizeof(float));
  std::uniform_int_distribution<int> distribution(ev.sweepMin, maxParallelTransfers);

  // Log sweep to configuration file
  FILE *fp = fopen("lastSweep.cfg", "w");
  if (!fp)
  {
    printf("[ERROR] Unable to open lastSweep.cfg.  Check permissions\n");
    exit(1);
  }

Gilbert Lee's avatar
Gilbert Lee committed
2941
2942
2943
2944
2945
2946
2947
2948
2949
  // Create bitmask of numPossible triplets, of which M will be chosen
  std::string bitmask(M, 1);  bitmask.resize(numPossible, 0);
  auto cpuStart = std::chrono::high_resolution_clock::now();
  while (1)
  {
    if (isRandom)
    {
      // Pick random number of simultaneous transfers to execute
      // NOTE: This currently skews distribution due to some #s having more possibilities than others
gilbertlee-amd's avatar
gilbertlee-amd committed
2950
      M = distribution(*ev.generator);
Gilbert Lee's avatar
Gilbert Lee committed
2951
2952
2953
2954

      // Generate a random bitmask
      for (int i = 0; i < numPossible; i++)
        bitmask[i] = (i < M) ? 1 : 0;
2955
      std::shuffle(bitmask.begin(), bitmask.end(), *ev.generator);
Gilbert Lee's avatar
Gilbert Lee committed
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
    }

    // Convert bitmask to list of Transfers
    std::vector<Transfer> transfers;
    for (int value = 0; value < numPossible; ++value)
    {
      if (bitmask[value])
      {
        // Convert integer value to (SRC->EXE->DST) triplet
        Transfer transfer;
gilbertlee-amd's avatar
gilbertlee-amd committed
2966
2967
2968
2969
2970
        transfer.numSrcs        = 1;
        transfer.numDsts        = 1;
        transfer.srcType        = {possibleTransfers[value].srcType};
        transfer.srcIndex       = {possibleTransfers[value].srcIndex};
        transfer.exeType        = possibleTransfers[value].exeType;
2971
        transfer.exeIndex       = possibleTransfers[value].exeIndex;
2972
        transfer.exeSubIndex    = -1;
gilbertlee-amd's avatar
gilbertlee-amd committed
2973
2974
2975
        transfer.dstType        = {possibleTransfers[value].dstType};
        transfer.dstIndex       = {possibleTransfers[value].dstIndex};
        transfer.numSubExecs    = IsGpuType(transfer.exeType) ? numGpuSubExecs : numCpuSubExecs;
gilbertlee-amd's avatar
gilbertlee-amd committed
2976
        transfer.numBytes       = ev.sweepRandBytes ? randSize(*ev.generator) * sizeof(float) : 0;
Gilbert Lee's avatar
Gilbert Lee committed
2977
2978
2979
2980
        transfers.push_back(transfer);
      }
    }

gilbertlee-amd's avatar
gilbertlee-amd committed
2981
2982
    LogTransfers(fp, ++numTestsRun, transfers);
    ExecuteTransfers(ev, numTestsRun, numBytesPerTransfer / sizeof(float), transfers);
Gilbert Lee's avatar
Gilbert Lee committed
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013

    // Check for test limit
    if (numTestsRun == ev.sweepTestLimit)
    {
      printf("Test limit reached\n");
      break;
    }

    // Check for time limit
    auto cpuDelta = std::chrono::high_resolution_clock::now() - cpuStart;
    double totalCpuTime = std::chrono::duration_cast<std::chrono::duration<double>>(cpuDelta).count();
    if (ev.sweepTimeLimit && totalCpuTime > ev.sweepTimeLimit)
    {
      printf("Time limit exceeded\n");
      break;
    }

    // Increment bitmask if not random sweep
    if (!isRandom && !std::prev_permutation(bitmask.begin(), bitmask.end()))
    {
      M++;
      // Check for completion
      if (M > maxParallelTransfers)
      {
        printf("Sweep complete\n");
        break;
      }
      for (int i = 0; i < numPossible; i++)
        bitmask[i] = (i < M) ? 1 : 0;
    }
  }
gilbertlee-amd's avatar
gilbertlee-amd committed
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
  fclose(fp);
}

void LogTransfers(FILE *fp, int const testNum, std::vector<Transfer> const& transfers)
{
  fprintf(fp, "# Test %d\n", testNum);
  fprintf(fp, "%d", -1 * (int)transfers.size());
  for (auto const& transfer : transfers)
  {
    fprintf(fp, " (%c%d->%c%d->%c%d %d %lu)",
gilbertlee-amd's avatar
gilbertlee-amd committed
3024
3025
3026
3027
            MemTypeStr[transfer.srcType[0]], transfer.srcIndex[0],
            ExeTypeStr[transfer.exeType],    transfer.exeIndex,
            MemTypeStr[transfer.dstType[0]], transfer.dstIndex[0],
            transfer.numSubExecs,
gilbertlee-amd's avatar
gilbertlee-amd committed
3028
3029
3030
3031
            transfer.numBytes);
  }
  fprintf(fp, "\n");
  fflush(fp);
Gilbert Lee's avatar
Gilbert Lee committed
3032
}
gilbertlee-amd's avatar
gilbertlee-amd committed
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043

std::string PtrVectorToStr(std::vector<float*> const& strVector, int const initOffset)
{
  std::stringstream ss;
  for (int i = 0; i < strVector.size(); ++i)
  {
    if (i) ss << " ";
    ss << (strVector[i] + initOffset);
  }
  return ss.str();
}