setup.py 13.6 KB
Newer Older
1
2
3
import io
import os
import re
4
5
import subprocess
from typing import List, Set
6
import warnings
7

8
from packaging.version import parse, Version
Woosuk Kwon's avatar
Woosuk Kwon committed
9
import setuptools
Woosuk Kwon's avatar
Woosuk Kwon committed
10
import torch
11
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME, ROCM_HOME
12

zhuwenwen's avatar
zhuwenwen committed
13
14
15
16
from typing import Optional, Union
import subprocess
from pathlib import Path

17
ROOT_DIR = os.path.dirname(__file__)
18

19
20
MAIN_CUDA_VERSION = "12.1"

21
# Supported NVIDIA GPU architectures.
22
NVIDIA_SUPPORTED_ARCHS = {"7.0", "7.5", "8.0", "8.6", "8.9", "9.0"}
zhuwenwen's avatar
zhuwenwen committed
23
ROCM_SUPPORTED_ARCHS = {"gfx90a", "gfx908", "gfx906", "gfx926", "gfx1030", "gfx1100"}
24
25
26
27
28
29
30
31
32
33
# SUPPORTED_ARCHS = NVIDIA_SUPPORTED_ARCHS.union(ROCM_SUPPORTED_ARCHS)


def _is_hip() -> bool:
    return torch.version.hip is not None


def _is_cuda() -> bool:
    return torch.version.cuda is not None

34

35
# Compiler flags.
36
CXX_FLAGS = ["-g", "-O2", "-std=c++17"]
37
# TODO(woosuk): Should we use -O3?
zhuwenwen's avatar
zhuwenwen committed
38
NVCC_FLAGS = ["-O2", "-std=c++17","--gpu-max-threads-per-block=1024"]
Woosuk Kwon's avatar
Woosuk Kwon committed
39

40
41
42
43
44
45
46
47
48
49
50
if _is_hip():
    if ROCM_HOME is None:
        raise RuntimeError(
            "Cannot find ROCM_HOME. ROCm must be available to build the package."
        )
    NVCC_FLAGS += ["-DUSE_ROCM"]

if _is_cuda() and CUDA_HOME is None:
    raise RuntimeError(
        "Cannot find CUDA_HOME. CUDA must be available to build the package.")

51
52
53
ABI = 1 if torch._C._GLIBCXX_USE_CXX11_ABI else 0
CXX_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
NVCC_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
54

55

zhuwenwen's avatar
zhuwenwen committed
56
57
58
59
60
61
62
63
64
65
66
67
# def get_amdgpu_offload_arch():
#     command = "/opt/rocm/llvm/bin/amdgpu-offload-arch"
#     try:
#         output = subprocess.check_output([command])
#         return output.decode('utf-8').strip()
#     except subprocess.CalledProcessError as e:
#         error_message = f"Error: {e}"
#         raise RuntimeError(error_message) from e
#     except FileNotFoundError as e:
#         # If the command is not found, print an error message
#         error_message = f"The command {command} was not found."
#         raise RuntimeError(error_message) from e
68

zhuwenwen's avatar
zhuwenwen committed
69
#     return None
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91


def get_hipcc_rocm_version():
    # Run the hipcc --version command
    result = subprocess.run(['hipcc', '--version'],
                            stdout=subprocess.PIPE,
                            stderr=subprocess.STDOUT,
                            text=True)

    # Check if the command was executed successfully
    if result.returncode != 0:
        print("Error running 'hipcc --version'")
        return None

    # Extract the version using a regular expression
    match = re.search(r'HIP version: (\S+)', result.stdout)
    if match:
        # Return the version string
        return match.group(1)
    else:
        print("Could not find HIP version in the output")
        return None
Woosuk Kwon's avatar
Woosuk Kwon committed
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106

def get_nvcc_cuda_version(cuda_dir: str) -> Version:
    """Get the CUDA version from nvcc.

    Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
    """
    nvcc_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
                                          universal_newlines=True)
    output = nvcc_output.split()
    release_idx = output.index("release") + 1
    nvcc_cuda_version = parse(output[release_idx].split(",")[0])
    return nvcc_cuda_version


107
108
109
110
111
112
113
def get_torch_arch_list() -> Set[str]:
    # TORCH_CUDA_ARCH_LIST can have one or more architectures,
    # e.g. "8.0" or "7.5,8.0,8.6+PTX". Here, the "8.6+PTX" option asks the
    # compiler to additionally include PTX code that can be runtime-compiled
    # and executed on the 8.6 or newer architectures. While the PTX code will
    # not give the best performance on the newer architectures, it provides
    # forward compatibility.
114
115
    env_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
    if env_arch_list is None:
116
117
118
        return set()

    # List are separated by ; or space.
119
120
121
122
123
    torch_arch_list = set(env_arch_list.replace(" ", ";").split(";"))
    if not torch_arch_list:
        return set()

    # Filter out the invalid architectures and print a warning.
124
125
126
    valid_archs = NVIDIA_SUPPORTED_ARCHS.union(
        {s + "+PTX"
         for s in NVIDIA_SUPPORTED_ARCHS})
127
128
129
130
    arch_list = torch_arch_list.intersection(valid_archs)
    # If none of the specified architectures are valid, raise an error.
    if not arch_list:
        raise RuntimeError(
131
            "None of the CUDA/ROCM architectures in `TORCH_CUDA_ARCH_LIST` env "
132
            f"variable ({env_arch_list}) is supported. "
133
            f"Supported CUDA/ROCM architectures are: {valid_archs}.")
134
135
136
    invalid_arch_list = torch_arch_list - valid_archs
    if invalid_arch_list:
        warnings.warn(
137
            f"Unsupported CUDA/ROCM architectures ({invalid_arch_list}) are "
138
            "excluded from the `TORCH_CUDA_ARCH_LIST` env variable "
139
            f"({env_arch_list}). Supported CUDA/ROCM architectures are: "
140
141
            f"{valid_archs}.",
            stacklevel=2)
142
    return arch_list
143
144
145
146


# First, check the TORCH_CUDA_ARCH_LIST environment variable.
compute_capabilities = get_torch_arch_list()
147
if _is_cuda() and not compute_capabilities:
148
149
150
151
152
153
154
155
156
    # If TORCH_CUDA_ARCH_LIST is not defined or empty, target all available
    # GPUs on the current machine.
    device_count = torch.cuda.device_count()
    for i in range(device_count):
        major, minor = torch.cuda.get_device_capability(i)
        if major < 7:
            raise RuntimeError(
                "GPUs with compute capability below 7.0 are not supported.")
        compute_capabilities.add(f"{major}.{minor}")
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
if _is_cuda():
    nvcc_cuda_version = get_nvcc_cuda_version(CUDA_HOME)
    if not compute_capabilities:
        # If no GPU is specified nor available, add all supported architectures
        # based on the NVCC CUDA version.
        compute_capabilities = NVIDIA_SUPPORTED_ARCHS.copy()
        if nvcc_cuda_version < Version("11.1"):
            compute_capabilities.remove("8.6")
        if nvcc_cuda_version < Version("11.8"):
            compute_capabilities.remove("8.9")
            compute_capabilities.remove("9.0")
    # Validate the NVCC CUDA version.
    if nvcc_cuda_version < Version("11.0"):
        raise RuntimeError(
            "CUDA 11.0 or higher is required to build the package.")
    if (nvcc_cuda_version < Version("11.1")
            and any(cc.startswith("8.6") for cc in compute_capabilities)):
        raise RuntimeError(
            "CUDA 11.1 or higher is required for compute capability 8.6.")
177
    if nvcc_cuda_version < Version("11.8"):
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        if any(cc.startswith("8.9") for cc in compute_capabilities):
            # CUDA 11.8 is required to generate the code targeting compute capability 8.9.
            # However, GPUs with compute capability 8.9 can also run the code generated by
            # the previous versions of CUDA 11 and targeting compute capability 8.0.
            # Therefore, if CUDA 11.8 is not available, we target compute capability 8.0
            # instead of 8.9.
            warnings.warn(
                "CUDA 11.8 or higher is required for compute capability 8.9. "
                "Targeting compute capability 8.0 instead.",
                stacklevel=2)
            compute_capabilities = set(cc for cc in compute_capabilities
                                       if not cc.startswith("8.9"))
            compute_capabilities.add("8.0+PTX")
        if any(cc.startswith("9.0") for cc in compute_capabilities):
            raise RuntimeError(
                "CUDA 11.8 or higher is required for compute capability 9.0.")

    # Add target compute capabilities to NVCC flags.
    for capability in compute_capabilities:
        num = capability[0] + capability[2]
        NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=sm_{num}"]
        if capability.endswith("+PTX"):
            NVCC_FLAGS += [
                "-gencode", f"arch=compute_{num},code=compute_{num}"
            ]

    # Use NVCC threads to parallelize the build.
    if nvcc_cuda_version >= Version("11.2"):
        nvcc_threads = int(os.getenv("NVCC_THREADS", 8))
        num_threads = min(os.cpu_count(), nvcc_threads)
        NVCC_FLAGS += ["--threads", str(num_threads)]

zhuwenwen's avatar
zhuwenwen committed
210
211
212
213
214
215
# elif _is_hip():
#     amd_arch = get_amdgpu_offload_arch()
#     if amd_arch not in ROCM_SUPPORTED_ARCHS:
#         raise RuntimeError(
#             f"Only the following arch is supported: {ROCM_SUPPORTED_ARCHS}"
#             f"amdgpu_arch_found: {amd_arch}")
216

217
ext_modules = []
218

219
220
221
222
223
224
225
vllm_extension_sources = [
    "csrc/cache_kernels.cu",
    "csrc/attention/attention_kernels.cu",
    "csrc/pos_encoding_kernels.cu",
    "csrc/activation_kernels.cu",
    "csrc/layernorm_kernels.cu",
    "csrc/quantization/squeezellm/quant_cuda_kernel.cu",
kliuae's avatar
kliuae committed
226
    "csrc/quantization/gptq/q_gemm.cu",
227
228
229
230
231
232
    "csrc/cuda_utils_kernels.cu",
    "csrc/pybind.cpp",
]

if _is_cuda():
    vllm_extension_sources.append("csrc/quantization/awq/gemm_kernels.cu")
Woosuk Kwon's avatar
Woosuk Kwon committed
233

234
235
vllm_extension = CUDAExtension(
    name="vllm._C",
236
    sources=vllm_extension_sources,
237
238
239
240
241
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
)
242
ext_modules.append(vllm_extension)
243

244

245
246
247
248
def get_path(*filepath) -> str:
    return os.path.join(ROOT_DIR, *filepath)


249
def find_version(filepath: str) -> str:
250
251
252
253
254
    """Extract version information from the given filepath.

    Adapted from https://github.com/ray-project/ray/blob/0b190ee1160eeca9796bc091e07eaebf4c85b511/python/setup.py
    """
    with open(filepath) as fp:
Woosuk Kwon's avatar
Woosuk Kwon committed
255
256
        version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
                                  fp.read(), re.M)
257
258
259
260
261
        if version_match:
            return version_match.group(1)
        raise RuntimeError("Unable to find version string.")


zhuwenwen's avatar
zhuwenwen committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def get_abi():
    try:
        command = "echo '#include <string>' | gcc -x c++ -E -dM - | fgrep _GLIBCXX_USE_CXX11_ABI" 
        result = subprocess.run(command, shell=True, capture_output=True, text=True) 
        output = result.stdout.strip() 
        abi = "abi" + output.split(" ")[-1]
        return abi
    except Exception:
        return 'abiUnknown'


def get_sha(root: Union[str, Path]) -> str:
    try:
        return subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=root).decode('ascii').strip()
    except Exception:
        return 'Unknown'

def get_version_add(sha: Optional[str] = None) -> str:
    vllm_root = os.path.dirname(os.path.abspath(__file__))
    add_version_path = os.path.join(os.path.join(vllm_root, "vllm"), "version.py")
    if sha != 'Unknown':
        if sha is None:
            sha = get_sha(vllm_root)
        version = 'git' + sha[:7]

    # abi version
    version += "." + get_abi()

    # dtk version
    if os.getenv("ROCM_PATH"):
        rocm_path = os.getenv('ROCM_PATH', "")
        rocm_version_path = os.path.join(rocm_path, '.info', "rocm_version")
        with open(rocm_version_path, 'r',encoding='utf-8') as file:
            lines = file.readlines()
        rocm_version=lines[0][:-2].replace(".", "")
        version += ".dtk" + rocm_version

    # torch version
    version += ".torch" + torch.__version__[:3]

    with open(add_version_path, encoding="utf-8",mode="w") as file:
zhuwenwen's avatar
zhuwenwen committed
303
304
        file.write("__version__='0.2.7'\n")
        file.write("__dcu_version__='0.2.7+{}'\n".format(version))
zhuwenwen's avatar
zhuwenwen committed
305
306
307
308
309
310
311
312
313
314
315
    file.close()
    
    
def get_version():
    get_version_add()
    version_file = 'vllm/version.py'
    with open(version_file, encoding='utf-8') as f:
        exec(compile(f.read(), version_file, 'exec'))
    return locals()['__dcu_version__']


316
317
def get_vllm_version() -> str:
    version = find_version(get_path("vllm", "__init__.py"))
318
319
320

    if _is_hip():
        # Get the HIP version
zhuwenwen's avatar
zhuwenwen committed
321
322
323
324
325
        # hipcc_version = get_hipcc_rocm_version()
        # if hipcc_version != MAIN_CUDA_VERSION:
        #     rocm_version_str = hipcc_version.replace(".", "")[:3]
        #     version += f"+rocm{rocm_version_str}"
        version = get_version()
326
327
328
329
330
331
    else:
        cuda_version = str(nvcc_cuda_version)
        if cuda_version != MAIN_CUDA_VERSION:
            cuda_version_str = cuda_version.replace(".", "")[:3]
            version += f"+cu{cuda_version_str}"

332
333
334
    return version


335
def read_readme() -> str:
Stephen Krider's avatar
Stephen Krider committed
336
337
338
339
340
341
    """Read the README file if present."""
    p = get_path("README.md")
    if os.path.isfile(p):
        return io.open(get_path("README.md"), "r", encoding="utf-8").read()
    else:
        return ""
342
343


344
345
def get_requirements() -> List[str]:
    """Get Python package dependencies from requirements.txt."""
346
347
348
349
350
351
    if _is_hip():
        with open(get_path("requirements-rocm.txt")) as f:
            requirements = f.read().strip().split("\n")
    else:
        with open(get_path("requirements.txt")) as f:
            requirements = f.read().strip().split("\n")
352
353
354
    return requirements


Woosuk Kwon's avatar
Woosuk Kwon committed
355
setuptools.setup(
Woosuk Kwon's avatar
Woosuk Kwon committed
356
    name="vllm",
357
    version=get_vllm_version(),
Woosuk Kwon's avatar
Woosuk Kwon committed
358
    author="vLLM Team",
359
    license="Apache 2.0",
Woosuk Kwon's avatar
Woosuk Kwon committed
360
361
    description=("A high-throughput and memory-efficient inference and "
                 "serving engine for LLMs"),
362
363
    long_description=read_readme(),
    long_description_content_type="text/markdown",
364
    url="https://github.com/vllm-project/vllm",
365
    project_urls={
366
367
        "Homepage": "https://github.com/vllm-project/vllm",
        "Documentation": "https://vllm.readthedocs.io/en/latest/",
368
369
370
371
372
    },
    classifiers=[
        "Programming Language :: Python :: 3.8",
        "Programming Language :: Python :: 3.9",
        "Programming Language :: Python :: 3.10",
Woosuk Kwon's avatar
Woosuk Kwon committed
373
        "Programming Language :: Python :: 3.11",
374
375
376
        "License :: OSI Approved :: Apache Software License",
        "Topic :: Scientific/Engineering :: Artificial Intelligence",
    ],
Woosuk Kwon's avatar
Woosuk Kwon committed
377
378
    packages=setuptools.find_packages(exclude=("benchmarks", "csrc", "docs",
                                               "examples", "tests")),
379
380
    python_requires=">=3.8",
    install_requires=get_requirements(),
Woosuk Kwon's avatar
Woosuk Kwon committed
381
    ext_modules=ext_modules,
382
    cmdclass={"build_ext": BuildExtension},
383
    package_data={"vllm": ["py.typed"]},
Woosuk Kwon's avatar
Woosuk Kwon committed
384
)