setup.py 8.85 KB
Newer Older
1
2
3
import io
import os
import re
4
5
import subprocess
from typing import List, Set
6
import warnings
7

8
from packaging.version import parse, Version
Woosuk Kwon's avatar
Woosuk Kwon committed
9
import setuptools
Woosuk Kwon's avatar
Woosuk Kwon committed
10
import torch
11
12
13
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME

ROOT_DIR = os.path.dirname(__file__)
14

15
16
MAIN_CUDA_VERSION = "12.1"

17
# Supported NVIDIA GPU architectures.
18
SUPPORTED_ARCHS = {"7.0", "7.5", "8.0", "8.6", "8.9", "9.0"}
19

20
# Compiler flags.
21
CXX_FLAGS = ["-g", "-O2", "-std=c++17"]
22
# TODO(woosuk): Should we use -O3?
23
NVCC_FLAGS = ["-O2", "-std=c++17"]
Woosuk Kwon's avatar
Woosuk Kwon committed
24

25
26
27
ABI = 1 if torch._C._GLIBCXX_USE_CXX11_ABI else 0
CXX_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
NVCC_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
28

Cody Yu's avatar
Cody Yu committed
29
if CUDA_HOME is None:
Woosuk Kwon's avatar
Woosuk Kwon committed
30
    raise RuntimeError(
Woosuk Kwon's avatar
Woosuk Kwon committed
31
        "Cannot find CUDA_HOME. CUDA must be available to build the package.")
Woosuk Kwon's avatar
Woosuk Kwon committed
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46

def get_nvcc_cuda_version(cuda_dir: str) -> Version:
    """Get the CUDA version from nvcc.

    Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
    """
    nvcc_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
                                          universal_newlines=True)
    output = nvcc_output.split()
    release_idx = output.index("release") + 1
    nvcc_cuda_version = parse(output[release_idx].split(",")[0])
    return nvcc_cuda_version


47
48
49
50
51
52
53
def get_torch_arch_list() -> Set[str]:
    # TORCH_CUDA_ARCH_LIST can have one or more architectures,
    # e.g. "8.0" or "7.5,8.0,8.6+PTX". Here, the "8.6+PTX" option asks the
    # compiler to additionally include PTX code that can be runtime-compiled
    # and executed on the 8.6 or newer architectures. While the PTX code will
    # not give the best performance on the newer architectures, it provides
    # forward compatibility.
54
55
    env_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
    if env_arch_list is None:
56
57
58
        return set()

    # List are separated by ; or space.
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    torch_arch_list = set(env_arch_list.replace(" ", ";").split(";"))
    if not torch_arch_list:
        return set()

    # Filter out the invalid architectures and print a warning.
    valid_archs = SUPPORTED_ARCHS.union({s + "+PTX" for s in SUPPORTED_ARCHS})
    arch_list = torch_arch_list.intersection(valid_archs)
    # If none of the specified architectures are valid, raise an error.
    if not arch_list:
        raise RuntimeError(
            "None of the CUDA architectures in `TORCH_CUDA_ARCH_LIST` env "
            f"variable ({env_arch_list}) is supported. "
            f"Supported CUDA architectures are: {valid_archs}.")
    invalid_arch_list = torch_arch_list - valid_archs
    if invalid_arch_list:
        warnings.warn(
            f"Unsupported CUDA architectures ({invalid_arch_list}) are "
            "excluded from the `TORCH_CUDA_ARCH_LIST` env variable "
            f"({env_arch_list}). Supported CUDA architectures are: "
78
79
            f"{valid_archs}.",
            stacklevel=2)
80
    return arch_list
81
82
83
84
85
86
87
88
89
90
91
92
93
94


# First, check the TORCH_CUDA_ARCH_LIST environment variable.
compute_capabilities = get_torch_arch_list()
if not compute_capabilities:
    # If TORCH_CUDA_ARCH_LIST is not defined or empty, target all available
    # GPUs on the current machine.
    device_count = torch.cuda.device_count()
    for i in range(device_count):
        major, minor = torch.cuda.get_device_capability(i)
        if major < 7:
            raise RuntimeError(
                "GPUs with compute capability below 7.0 are not supported.")
        compute_capabilities.add(f"{major}.{minor}")
95
96

nvcc_cuda_version = get_nvcc_cuda_version(CUDA_HOME)
97
98
99
if not compute_capabilities:
    # If no GPU is specified nor available, add all supported architectures
    # based on the NVCC CUDA version.
100
    compute_capabilities = SUPPORTED_ARCHS.copy()
101
102
103
104
105
106
107
    if nvcc_cuda_version < Version("11.1"):
        compute_capabilities.remove("8.6")
    if nvcc_cuda_version < Version("11.8"):
        compute_capabilities.remove("8.9")
        compute_capabilities.remove("9.0")

# Validate the NVCC CUDA version.
108
109
if nvcc_cuda_version < Version("11.0"):
    raise RuntimeError("CUDA 11.0 or higher is required to build the package.")
110
111
112
113
if (nvcc_cuda_version < Version("11.1")
        and any(cc.startswith("8.6") for cc in compute_capabilities)):
    raise RuntimeError(
        "CUDA 11.1 or higher is required for compute capability 8.6.")
114
115
116
117
118
119
120
121
122
if nvcc_cuda_version < Version("11.8"):
    if any(cc.startswith("8.9") for cc in compute_capabilities):
        # CUDA 11.8 is required to generate the code targeting compute capability 8.9.
        # However, GPUs with compute capability 8.9 can also run the code generated by
        # the previous versions of CUDA 11 and targeting compute capability 8.0.
        # Therefore, if CUDA 11.8 is not available, we target compute capability 8.0
        # instead of 8.9.
        warnings.warn(
            "CUDA 11.8 or higher is required for compute capability 8.9. "
123
124
            "Targeting compute capability 8.0 instead.",
            stacklevel=2)
125
126
127
128
129
130
        compute_capabilities = set(cc for cc in compute_capabilities
                                   if not cc.startswith("8.9"))
        compute_capabilities.add("8.0+PTX")
    if any(cc.startswith("9.0") for cc in compute_capabilities):
        raise RuntimeError(
            "CUDA 11.8 or higher is required for compute capability 9.0.")
131
132
133

# Add target compute capabilities to NVCC flags.
for capability in compute_capabilities:
134
135
136
137
    num = capability[0] + capability[2]
    NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=sm_{num}"]
    if capability.endswith("+PTX"):
        NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=compute_{num}"]
138

Woosuk Kwon's avatar
Woosuk Kwon committed
139
140
# Use NVCC threads to parallelize the build.
if nvcc_cuda_version >= Version("11.2"):
Daya Khudia's avatar
Daya Khudia committed
141
    nvcc_threads = int(os.getenv("NVCC_THREADS", 8))
142
    num_threads = min(os.cpu_count(), nvcc_threads)
Woosuk Kwon's avatar
Woosuk Kwon committed
143
144
    NVCC_FLAGS += ["--threads", str(num_threads)]

Woosuk Kwon's avatar
Woosuk Kwon committed
145
ext_modules = []
146
147
vllm_extension = CUDAExtension(
    name="vllm._C",
148
    sources=[
149
150
151
152
153
        "csrc/cache_kernels.cu",
        "csrc/attention/attention_kernels.cu",
        "csrc/pos_encoding_kernels.cu",
        "csrc/activation_kernels.cu",
        "csrc/layernorm_kernels.cu",
154
        "csrc/quantization/awq/gemm_kernels.cu",
chooper1's avatar
chooper1 committed
155
        "csrc/quantization/squeezellm/quant_cuda_kernel.cu",
156
157
        "csrc/cuda_utils_kernels.cu",
        "csrc/pybind.cpp",
158
159
160
161
162
163
    ],
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
)
164
ext_modules.append(vllm_extension)
165

166

167
168
169
170
def get_path(*filepath) -> str:
    return os.path.join(ROOT_DIR, *filepath)


171
def find_version(filepath: str) -> str:
172
173
174
175
176
    """Extract version information from the given filepath.

    Adapted from https://github.com/ray-project/ray/blob/0b190ee1160eeca9796bc091e07eaebf4c85b511/python/setup.py
    """
    with open(filepath) as fp:
Woosuk Kwon's avatar
Woosuk Kwon committed
177
178
        version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
                                  fp.read(), re.M)
179
180
181
182
183
        if version_match:
            return version_match.group(1)
        raise RuntimeError("Unable to find version string.")


184
185
186
187
188
189
190
191
192
def get_vllm_version() -> str:
    version = find_version(get_path("vllm", "__init__.py"))
    cuda_version = str(nvcc_cuda_version)
    if cuda_version != MAIN_CUDA_VERSION:
        cuda_version_str = cuda_version.replace(".", "")[:3]
        version += f"+cu{cuda_version_str}"
    return version


193
def read_readme() -> str:
Stephen Krider's avatar
Stephen Krider committed
194
195
196
197
198
199
    """Read the README file if present."""
    p = get_path("README.md")
    if os.path.isfile(p):
        return io.open(get_path("README.md"), "r", encoding="utf-8").read()
    else:
        return ""
200
201


202
203
def get_requirements() -> List[str]:
    """Get Python package dependencies from requirements.txt."""
204
    with open(get_path("requirements.txt")) as f:
205
206
207
208
        requirements = f.read().strip().split("\n")
    return requirements


Woosuk Kwon's avatar
Woosuk Kwon committed
209
setuptools.setup(
Woosuk Kwon's avatar
Woosuk Kwon committed
210
    name="vllm",
211
    version=get_vllm_version(),
Woosuk Kwon's avatar
Woosuk Kwon committed
212
    author="vLLM Team",
213
    license="Apache 2.0",
Woosuk Kwon's avatar
Woosuk Kwon committed
214
215
    description=("A high-throughput and memory-efficient inference and "
                 "serving engine for LLMs"),
216
217
    long_description=read_readme(),
    long_description_content_type="text/markdown",
218
    url="https://github.com/vllm-project/vllm",
219
    project_urls={
220
221
        "Homepage": "https://github.com/vllm-project/vllm",
        "Documentation": "https://vllm.readthedocs.io/en/latest/",
222
223
224
225
226
    },
    classifiers=[
        "Programming Language :: Python :: 3.8",
        "Programming Language :: Python :: 3.9",
        "Programming Language :: Python :: 3.10",
Woosuk Kwon's avatar
Woosuk Kwon committed
227
        "Programming Language :: Python :: 3.11",
228
229
230
        "License :: OSI Approved :: Apache Software License",
        "Topic :: Scientific/Engineering :: Artificial Intelligence",
    ],
Woosuk Kwon's avatar
Woosuk Kwon committed
231
232
    packages=setuptools.find_packages(exclude=("benchmarks", "csrc", "docs",
                                               "examples", "tests")),
233
234
    python_requires=">=3.8",
    install_requires=get_requirements(),
Woosuk Kwon's avatar
Woosuk Kwon committed
235
    ext_modules=ext_modules,
236
    cmdclass={"build_ext": BuildExtension},
237
    package_data={"vllm": ["py.typed"]},
Woosuk Kwon's avatar
Woosuk Kwon committed
238
)