setup.py 10.3 KB
Newer Older
1
2
3
import io
import os
import re
4
5
import subprocess
from typing import List, Set
6
import warnings
7

8
from packaging.version import parse, Version
Woosuk Kwon's avatar
Woosuk Kwon committed
9
import setuptools
Woosuk Kwon's avatar
Woosuk Kwon committed
10
import torch
11
12
13
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME

ROOT_DIR = os.path.dirname(__file__)
14

15
16
MAIN_CUDA_VERSION = "12.1"

17
# Supported NVIDIA GPU architectures.
18
SUPPORTED_ARCHS = {"7.0", "7.5", "8.0", "8.6", "8.9", "9.0"}
19

20
# Compiler flags.
21
CXX_FLAGS = ["-g", "-O2", "-std=c++17"]
22
# TODO(woosuk): Should we use -O3?
23
NVCC_FLAGS = ["-O2", "-std=c++17"]
Woosuk Kwon's avatar
Woosuk Kwon committed
24

25
26
27
ABI = 1 if torch._C._GLIBCXX_USE_CXX11_ABI else 0
CXX_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
NVCC_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
28

Cody Yu's avatar
Cody Yu committed
29
if CUDA_HOME is None:
Woosuk Kwon's avatar
Woosuk Kwon committed
30
    raise RuntimeError(
Woosuk Kwon's avatar
Woosuk Kwon committed
31
        "Cannot find CUDA_HOME. CUDA must be available to build the package.")
Woosuk Kwon's avatar
Woosuk Kwon committed
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46

def get_nvcc_cuda_version(cuda_dir: str) -> Version:
    """Get the CUDA version from nvcc.

    Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
    """
    nvcc_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
                                          universal_newlines=True)
    output = nvcc_output.split()
    release_idx = output.index("release") + 1
    nvcc_cuda_version = parse(output[release_idx].split(",")[0])
    return nvcc_cuda_version


47
48
49
50
51
52
53
def get_torch_arch_list() -> Set[str]:
    # TORCH_CUDA_ARCH_LIST can have one or more architectures,
    # e.g. "8.0" or "7.5,8.0,8.6+PTX". Here, the "8.6+PTX" option asks the
    # compiler to additionally include PTX code that can be runtime-compiled
    # and executed on the 8.6 or newer architectures. While the PTX code will
    # not give the best performance on the newer architectures, it provides
    # forward compatibility.
54
55
    env_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
    if env_arch_list is None:
56
57
58
        return set()

    # List are separated by ; or space.
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    torch_arch_list = set(env_arch_list.replace(" ", ";").split(";"))
    if not torch_arch_list:
        return set()

    # Filter out the invalid architectures and print a warning.
    valid_archs = SUPPORTED_ARCHS.union({s + "+PTX" for s in SUPPORTED_ARCHS})
    arch_list = torch_arch_list.intersection(valid_archs)
    # If none of the specified architectures are valid, raise an error.
    if not arch_list:
        raise RuntimeError(
            "None of the CUDA architectures in `TORCH_CUDA_ARCH_LIST` env "
            f"variable ({env_arch_list}) is supported. "
            f"Supported CUDA architectures are: {valid_archs}.")
    invalid_arch_list = torch_arch_list - valid_archs
    if invalid_arch_list:
        warnings.warn(
            f"Unsupported CUDA architectures ({invalid_arch_list}) are "
            "excluded from the `TORCH_CUDA_ARCH_LIST` env variable "
            f"({env_arch_list}). Supported CUDA architectures are: "
            f"{valid_archs}.")
    return arch_list
80
81
82
83
84
85
86
87
88
89
90
91
92
93


# First, check the TORCH_CUDA_ARCH_LIST environment variable.
compute_capabilities = get_torch_arch_list()
if not compute_capabilities:
    # If TORCH_CUDA_ARCH_LIST is not defined or empty, target all available
    # GPUs on the current machine.
    device_count = torch.cuda.device_count()
    for i in range(device_count):
        major, minor = torch.cuda.get_device_capability(i)
        if major < 7:
            raise RuntimeError(
                "GPUs with compute capability below 7.0 are not supported.")
        compute_capabilities.add(f"{major}.{minor}")
94
95

nvcc_cuda_version = get_nvcc_cuda_version(CUDA_HOME)
96
97
98
if not compute_capabilities:
    # If no GPU is specified nor available, add all supported architectures
    # based on the NVCC CUDA version.
99
    compute_capabilities = SUPPORTED_ARCHS.copy()
100
101
102
103
104
105
106
    if nvcc_cuda_version < Version("11.1"):
        compute_capabilities.remove("8.6")
    if nvcc_cuda_version < Version("11.8"):
        compute_capabilities.remove("8.9")
        compute_capabilities.remove("9.0")

# Validate the NVCC CUDA version.
107
108
if nvcc_cuda_version < Version("11.0"):
    raise RuntimeError("CUDA 11.0 or higher is required to build the package.")
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
if nvcc_cuda_version < Version("11.1"):
    if any(cc.startswith("8.6") for cc in compute_capabilities):
        raise RuntimeError(
            "CUDA 11.1 or higher is required for compute capability 8.6.")
if nvcc_cuda_version < Version("11.8"):
    if any(cc.startswith("8.9") for cc in compute_capabilities):
        # CUDA 11.8 is required to generate the code targeting compute capability 8.9.
        # However, GPUs with compute capability 8.9 can also run the code generated by
        # the previous versions of CUDA 11 and targeting compute capability 8.0.
        # Therefore, if CUDA 11.8 is not available, we target compute capability 8.0
        # instead of 8.9.
        warnings.warn(
            "CUDA 11.8 or higher is required for compute capability 8.9. "
            "Targeting compute capability 8.0 instead.")
        compute_capabilities = set(cc for cc in compute_capabilities
                                   if not cc.startswith("8.9"))
        compute_capabilities.add("8.0+PTX")
    if any(cc.startswith("9.0") for cc in compute_capabilities):
        raise RuntimeError(
            "CUDA 11.8 or higher is required for compute capability 9.0.")
129
130
131

# Add target compute capabilities to NVCC flags.
for capability in compute_capabilities:
132
133
134
135
    num = capability[0] + capability[2]
    NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=sm_{num}"]
    if capability.endswith("+PTX"):
        NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=compute_{num}"]
136

Woosuk Kwon's avatar
Woosuk Kwon committed
137
138
139
140
141
# Use NVCC threads to parallelize the build.
if nvcc_cuda_version >= Version("11.2"):
    num_threads = min(os.cpu_count(), 8)
    NVCC_FLAGS += ["--threads", str(num_threads)]

Woosuk Kwon's avatar
Woosuk Kwon committed
142
143
144
ext_modules = []

# Cache operations.
145
cache_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
146
    name="vllm.cache_ops",
147
    sources=["csrc/cache.cpp", "csrc/cache_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
148
149
150
151
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
Woosuk Kwon's avatar
Woosuk Kwon committed
152
153
154
)
ext_modules.append(cache_extension)

155
# Attention kernels.
156
attention_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
157
    name="vllm.attention_ops",
158
    sources=["csrc/attention.cpp", "csrc/attention/attention_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
159
160
161
162
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
163
164
165
)
ext_modules.append(attention_extension)

Woosuk Kwon's avatar
Woosuk Kwon committed
166
# Positional encoding kernels.
167
positional_encoding_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
168
    name="vllm.pos_encoding_ops",
169
    sources=["csrc/pos_encoding.cpp", "csrc/pos_encoding_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
170
171
172
173
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
174
175
176
)
ext_modules.append(positional_encoding_extension)

177
# Layer normalization kernels.
178
layernorm_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
179
    name="vllm.layernorm_ops",
180
    sources=["csrc/layernorm.cpp", "csrc/layernorm_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
181
182
183
184
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
185
186
187
)
ext_modules.append(layernorm_extension)

Woosuk Kwon's avatar
Woosuk Kwon committed
188
# Activation kernels.
189
activation_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
190
    name="vllm.activation_ops",
191
    sources=["csrc/activation.cpp", "csrc/activation_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
192
193
194
195
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
Woosuk Kwon's avatar
Woosuk Kwon committed
196
197
198
)
ext_modules.append(activation_extension)

199
200
201
202
203
204
# Quantization kernels.
quantization_extension = CUDAExtension(
    name="vllm.quantization_ops",
    sources=[
        "csrc/quantization.cpp",
        "csrc/quantization/awq/gemm_kernels.cu",
chooper1's avatar
chooper1 committed
205
        "csrc/quantization/squeezellm/quant_cuda_kernel.cu",
206
207
208
209
210
211
212
213
    ],
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
)
ext_modules.append(quantization_extension)

214
215
216
217
218
219
220
221
222
223
224
# Misc. CUDA utils.
cuda_utils_extension = CUDAExtension(
    name="vllm.cuda_utils",
    sources=["csrc/cuda_utils.cpp", "csrc/cuda_utils_kernels.cu"],
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
)
ext_modules.append(cuda_utils_extension)

225

226
227
228
229
def get_path(*filepath) -> str:
    return os.path.join(ROOT_DIR, *filepath)


230
def find_version(filepath: str) -> str:
231
232
233
234
235
    """Extract version information from the given filepath.

    Adapted from https://github.com/ray-project/ray/blob/0b190ee1160eeca9796bc091e07eaebf4c85b511/python/setup.py
    """
    with open(filepath) as fp:
Woosuk Kwon's avatar
Woosuk Kwon committed
236
237
        version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
                                  fp.read(), re.M)
238
239
240
241
242
        if version_match:
            return version_match.group(1)
        raise RuntimeError("Unable to find version string.")


243
244
245
246
247
248
249
250
251
def get_vllm_version() -> str:
    version = find_version(get_path("vllm", "__init__.py"))
    cuda_version = str(nvcc_cuda_version)
    if cuda_version != MAIN_CUDA_VERSION:
        cuda_version_str = cuda_version.replace(".", "")[:3]
        version += f"+cu{cuda_version_str}"
    return version


252
def read_readme() -> str:
Stephen Krider's avatar
Stephen Krider committed
253
254
255
256
257
258
    """Read the README file if present."""
    p = get_path("README.md")
    if os.path.isfile(p):
        return io.open(get_path("README.md"), "r", encoding="utf-8").read()
    else:
        return ""
259
260


261
262
def get_requirements() -> List[str]:
    """Get Python package dependencies from requirements.txt."""
263
    with open(get_path("requirements.txt")) as f:
264
265
266
267
        requirements = f.read().strip().split("\n")
    return requirements


Woosuk Kwon's avatar
Woosuk Kwon committed
268
setuptools.setup(
Woosuk Kwon's avatar
Woosuk Kwon committed
269
    name="vllm",
270
    version=get_vllm_version(),
Woosuk Kwon's avatar
Woosuk Kwon committed
271
    author="vLLM Team",
272
    license="Apache 2.0",
Woosuk Kwon's avatar
Woosuk Kwon committed
273
274
    description=("A high-throughput and memory-efficient inference and "
                 "serving engine for LLMs"),
275
276
    long_description=read_readme(),
    long_description_content_type="text/markdown",
277
    url="https://github.com/vllm-project/vllm",
278
    project_urls={
279
280
        "Homepage": "https://github.com/vllm-project/vllm",
        "Documentation": "https://vllm.readthedocs.io/en/latest/",
281
282
283
284
285
    },
    classifiers=[
        "Programming Language :: Python :: 3.8",
        "Programming Language :: Python :: 3.9",
        "Programming Language :: Python :: 3.10",
Woosuk Kwon's avatar
Woosuk Kwon committed
286
        "Programming Language :: Python :: 3.11",
287
288
289
        "License :: OSI Approved :: Apache Software License",
        "Topic :: Scientific/Engineering :: Artificial Intelligence",
    ],
Woosuk Kwon's avatar
Woosuk Kwon committed
290
291
    packages=setuptools.find_packages(exclude=("benchmarks", "csrc", "docs",
                                               "examples", "tests")),
292
293
    python_requires=">=3.8",
    install_requires=get_requirements(),
Woosuk Kwon's avatar
Woosuk Kwon committed
294
    ext_modules=ext_modules,
295
    cmdclass={"build_ext": BuildExtension},
296
    package_data={"vllm": ["py.typed"]},
Woosuk Kwon's avatar
Woosuk Kwon committed
297
)