config.py 25.4 KB
Newer Older
1
2
from typing import Optional, Union, ClassVar
from dataclasses import dataclass
3
import os
4
from packaging.version import Version
5
6

import torch
7
from transformers import PretrainedConfig
8

Woosuk Kwon's avatar
Woosuk Kwon committed
9
from vllm.logger import init_logger
10
from vllm.transformers_utils.config import get_config
11
from vllm.utils import get_cpu_memory, is_hip, get_nvcc_cuda_version
12
13
14

logger = init_logger(__name__)

15
_GB = 1 << 30
16

17
18

class ModelConfig:
19
20
21
22
    """Configuration for the model.

    Args:
        model: Name or path of the huggingface model to use.
23
        tokenizer: Name or path of the huggingface tokenizer to use.
24
25
        tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
            available, and "slow" will always use the slow tokenizer.
26
27
        trust_remote_code: Trust remote code (e.g., from HuggingFace) when
            downloading the model and tokenizer.
28
29
        download_dir: Directory to download and load the weights, default to the
            default cache directory of huggingface.
30
31
32
33
34
35
36
37
38
39
        load_format: The format of the model weights to load:
            "auto" will try to load the weights in the safetensors format and
                fall back to the pytorch bin format if safetensors format is
                not available.
            "pt" will load the weights in the pytorch bin format.
            "safetensors" will load the weights in the safetensors format.
            "npcache" will load the weights in pytorch format and store
                a numpy cache to speed up the loading.
            "dummy" will initialize the weights with random values, which is
                mainly for profiling.
40
41
42
43
        dtype: Data type for model weights and activations. The "auto" option
            will use FP16 precision for FP32 and FP16 models, and BF16 precision
            for BF16 models.
        seed: Random seed for reproducibility.
Jasmond L's avatar
Jasmond L committed
44
45
46
        revision: The specific model version to use. It can be a branch name,
            a tag name, or a commit id. If unspecified, will use the default
            version.
47
48
49
        tokenizer_revision: The specific tokenizer version to use. It can be a
            branch name, a tag name, or a commit id. If unspecified, will use
            the default version.
50
51
        max_model_len: Maximum length of a sequence (including prompt and
            output). If None, will be derived from the model.
52
53
        quantization: Quantization method that was used to quantize the model
            weights. If None, we assume the model weights are not quantized.
54
55
56
57
58
59
        enforce_eager: Whether to enforce eager execution. If True, we will
            disable CUDA graph and always execute the model in eager mode.
            If False, we will use CUDA graph and eager execution in hybrid.
        max_context_len_to_capture: Maximum context len covered by CUDA graphs.
            When a sequence has context length larger than this, we fall back
            to eager mode.
60
    """
61
62
63
64

    def __init__(
        self,
        model: str,
65
66
        tokenizer: str,
        tokenizer_mode: str,
67
        trust_remote_code: bool,
68
        download_dir: Optional[str],
69
        load_format: str,
70
        dtype: Union[str, torch.dtype],
71
        seed: int,
72
        revision: Optional[str] = None,
73
        tokenizer_revision: Optional[str] = None,
74
        max_model_len: Optional[int] = None,
75
        quantization: Optional[str] = None,
76
77
        enforce_eager: bool = False,
        max_context_len_to_capture: Optional[int] = None,
78
79
    ) -> None:
        self.model = model
80
        self.tokenizer = tokenizer
81
        self.tokenizer_mode = tokenizer_mode
82
        self.trust_remote_code = trust_remote_code
83
        self.download_dir = download_dir
84
        self.load_format = load_format
85
        self.seed = seed
Jasmond L's avatar
Jasmond L committed
86
        self.revision = revision
87
        self.tokenizer_revision = tokenizer_revision
88
        self.quantization = quantization
89
90
        self.enforce_eager = enforce_eager
        self.max_context_len_to_capture = max_context_len_to_capture
91

92
93
94
95
96
97
98
99
100
101
102
103
        if os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true":
            # download model from ModelScope hub,
            # lazy import so that modelscope is not required for normal use.
            from modelscope.hub.snapshot_download import snapshot_download  # pylint: disable=C
            model_path = snapshot_download(model_id=model,
                                           cache_dir=download_dir,
                                           revision=revision)
            self.model = model_path
            self.download_dir = model_path
            self.tokenizer = model_path

        self.hf_config = get_config(self.model, trust_remote_code, revision)
104
        self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
105
106
        self.max_model_len = _get_and_verify_max_len(self.hf_config,
                                                     max_model_len)
107
        self._verify_load_format()
108
        self._verify_tokenizer_mode()
109
        self._verify_quantization()
110
        self._verify_cuda_graph()
111

112
113
    def _verify_load_format(self) -> None:
        load_format = self.load_format.lower()
114
115
116
        supported_load_format = [
            "auto", "pt", "safetensors", "npcache", "dummy"
        ]
kliuae's avatar
kliuae committed
117
        rocm_not_supported_load_format = []
118
        if load_format not in supported_load_format:
119
120
121
            raise ValueError(
                f"Unknown load format: {self.load_format}. Must be one of "
                "'auto', 'pt', 'safetensors', 'npcache', or 'dummy'.")
kliuae's avatar
kliuae committed
122
123
124
125
126
127
128
129
130
        if is_hip() and load_format in rocm_not_supported_load_format:
            rocm_supported_load_format = [
                f for f in supported_load_format
                if (f not in rocm_not_supported_load_format)
            ]
            raise ValueError(
                f"load format \'{load_format}\' is not supported in ROCm. "
                f"Supported load format are "
                f"{rocm_supported_load_format}")
131

132
        # TODO: Remove this check once HF updates the pt weights of Mixtral.
133
        architectures = getattr(self.hf_config, "architectures", [])
Roy's avatar
Roy committed
134
135
136
137
        if "MixtralForCausalLM" in architectures and load_format == "pt":
            raise ValueError(
                "Currently, the 'pt' format is not supported for Mixtral. "
                "Please use the 'safetensors' format instead. ")
138
139
        self.load_format = load_format

140
141
142
143
144
145
146
    def _verify_tokenizer_mode(self) -> None:
        tokenizer_mode = self.tokenizer_mode.lower()
        if tokenizer_mode not in ["auto", "slow"]:
            raise ValueError(
                f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
                "either 'auto' or 'slow'.")
        self.tokenizer_mode = tokenizer_mode
147

148
    def _verify_quantization(self) -> None:
CHU Tianxiang's avatar
CHU Tianxiang committed
149
        supported_quantization = ["awq", "gptq", "squeezellm"]
kliuae's avatar
kliuae committed
150
        rocm_not_supported_quantization = ["awq"]
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        if self.quantization is not None:
            self.quantization = self.quantization.lower()

        # Parse quantization method from the HF model config, if available.
        hf_quant_config = getattr(self.hf_config, "quantization_config", None)
        if hf_quant_config is not None:
            hf_quant_method = str(hf_quant_config["quant_method"]).lower()
            if self.quantization is None:
                self.quantization = hf_quant_method
            elif self.quantization != hf_quant_method:
                raise ValueError(
                    "Quantization method specified in the model config "
                    f"({hf_quant_method}) does not match the quantization "
                    f"method specified in the `quantization` argument "
                    f"({self.quantization}).")

        if self.quantization is not None:
            if self.quantization not in supported_quantization:
                raise ValueError(
                    f"Unknown quantization method: {self.quantization}. Must "
                    f"be one of {supported_quantization}.")
172
173
174
175
176
            if is_hip(
            ) and self.quantization in rocm_not_supported_quantization:
                raise ValueError(
                    f"{self.quantization} quantization is currently not supported "
                    f"in ROCm.")
177
178
179
            logger.warning(f"{self.quantization} quantization is not fully "
                           "optimized yet. The speed can be slower than "
                           "non-quantized models.")
180

181
182
183
184
185
186
    def _verify_cuda_graph(self) -> None:
        if self.max_context_len_to_capture is None:
            self.max_context_len_to_capture = self.max_model_len
        self.max_context_len_to_capture = min(self.max_context_len_to_capture,
                                              self.max_model_len)

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def verify_with_parallel_config(
        self,
        parallel_config: "ParallelConfig",
    ) -> None:
        total_num_attention_heads = self.hf_config.num_attention_heads
        tensor_parallel_size = parallel_config.tensor_parallel_size
        if total_num_attention_heads % tensor_parallel_size != 0:
            raise ValueError(
                f"Total number of attention heads ({total_num_attention_heads})"
                " must be divisible by tensor parallel size "
                f"({tensor_parallel_size}).")

        total_num_hidden_layers = self.hf_config.num_hidden_layers
        pipeline_parallel_size = parallel_config.pipeline_parallel_size
        if total_num_hidden_layers % pipeline_parallel_size != 0:
            raise ValueError(
                f"Total number of hidden layers ({total_num_hidden_layers}) "
                "must be divisible by pipeline parallel size "
                f"({pipeline_parallel_size}).")

207
208
209
210
211
212
    def get_sliding_window(self) -> Optional[int]:
        return getattr(self.hf_config, "sliding_window", None)

    def get_vocab_size(self) -> int:
        return self.hf_config.vocab_size

213
214
215
216
    def get_hidden_size(self) -> int:
        return self.hf_config.hidden_size

    def get_head_size(self) -> int:
217
218
        if hasattr(self.hf_config, "head_dim"):
            return self.hf_config.head_dim
219
220
221
        # FIXME(woosuk): This may not be true for all models.
        return self.hf_config.hidden_size // self.hf_config.num_attention_heads

222
223
    def get_total_num_kv_heads(self) -> int:
        """Returns the total number of KV heads."""
Zhuohan Li's avatar
Zhuohan Li committed
224
        # For GPTBigCode & Falcon:
225
        # NOTE: for falcon, when new_decoder_architecture is True, the
Zhuohan Li's avatar
Zhuohan Li committed
226
227
        # multi_query flag is ignored and we use n_head_kv for the number of
        # KV heads.
228
        falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
229
        new_decoder_arch_falcon = (
230
            self.hf_config.model_type in falcon_model_types
231
232
233
            and getattr(self.hf_config, "new_decoder_architecture", False))
        if not new_decoder_arch_falcon and getattr(self.hf_config,
                                                   "multi_query", False):
Zhuohan Li's avatar
Zhuohan Li committed
234
            # Multi-query attention, only one KV head.
Woosuk Kwon's avatar
Woosuk Kwon committed
235
            # Currently, tensor parallelism is not supported in this case.
Zhuohan Li's avatar
Zhuohan Li committed
236
            return 1
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

        attributes = [
            # For Falcon:
            "n_head_kv",
            "num_kv_heads",
            # For LLaMA-2:
            "num_key_value_heads",
            # For ChatGLM:
            "multi_query_group_num",
        ]
        for attr in attributes:
            num_kv_heads = getattr(self.hf_config, attr, None)
            if num_kv_heads is not None:
                return num_kv_heads

        # For non-grouped-query attention models, the number of KV heads is
        # equal to the number of attention heads.
        return self.hf_config.num_attention_heads

    def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
        """Returns the number of KV heads per GPU."""
        total_num_kv_heads = self.get_total_num_kv_heads()
        # If tensor parallelism is used, we divide the number of KV heads by
        # the tensor parallel size. We will replicate the KV heads in the
        # case where the number of KV heads is smaller than the tensor
        # parallel size so each GPU has at least one KV head.
        return max(1,
                   total_num_kv_heads // parallel_config.tensor_parallel_size)
265
266
267
268
269
270
271

    def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
        total_num_hidden_layers = self.hf_config.num_hidden_layers
        return total_num_hidden_layers // parallel_config.pipeline_parallel_size


class CacheConfig:
272
273
274
275
276
    """Configuration for the KV cache.

    Args:
        block_size: Size of a cache block in number of tokens.
        gpu_memory_utilization: Fraction of GPU memory to use for the
Woosuk Kwon's avatar
Woosuk Kwon committed
277
            vLLM execution.
278
        swap_space: Size of the CPU swap space per GPU (in GiB).
279
        cache_dtype: Data type for kv cache storage.
280
    """
281

282
283
284
285
286
    def __init__(
        self,
        block_size: int,
        gpu_memory_utilization: float,
        swap_space: int,
287
        cache_dtype: str,
288
        sliding_window: Optional[int] = None,
289
290
291
    ) -> None:
        self.block_size = block_size
        self.gpu_memory_utilization = gpu_memory_utilization
292
        self.swap_space_bytes = swap_space * _GB
293
        self.cache_dtype = cache_dtype
294
        self.sliding_window = sliding_window
295
        self._verify_args()
296
        self._verify_cache_dtype()
297
298
299
300
301

        # Will be set after profiling.
        self.num_gpu_blocks = None
        self.num_cpu_blocks = None

302
303
304
305
306
307
    def _verify_args(self) -> None:
        if self.gpu_memory_utilization > 1.0:
            raise ValueError(
                "GPU memory utilization must be less than 1.0. Got "
                f"{self.gpu_memory_utilization}.")

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    def _verify_cache_dtype(self) -> None:
        if self.cache_dtype == "auto":
            pass
        elif self.cache_dtype == "fp8_e5m2":
            nvcc_cuda_version = get_nvcc_cuda_version()
            if nvcc_cuda_version < Version("11.8"):
                raise ValueError(
                    "FP8 is not supported when cuda version is lower than 11.8."
                )
            device_name = torch.cuda.get_device_name()
            if "AMD" in device_name:
                raise NotImplementedError(
                    "FP8_E5M2 KV Cache on AMD GPU has not been supported yet.")
            logger.info(
                "Using fp8_e5m2 data type to store kv cache. It reduces "
                "the GPU memory footprint and boosts the performance. "
                "But it may cause slight accuracy drop. "
                "Currently we only support fp8 without scaling factors and "
                "make e5m2 as a default format.")
        else:
            raise ValueError(f"Unknown kv cache dtype: {self.cache_dtype}")

330
331
332
333
334
335
336
337
338
339
    def verify_with_parallel_config(
        self,
        parallel_config: "ParallelConfig",
    ) -> None:
        total_cpu_memory = get_cpu_memory()
        # FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
        # group are in the same node. However, the GPUs may span multiple nodes.
        num_gpus_per_node = parallel_config.tensor_parallel_size
        cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node

340
341
342
        msg = (f"{cpu_memory_usage / _GB:.2f} GiB out of "
               f"the {total_cpu_memory / _GB:.2f} GiB total CPU memory is "
               "allocated for the swap space.")
343
344
345
        if cpu_memory_usage > 0.7 * total_cpu_memory:
            raise ValueError("Too large swap space. " + msg)
        elif cpu_memory_usage > 0.4 * total_cpu_memory:
346
            logger.warning("Possibly too large swap space. " + msg)
347

348
349

class ParallelConfig:
350
351
352
353
354
355
356
357
    """Configuration for the distributed execution.

    Args:
        pipeline_parallel_size: Number of pipeline parallel groups.
        tensor_parallel_size: Number of tensor parallel groups.
        worker_use_ray: Whether to use Ray for model workers. Will be set to
            True if either pipeline_parallel_size or tensor_parallel_size is
            greater than 1.
zspo's avatar
zspo committed
358
359
360
        max_parallel_loading_workers: Maximum number of multiple batches
            when load model sequentially. To avoid RAM OOM when using tensor
            parallel and large models.
361
362
        disable_custom_all_reduce: Disable the custom all-reduce kernel and
            fall back to NCCL.
363
    """
364

365
366
367
368
    def __init__(
        self,
        pipeline_parallel_size: int,
        tensor_parallel_size: int,
369
        worker_use_ray: bool,
370
        max_parallel_loading_workers: Optional[int] = None,
371
        disable_custom_all_reduce: bool = False,
372
373
374
    ) -> None:
        self.pipeline_parallel_size = pipeline_parallel_size
        self.tensor_parallel_size = tensor_parallel_size
375
        self.worker_use_ray = worker_use_ray
376
        self.max_parallel_loading_workers = max_parallel_loading_workers
377
        self.disable_custom_all_reduce = disable_custom_all_reduce
378
379
380

        self.world_size = pipeline_parallel_size * tensor_parallel_size
        if self.world_size > 1:
381
            self.worker_use_ray = True
382
383
384
385
386
387
        self._verify_args()

    def _verify_args(self) -> None:
        if self.pipeline_parallel_size > 1:
            raise NotImplementedError(
                "Pipeline parallelism is not supported yet.")
388
389
390
391
392
393
394
395
396
397
        if is_hip():
            self.disable_custom_all_reduce = True
            logger.info(
                "Disabled the custom all-reduce kernel because it is not "
                "supported on AMD GPUs.")
        elif self.pipeline_parallel_size > 1:
            self.disable_custom_all_reduce = True
            logger.info(
                "Disabled the custom all-reduce kernel because it is not "
                "supported with pipeline parallelism.")
398
399
400


class SchedulerConfig:
401
402
403
404
405
406
407
    """Scheduler configuration.

    Args:
        max_num_batched_tokens: Maximum number of tokens to be processed in
            a single iteration.
        max_num_seqs: Maximum number of sequences to be processed in a single
            iteration.
Chaofan Lin's avatar
Chaofan Lin committed
408
        max_model_len: Maximum length of a sequence (including prompt
Lily Liu's avatar
Lily Liu committed
409
            and generated text).
410
        max_paddings: Maximum number of paddings to be added to a batch.
411
    """
412

413
414
415
416
417
    def __init__(
        self,
        max_num_batched_tokens: Optional[int],
        max_num_seqs: int,
        max_model_len: int,
418
        max_paddings: int,
419
420
421
422
423
424
425
    ) -> None:
        if max_num_batched_tokens is not None:
            self.max_num_batched_tokens = max_num_batched_tokens
        else:
            # If max_model_len is too short, use 2048 as the default value for
            # higher throughput.
            self.max_num_batched_tokens = max(max_model_len, 2048)
426
        self.max_num_seqs = max_num_seqs
Lily Liu's avatar
Lily Liu committed
427
        self.max_model_len = max_model_len
428
        self.max_paddings = max_paddings
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        self._verify_args()

    def _verify_args(self) -> None:
        if self.max_num_batched_tokens < self.max_model_len:
            raise ValueError(
                f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
                f"smaller than max_model_len ({self.max_model_len}). "
                "This effectively limits the maximum sequence length to "
                "max_num_batched_tokens and makes vLLM reject longer "
                "sequences. Please increase max_num_batched_tokens or "
                "decrease max_model_len.")
        if self.max_num_batched_tokens < self.max_num_seqs:
            raise ValueError(
                f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
                "be greater than or equal to max_num_seqs "
                f"({self.max_num_seqs}).")
445
446


447
448
449
450
451
452
class DeviceConfig:

    def __init__(self, device: str = "cuda") -> None:
        self.device = torch.device(device)


453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
@dataclass
class LoRAConfig:
    max_lora_rank: int
    max_loras: int
    max_cpu_loras: Optional[int] = None
    lora_dtype: Optional[torch.dtype] = None
    lora_extra_vocab_size: int = 256
    # This is a constant.
    lora_vocab_padding_size: ClassVar[int] = 256

    def __post_init__(self):
        # Keep this in sync with csrc/punica/bgmv/bgmv_config.h
        possible_max_ranks = (8, 16, 32, 64)
        possible_lora_extra_vocab_size = (0, 256, 512)
        if self.max_lora_rank not in possible_max_ranks:
            raise ValueError(
                f"max_lora_rank ({self.max_lora_rank}) must be one of "
                f"{possible_max_ranks}.")
        if self.lora_extra_vocab_size not in possible_lora_extra_vocab_size:
            raise ValueError(
                f"lora_extra_vocab_size ({self.lora_extra_vocab_size}) "
                f"must be one of {possible_lora_extra_vocab_size}.")
        if self.max_loras < 1:
            raise ValueError(f"max_loras ({self.max_loras}) must be >= 1.")
        if self.max_cpu_loras is None:
            self.max_cpu_loras = self.max_loras
        elif self.max_cpu_loras < self.max_loras:
            raise ValueError(
                f"max_cpu_loras ({self.max_cpu_loras}) must be >= "
zspo's avatar
zspo committed
482
                f"max_loras ({self.max_loras})")
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

    def verify_with_model_config(self, model_config: ModelConfig):
        if self.lora_dtype in (None, "auto"):
            self.lora_dtype = model_config.dtype
        elif isinstance(self.lora_dtype, str):
            self.lora_dtype = getattr(torch, self.lora_dtype)
        if model_config.quantization is not None:
            raise ValueError(
                "LoRA is not supported with quantized models yet.")

    def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig):
        if scheduler_config.max_num_batched_tokens > 65528:
            raise ValueError(
                "Due to limitations of the custom LoRA CUDA kernel, "
                "max_num_batched_tokens must be <= 65528 when "
                "LoRA is enabled.")


501
502
503
504
505
506
507
508
_STR_DTYPE_TO_TORCH_DTYPE = {
    "half": torch.float16,
    "float16": torch.float16,
    "float": torch.float32,
    "float32": torch.float32,
    "bfloat16": torch.bfloat16,
}

509
510
_ROCM_NOT_SUPPORTED_DTYPE = ["float", "float32"]

511
512
513

def _get_and_verify_dtype(
    config: PretrainedConfig,
514
    dtype: Union[str, torch.dtype],
515
516
517
518
519
520
521
) -> torch.dtype:
    # NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
    # because config.torch_dtype can be None.
    config_dtype = getattr(config, "torch_dtype", None)
    if config_dtype is None:
        config_dtype = torch.float32

522
523
524
525
526
527
528
529
530
    if isinstance(dtype, str):
        dtype = dtype.lower()
        if dtype == "auto":
            if config_dtype == torch.float32:
                # Following the common practice, we use float16 for float32
                # models.
                torch_dtype = torch.float16
            else:
                torch_dtype = config_dtype
531
        else:
532
533
534
535
536
            if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
                raise ValueError(f"Unknown dtype: {dtype}")
            torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
    elif isinstance(dtype, torch.dtype):
        torch_dtype = dtype
537
    else:
538
        raise ValueError(f"Unknown dtype: {dtype}")
539

540
541
542
543
544
545
546
547
    if is_hip() and torch_dtype == torch.float32:
        rocm_supported_dtypes = [
            k for k, v in _STR_DTYPE_TO_TORCH_DTYPE.items()
            if (k not in _ROCM_NOT_SUPPORTED_DTYPE)
        ]
        raise ValueError(f"dtype \'{dtype}\' is not supported in ROCm. "
                         f"Supported dtypes are {rocm_supported_dtypes}")

548
549
550
551
552
553
554
555
556
    # Verify the dtype.
    if torch_dtype != config_dtype:
        if torch_dtype == torch.float32:
            # Upcasting to float32 is allowed.
            pass
        elif config_dtype == torch.float32:
            # Downcasting from float32 to float16 or bfloat16 is allowed.
            pass
        else:
Woosuk Kwon's avatar
Woosuk Kwon committed
557
            # Casting between float16 and bfloat16 is allowed with a warning.
558
            logger.warning(f"Casting {config_dtype} to {torch_dtype}.")
559
560

    return torch_dtype
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575


def _get_and_verify_max_len(
    hf_config: PretrainedConfig,
    max_model_len: Optional[int],
) -> int:
    """Get and verify the model's maximum length."""
    derived_max_model_len = float("inf")
    possible_keys = [
        # OPT
        "max_position_embeddings",
        # GPT-2
        "n_positions",
        # MPT
        "max_seq_len",
576
577
        # ChatGLM2
        "seq_length",
578
579
580
581
582
583
584
585
586
        # Others
        "max_sequence_length",
        "max_seq_length",
        "seq_len",
    ]
    for key in possible_keys:
        max_len_key = getattr(hf_config, key, None)
        if max_len_key is not None:
            derived_max_model_len = min(derived_max_model_len, max_len_key)
587
    if derived_max_model_len == float("inf"):
588
589
590
591
592
593
594
595
596
597
598
        if max_model_len is not None:
            # If max_model_len is specified, we use it.
            return max_model_len

        default_max_len = 2048
        logger.warning(
            "The model's config.json does not contain any of the following "
            "keys to determine the original maximum length of the model: "
            f"{possible_keys}. Assuming the model's maximum length is "
            f"{default_max_len}.")
        derived_max_model_len = default_max_len
599

600
601
602
603
    rope_scaling = getattr(hf_config, "rope_scaling", None)
    if rope_scaling is not None:
        assert "factor" in rope_scaling
        scaling_factor = rope_scaling["factor"]
Antoni Baum's avatar
Antoni Baum committed
604
605
606
        if rope_scaling["type"] == "yarn":
            derived_max_model_len = rope_scaling[
                "original_max_position_embeddings"]
607
608
        derived_max_model_len *= scaling_factor

609
610
611
612
613
614
615
616
617
    if max_model_len is None:
        max_model_len = derived_max_model_len
    elif max_model_len > derived_max_model_len:
        raise ValueError(
            f"User-specified max_model_len ({max_model_len}) is greater than "
            f"the derived max_model_len ({max_len_key}={derived_max_model_len}"
            " in model's config.json). This may lead to incorrect model "
            "outputs or CUDA errors. Make sure the value is correct and "
            "within the model context size.")
618
    return int(max_model_len)