config.py 14.5 KB
Newer Older
1
2
3
from typing import Optional

import torch
4
from transformers import PretrainedConfig
5

Woosuk Kwon's avatar
Woosuk Kwon committed
6
from vllm.logger import init_logger
7
from vllm.transformers_utils.config import get_config
Woosuk Kwon's avatar
Woosuk Kwon committed
8
from vllm.utils import get_cpu_memory
9
10
11

logger = init_logger(__name__)

12
_GB = 1 << 30
13

14
15

class ModelConfig:
16
17
18
19
    """Configuration for the model.

    Args:
        model: Name or path of the huggingface model to use.
20
        tokenizer: Name or path of the huggingface tokenizer to use.
21
22
        tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
            available, and "slow" will always use the slow tokenizer.
23
24
        trust_remote_code: Trust remote code (e.g., from HuggingFace) when
            downloading the model and tokenizer.
25
26
        download_dir: Directory to download and load the weights, default to the
            default cache directory of huggingface.
27
28
29
30
31
32
33
34
35
36
        load_format: The format of the model weights to load:
            "auto" will try to load the weights in the safetensors format and
                fall back to the pytorch bin format if safetensors format is
                not available.
            "pt" will load the weights in the pytorch bin format.
            "safetensors" will load the weights in the safetensors format.
            "npcache" will load the weights in pytorch format and store
                a numpy cache to speed up the loading.
            "dummy" will initialize the weights with random values, which is
                mainly for profiling.
37
38
39
40
        dtype: Data type for model weights and activations. The "auto" option
            will use FP16 precision for FP32 and FP16 models, and BF16 precision
            for BF16 models.
        seed: Random seed for reproducibility.
Jasmond L's avatar
Jasmond L committed
41
42
43
        revision: The specific model version to use. It can be a branch name,
            a tag name, or a commit id. If unspecified, will use the default
            version.
44
45
        max_model_len: Maximum length of a sequence (including prompt and
            output). If None, will be derived from the model.
46
47
        quantization: Quantization method that was used to quantize the model
            weights. If None, we assume the model weights are not quantized.
48
    """
49
50
51
52

    def __init__(
        self,
        model: str,
53
54
        tokenizer: str,
        tokenizer_mode: str,
55
        trust_remote_code: bool,
56
        download_dir: Optional[str],
57
        load_format: str,
58
59
        dtype: str,
        seed: int,
60
        revision: Optional[str] = None,
61
        max_model_len: Optional[int] = None,
62
        quantization: Optional[str] = None,
63
64
    ) -> None:
        self.model = model
65
        self.tokenizer = tokenizer
66
        self.tokenizer_mode = tokenizer_mode
67
        self.trust_remote_code = trust_remote_code
68
        self.download_dir = download_dir
69
        self.load_format = load_format
70
        self.seed = seed
Jasmond L's avatar
Jasmond L committed
71
        self.revision = revision
72
        self.quantization = quantization
73

Jasmond L's avatar
Jasmond L committed
74
        self.hf_config = get_config(model, trust_remote_code, revision)
75
        self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
76
77
        self.max_model_len = _get_and_verify_max_len(self.hf_config,
                                                     max_model_len)
78
        self._verify_load_format()
79
        self._verify_tokenizer_mode()
80
        self._verify_quantization()
81

82
83
84
85
86
87
88
89
90
91
    def _verify_load_format(self) -> None:
        load_format = self.load_format.lower()
        if load_format not in [
                "auto", "pt", "safetensors", "npcache", "dummy"
        ]:
            raise ValueError(
                f"Unknown load format: {self.load_format}. Must be one of "
                "'auto', 'pt', 'safetensors', 'npcache', or 'dummy'.")
        self.load_format = load_format

92
93
94
95
96
97
98
    def _verify_tokenizer_mode(self) -> None:
        tokenizer_mode = self.tokenizer_mode.lower()
        if tokenizer_mode not in ["auto", "slow"]:
            raise ValueError(
                f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
                "either 'auto' or 'slow'.")
        self.tokenizer_mode = tokenizer_mode
99

100
101
102
103
104
105
106
107
108
109
110
    def _verify_quantization(self) -> None:
        supported_quantization = ["awq"]
        if self.quantization is None:
            return
        quantization = self.quantization.lower()
        if quantization not in supported_quantization:
            raise ValueError(
                f"Unknown quantization: {self.quantization}. Must be one of "
                f"{supported_quantization}.")
        self.quantization = quantization

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    def verify_with_parallel_config(
        self,
        parallel_config: "ParallelConfig",
    ) -> None:
        total_num_attention_heads = self.hf_config.num_attention_heads
        tensor_parallel_size = parallel_config.tensor_parallel_size
        if total_num_attention_heads % tensor_parallel_size != 0:
            raise ValueError(
                f"Total number of attention heads ({total_num_attention_heads})"
                " must be divisible by tensor parallel size "
                f"({tensor_parallel_size}).")

        total_num_hidden_layers = self.hf_config.num_hidden_layers
        pipeline_parallel_size = parallel_config.pipeline_parallel_size
        if total_num_hidden_layers % pipeline_parallel_size != 0:
            raise ValueError(
                f"Total number of hidden layers ({total_num_hidden_layers}) "
                "must be divisible by pipeline parallel size "
                f"({pipeline_parallel_size}).")

    def get_hidden_size(self) -> int:
        return self.hf_config.hidden_size

    def get_head_size(self) -> int:
        # FIXME(woosuk): This may not be true for all models.
        return self.hf_config.hidden_size // self.hf_config.num_attention_heads

Woosuk Kwon's avatar
Woosuk Kwon committed
138
139
    def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
        """Returns the number of KV heads per GPU worker."""
Zhuohan Li's avatar
Zhuohan Li committed
140
141
142
143
        # For GPTBigCode & Falcon:
        # Note: for falcon, when new_decoder_architecture is True, the
        # multi_query flag is ignored and we use n_head_kv for the number of
        # KV heads.
144
        falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
145
        new_decoder_arch_falcon = (
146
            self.hf_config.model_type in falcon_model_types
147
148
149
            and getattr(self.hf_config, "new_decoder_architecture", False))
        if not new_decoder_arch_falcon and getattr(self.hf_config,
                                                   "multi_query", False):
Zhuohan Li's avatar
Zhuohan Li committed
150
            # Multi-query attention, only one KV head.
Woosuk Kwon's avatar
Woosuk Kwon committed
151
            # Currently, tensor parallelism is not supported in this case.
Zhuohan Li's avatar
Zhuohan Li committed
152
153
154
            return 1
        # For Falcon:
        if getattr(self.hf_config, "n_head_kv", None) is not None:
Zhuohan Li's avatar
Zhuohan Li committed
155
156
            return (self.hf_config.n_head_kv //
                    parallel_config.tensor_parallel_size)
Woosuk Kwon's avatar
Woosuk Kwon committed
157
158
159
        if getattr(self.hf_config, "num_kv_heads", None) is not None:
            return (self.hf_config.num_kv_heads //
                    parallel_config.tensor_parallel_size)
Zhuohan Li's avatar
Zhuohan Li committed
160
161
162
163
        # For LLaMA-2:
        if getattr(self.hf_config, "num_key_value_heads", None) is not None:
            return (self.hf_config.num_key_value_heads //
                    parallel_config.tensor_parallel_size)
164
165
166
        total_num_attention_heads = self.hf_config.num_attention_heads
        return total_num_attention_heads // parallel_config.tensor_parallel_size

167
    def get_max_model_len(self) -> int:
168
        return self.max_model_len
169

170
171
172
173
174
175
    def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
        total_num_hidden_layers = self.hf_config.num_hidden_layers
        return total_num_hidden_layers // parallel_config.pipeline_parallel_size


class CacheConfig:
176
177
178
179
180
    """Configuration for the KV cache.

    Args:
        block_size: Size of a cache block in number of tokens.
        gpu_memory_utilization: Fraction of GPU memory to use for the
Woosuk Kwon's avatar
Woosuk Kwon committed
181
            vLLM execution.
182
183
        swap_space: Size of the CPU swap space per GPU (in GiB).
    """
184

185
186
187
188
189
190
191
192
    def __init__(
        self,
        block_size: int,
        gpu_memory_utilization: float,
        swap_space: int,
    ) -> None:
        self.block_size = block_size
        self.gpu_memory_utilization = gpu_memory_utilization
193
        self.swap_space_bytes = swap_space * _GB
194
        self._verify_args()
195
196
197
198
199

        # Will be set after profiling.
        self.num_gpu_blocks = None
        self.num_cpu_blocks = None

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def _verify_args(self) -> None:
        if self.gpu_memory_utilization > 1.0:
            raise ValueError(
                "GPU memory utilization must be less than 1.0. Got "
                f"{self.gpu_memory_utilization}.")

    def verify_with_parallel_config(
        self,
        parallel_config: "ParallelConfig",
    ) -> None:
        total_cpu_memory = get_cpu_memory()
        # FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
        # group are in the same node. However, the GPUs may span multiple nodes.
        num_gpus_per_node = parallel_config.tensor_parallel_size
        cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node

216
217
218
        msg = (f"{cpu_memory_usage / _GB:.2f} GiB out of "
               f"the {total_cpu_memory / _GB:.2f} GiB total CPU memory is "
               "allocated for the swap space.")
219
220
221
        if cpu_memory_usage > 0.7 * total_cpu_memory:
            raise ValueError("Too large swap space. " + msg)
        elif cpu_memory_usage > 0.4 * total_cpu_memory:
222
            logger.warning("Possibly too large swap space. " + msg)
223

224
225

class ParallelConfig:
226
227
228
229
230
231
232
233
234
    """Configuration for the distributed execution.

    Args:
        pipeline_parallel_size: Number of pipeline parallel groups.
        tensor_parallel_size: Number of tensor parallel groups.
        worker_use_ray: Whether to use Ray for model workers. Will be set to
            True if either pipeline_parallel_size or tensor_parallel_size is
            greater than 1.
    """
235

236
237
238
239
    def __init__(
        self,
        pipeline_parallel_size: int,
        tensor_parallel_size: int,
240
        worker_use_ray: bool,
241
242
243
    ) -> None:
        self.pipeline_parallel_size = pipeline_parallel_size
        self.tensor_parallel_size = tensor_parallel_size
244
        self.worker_use_ray = worker_use_ray
245
246
247

        self.world_size = pipeline_parallel_size * tensor_parallel_size
        if self.world_size > 1:
248
            self.worker_use_ray = True
249
250
251
252
253
254
255
256
257
        self._verify_args()

    def _verify_args(self) -> None:
        if self.pipeline_parallel_size > 1:
            raise NotImplementedError(
                "Pipeline parallelism is not supported yet.")


class SchedulerConfig:
258
259
260
261
262
263
264
    """Scheduler configuration.

    Args:
        max_num_batched_tokens: Maximum number of tokens to be processed in
            a single iteration.
        max_num_seqs: Maximum number of sequences to be processed in a single
            iteration.
Chaofan Lin's avatar
Chaofan Lin committed
265
        max_model_len: Maximum length of a sequence (including prompt
Lily Liu's avatar
Lily Liu committed
266
            and generated text).
267
    """
268
269

    def __init__(self, max_num_batched_tokens: int, max_num_seqs: int,
Lily Liu's avatar
Lily Liu committed
270
                 max_model_len: int) -> None:
271
272
        self.max_num_batched_tokens = max_num_batched_tokens
        self.max_num_seqs = max_num_seqs
Lily Liu's avatar
Lily Liu committed
273
        self.max_model_len = max_model_len
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295


_STR_DTYPE_TO_TORCH_DTYPE = {
    "half": torch.float16,
    "float16": torch.float16,
    "float": torch.float32,
    "float32": torch.float32,
    "bfloat16": torch.bfloat16,
}


def _get_and_verify_dtype(
    config: PretrainedConfig,
    dtype: str,
) -> torch.dtype:
    # NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
    # because config.torch_dtype can be None.
    config_dtype = getattr(config, "torch_dtype", None)
    if config_dtype is None:
        config_dtype = torch.float32

    dtype = dtype.lower()
Woosuk Kwon's avatar
Woosuk Kwon committed
296
    if dtype == "auto":
297
298
299
300
301
302
        if config_dtype == torch.float32:
            # Following the common practice, we use float16 for float32 models.
            torch_dtype = torch.float16
        else:
            torch_dtype = config_dtype
    else:
303
304
        if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
            raise ValueError(f"Unknown dtype: {dtype}")
305
306
307
308
309
310
311
312
313
314
315
        torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]

    # Verify the dtype.
    if torch_dtype != config_dtype:
        if torch_dtype == torch.float32:
            # Upcasting to float32 is allowed.
            pass
        elif config_dtype == torch.float32:
            # Downcasting from float32 to float16 or bfloat16 is allowed.
            pass
        else:
Woosuk Kwon's avatar
Woosuk Kwon committed
316
            # Casting between float16 and bfloat16 is allowed with a warning.
317
            logger.warning(f"Casting {config_dtype} to {torch_dtype}.")
318
319
320
321
322
323
324
325
326
327
328

    # Check if the GPU supports the dtype.
    if torch_dtype == torch.bfloat16:
        compute_capability = torch.cuda.get_device_capability()
        if compute_capability[0] < 8:
            gpu_name = torch.cuda.get_device_name()
            raise ValueError(
                "Bfloat16 is only supported on GPUs with compute capability "
                f"of at least 8.0. Your {gpu_name} GPU has compute capability "
                f"{compute_capability[0]}.{compute_capability[1]}.")
    return torch_dtype
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353


def _get_and_verify_max_len(
    hf_config: PretrainedConfig,
    max_model_len: Optional[int],
) -> int:
    """Get and verify the model's maximum length."""
    derived_max_model_len = float("inf")
    possible_keys = [
        # OPT
        "max_position_embeddings",
        # GPT-2
        "n_positions",
        # MPT
        "max_seq_len",
        # Others
        "max_sequence_length",
        "max_seq_length",
        "seq_len",
    ]
    for key in possible_keys:
        max_len_key = getattr(hf_config, key, None)
        if max_len_key is not None:
            derived_max_model_len = min(derived_max_model_len, max_len_key)

354
355
356
357
358
359
360
361
362
363
364
    rope_scaling = getattr(hf_config, "rope_scaling", None)
    if rope_scaling is not None:
        if derived_max_model_len == float("inf"):
            raise ValueError(
                "When using rope_scaling, the model's config.json must "
                "contain one of the following keys to determine the original "
                f"maximum length of the model: {possible_keys}")
        assert "factor" in rope_scaling
        scaling_factor = rope_scaling["factor"]
        derived_max_model_len *= scaling_factor

365
366
367
368
369
370
371
372
373
374
    if max_model_len is None:
        max_model_len = derived_max_model_len
    elif max_model_len > derived_max_model_len:
        raise ValueError(
            f"User-specified max_model_len ({max_model_len}) is greater than "
            f"the derived max_model_len ({max_len_key}={derived_max_model_len}"
            " in model's config.json). This may lead to incorrect model "
            "outputs or CUDA errors. Make sure the value is correct and "
            "within the model context size.")
    return max_model_len