config.py 9.15 KB
Newer Older
1
2
3
from typing import Optional

import torch
4
from transformers import PretrainedConfig
5

Woosuk Kwon's avatar
Woosuk Kwon committed
6
from vllm.logger import init_logger
7
from vllm.transformers_utils.config import get_config
Woosuk Kwon's avatar
Woosuk Kwon committed
8
from vllm.utils import get_cpu_memory
9
10
11

logger = init_logger(__name__)

12
_GB = 1 << 30
13

14
15

class ModelConfig:
16
17
18
19
    """Configuration for the model.

    Args:
        model: Name or path of the huggingface model to use.
20
        tokenizer: Name or path of the huggingface tokenizer to use.
21
22
        tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
            available, and "slow" will always use the slow tokenizer.
23
24
25
26
27
28
29
30
31
32
        download_dir: Directory to download and load the weights, default to the
            default cache directory of huggingface.
        use_np_weights: Save a numpy copy of model weights for faster loading.
            This can increase the disk usage by up to 2x.
        use_dummy_weights: Use dummy values for model weights (for profiling).
        dtype: Data type for model weights and activations. The "auto" option
            will use FP16 precision for FP32 and FP16 models, and BF16 precision
            for BF16 models.
        seed: Random seed for reproducibility.
    """
33
34
35
36

    def __init__(
        self,
        model: str,
37
38
        tokenizer: str,
        tokenizer_mode: str,
39
40
41
42
43
44
45
        download_dir: Optional[str],
        use_np_weights: bool,
        use_dummy_weights: bool,
        dtype: str,
        seed: int,
    ) -> None:
        self.model = model
46
        self.tokenizer = tokenizer
47
        self.tokenizer_mode = tokenizer_mode
48
49
50
51
52
        self.download_dir = download_dir
        self.use_np_weights = use_np_weights
        self.use_dummy_weights = use_dummy_weights
        self.seed = seed

53
        self.hf_config = get_config(model)
54
        self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
55
56
57
58
59
60
61
62
63
        self._verify_tokenizer_mode()

    def _verify_tokenizer_mode(self) -> None:
        tokenizer_mode = self.tokenizer_mode.lower()
        if tokenizer_mode not in ["auto", "slow"]:
            raise ValueError(
                f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
                "either 'auto' or 'slow'.")
        self.tokenizer_mode = tokenizer_mode
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

    def verify_with_parallel_config(
        self,
        parallel_config: "ParallelConfig",
    ) -> None:
        total_num_attention_heads = self.hf_config.num_attention_heads
        tensor_parallel_size = parallel_config.tensor_parallel_size
        if total_num_attention_heads % tensor_parallel_size != 0:
            raise ValueError(
                f"Total number of attention heads ({total_num_attention_heads})"
                " must be divisible by tensor parallel size "
                f"({tensor_parallel_size}).")

        total_num_hidden_layers = self.hf_config.num_hidden_layers
        pipeline_parallel_size = parallel_config.pipeline_parallel_size
        if total_num_hidden_layers % pipeline_parallel_size != 0:
            raise ValueError(
                f"Total number of hidden layers ({total_num_hidden_layers}) "
                "must be divisible by pipeline parallel size "
                f"({pipeline_parallel_size}).")

    def get_hidden_size(self) -> int:
        return self.hf_config.hidden_size

    def get_head_size(self) -> int:
        # FIXME(woosuk): This may not be true for all models.
        return self.hf_config.hidden_size // self.hf_config.num_attention_heads

    def get_num_heads(self, parallel_config: "ParallelConfig") -> int:
        total_num_attention_heads = self.hf_config.num_attention_heads
        return total_num_attention_heads // parallel_config.tensor_parallel_size

    def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
        total_num_hidden_layers = self.hf_config.num_hidden_layers
        return total_num_hidden_layers // parallel_config.pipeline_parallel_size


class CacheConfig:
102
103
104
105
106
    """Configuration for the KV cache.

    Args:
        block_size: Size of a cache block in number of tokens.
        gpu_memory_utilization: Fraction of GPU memory to use for the
Woosuk Kwon's avatar
Woosuk Kwon committed
107
            vLLM execution.
108
109
        swap_space: Size of the CPU swap space per GPU (in GiB).
    """
110

111
112
113
114
115
116
117
118
    def __init__(
        self,
        block_size: int,
        gpu_memory_utilization: float,
        swap_space: int,
    ) -> None:
        self.block_size = block_size
        self.gpu_memory_utilization = gpu_memory_utilization
119
        self.swap_space_bytes = swap_space * _GB
120
        self._verify_args()
121
122
123
124
125

        # Will be set after profiling.
        self.num_gpu_blocks = None
        self.num_cpu_blocks = None

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    def _verify_args(self) -> None:
        if self.gpu_memory_utilization > 1.0:
            raise ValueError(
                "GPU memory utilization must be less than 1.0. Got "
                f"{self.gpu_memory_utilization}.")

    def verify_with_parallel_config(
        self,
        parallel_config: "ParallelConfig",
    ) -> None:
        total_cpu_memory = get_cpu_memory()
        # FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
        # group are in the same node. However, the GPUs may span multiple nodes.
        num_gpus_per_node = parallel_config.tensor_parallel_size
        cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node

142
143
144
        msg = (f"{cpu_memory_usage / _GB:.2f} GiB out of "
               f"the {total_cpu_memory / _GB:.2f} GiB total CPU memory is "
               "allocated for the swap space.")
145
146
147
        if cpu_memory_usage > 0.7 * total_cpu_memory:
            raise ValueError("Too large swap space. " + msg)
        elif cpu_memory_usage > 0.4 * total_cpu_memory:
148
            logger.warning("Possibly too large swap space. " + msg)
149

150
151

class ParallelConfig:
152
153
154
155
156
157
158
159
160
    """Configuration for the distributed execution.

    Args:
        pipeline_parallel_size: Number of pipeline parallel groups.
        tensor_parallel_size: Number of tensor parallel groups.
        worker_use_ray: Whether to use Ray for model workers. Will be set to
            True if either pipeline_parallel_size or tensor_parallel_size is
            greater than 1.
    """
161

162
163
164
165
    def __init__(
        self,
        pipeline_parallel_size: int,
        tensor_parallel_size: int,
166
        worker_use_ray: bool,
167
168
169
    ) -> None:
        self.pipeline_parallel_size = pipeline_parallel_size
        self.tensor_parallel_size = tensor_parallel_size
170
        self.worker_use_ray = worker_use_ray
171
172
173

        self.world_size = pipeline_parallel_size * tensor_parallel_size
        if self.world_size > 1:
174
            self.worker_use_ray = True
175
176
177
178
179
180
181
182
183
        self._verify_args()

    def _verify_args(self) -> None:
        if self.pipeline_parallel_size > 1:
            raise NotImplementedError(
                "Pipeline parallelism is not supported yet.")


class SchedulerConfig:
184
185
186
187
188
189
190
    """Scheduler configuration.

    Args:
        max_num_batched_tokens: Maximum number of tokens to be processed in
            a single iteration.
        max_num_seqs: Maximum number of sequences to be processed in a single
            iteration.
Lily Liu's avatar
Lily Liu committed
191
192
        max_seq_len: Maximum length of a sequence (including prompt
            and generated text).
193
    """
194
195
196

    def __init__(self, max_num_batched_tokens: int, max_num_seqs: int,
                 max_seq_len: int) -> None:
197
198
        self.max_num_batched_tokens = max_num_batched_tokens
        self.max_num_seqs = max_num_seqs
Lily Liu's avatar
Lily Liu committed
199
        self.max_seq_len = max_seq_len
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221


_STR_DTYPE_TO_TORCH_DTYPE = {
    "half": torch.float16,
    "float16": torch.float16,
    "float": torch.float32,
    "float32": torch.float32,
    "bfloat16": torch.bfloat16,
}


def _get_and_verify_dtype(
    config: PretrainedConfig,
    dtype: str,
) -> torch.dtype:
    # NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
    # because config.torch_dtype can be None.
    config_dtype = getattr(config, "torch_dtype", None)
    if config_dtype is None:
        config_dtype = torch.float32

    dtype = dtype.lower()
Woosuk Kwon's avatar
Woosuk Kwon committed
222
    if dtype == "auto":
223
224
225
226
227
228
        if config_dtype == torch.float32:
            # Following the common practice, we use float16 for float32 models.
            torch_dtype = torch.float16
        else:
            torch_dtype = config_dtype
    else:
229
230
        if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
            raise ValueError(f"Unknown dtype: {dtype}")
231
232
233
234
235
236
237
238
239
240
241
        torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]

    # Verify the dtype.
    if torch_dtype != config_dtype:
        if torch_dtype == torch.float32:
            # Upcasting to float32 is allowed.
            pass
        elif config_dtype == torch.float32:
            # Downcasting from float32 to float16 or bfloat16 is allowed.
            pass
        else:
Woosuk Kwon's avatar
Woosuk Kwon committed
242
            # Casting between float16 and bfloat16 is allowed with a warning.
243
            logger.warning(f"Casting {config_dtype} to {torch_dtype}.")
244
245
246
247
248
249
250
251
252
253
254

    # Check if the GPU supports the dtype.
    if torch_dtype == torch.bfloat16:
        compute_capability = torch.cuda.get_device_capability()
        if compute_capability[0] < 8:
            gpu_name = torch.cuda.get_device_name()
            raise ValueError(
                "Bfloat16 is only supported on GPUs with compute capability "
                f"of at least 8.0. Your {gpu_name} GPU has compute capability "
                f"{compute_capability[0]}.{compute_capability[1]}.")
    return torch_dtype