README.md 6.69 KB
Newer Older
Zhuohan Li's avatar
Zhuohan Li committed
1
2
<p align="center">
  <picture>
Zhuohan Li's avatar
Zhuohan Li committed
3
4
    <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
    <img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
Zhuohan Li's avatar
Zhuohan Li committed
5
6
  </picture>
</p>
Woosuk Kwon's avatar
Woosuk Kwon committed
7

Zhuohan Li's avatar
Zhuohan Li committed
8
9
10
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
Woosuk Kwon's avatar
Woosuk Kwon committed
11

Zhuohan Li's avatar
Zhuohan Li committed
12
<p align="center">
13
| <a href="https://vllm.readthedocs.io/en/latest/"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> |
Woosuk Kwon's avatar
Woosuk Kwon committed
14

Zhuohan Li's avatar
Zhuohan Li committed
15
</p>
Woosuk Kwon's avatar
Woosuk Kwon committed
16

Zhuohan Li's avatar
Zhuohan Li committed
17
---
18

19
20
21
22
23
24
25
26
27
**The First vLLM Bay Area Meetup (Oct 5th 6pm-8pm PT)**

We are excited to invite you to the first vLLM meetup!
The vLLM team will share recent updates and roadmap.
We will also have vLLM users and contributors coming up to the stage to share their experiences.
Please register [here](https://lu.ma/first-vllm-meetup) and join us!

---

Zhuohan Li's avatar
Zhuohan Li committed
28
*Latest News* 🔥
29
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
Woosuk Kwon's avatar
Woosuk Kwon committed
30
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
Zhuohan Li's avatar
Zhuohan Li committed
31
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
Zhuohan Li's avatar
Zhuohan Li committed
32
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
33
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
Lianmin Zheng's avatar
Lianmin Zheng committed
34
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
Zhuohan Li's avatar
Zhuohan Li committed
35
36

---
37

Woosuk Kwon's avatar
Woosuk Kwon committed
38
vLLM is a fast and easy-to-use library for LLM inference and serving.
39

Zhuohan Li's avatar
Zhuohan Li committed
40
vLLM is fast with:
41

Zhuohan Li's avatar
Zhuohan Li committed
42
- State-of-the-art serving throughput
43
- Efficient management of attention key and value memory with **PagedAttention**
44
- Continuous batching of incoming requests
45
- Optimized CUDA kernels
Zhuohan Li's avatar
Zhuohan Li committed
46
47
48

vLLM is flexible and easy to use with:

49
- Seamless integration with popular Hugging Face models
Zhuohan Li's avatar
Zhuohan Li committed
50
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
51
52
53
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
54

55
vLLM seamlessly supports many Hugging Face models, including the following architectures:
56

57
- Aquila (`BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.)
58
- Baichuan (`baichuan-inc/Baichuan-7B`, `baichuan-inc/Baichuan-13B-Chat`, etc.)
Woosuk Kwon's avatar
Woosuk Kwon committed
59
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
Zhuohan Li's avatar
Zhuohan Li committed
60
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)
Zhuohan Li's avatar
Zhuohan Li committed
61
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
62
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
63
- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)
64
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
65
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
Zhuohan Li's avatar
Zhuohan Li committed
66
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
67
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
68
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
Zhuohan Li's avatar
Zhuohan Li committed
69
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
70
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
71

72
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
Zhuohan Li's avatar
Zhuohan Li committed
73
74
75
76
77
78
79

```bash
pip install vllm
```

## Getting Started

80
81
82
83
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started.
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
Zhuohan Li's avatar
Zhuohan Li committed
84

85
## Performance
86

87
vLLM outperforms Hugging Face Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
Woosuk Kwon's avatar
Woosuk Kwon committed
88
For details, check out our [blog post](https://vllm.ai).
89

90
<p align="center">
Zhuohan Li's avatar
Zhuohan Li committed
91
  <picture>
Zhuohan Li's avatar
Zhuohan Li committed
92
93
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_dark.png">
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
94
95
  </picture>
  <picture>
Woosuk Kwon's avatar
Woosuk Kwon committed
96
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_dark.png">
Zhuohan Li's avatar
Zhuohan Li committed
97
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
98
  </picture>
99
100
101
  <br>
  <em> Serving throughput when each request asks for 1 output completion. </em>
</p>
102

103
<p align="center">
Zhuohan Li's avatar
Zhuohan Li committed
104
  <picture>
Woosuk Kwon's avatar
Woosuk Kwon committed
105
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_dark.png">
Zhuohan Li's avatar
Zhuohan Li committed
106
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
107
108
  </picture>
  <picture>
Woosuk Kwon's avatar
Woosuk Kwon committed
109
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_dark.png">
Zhuohan Li's avatar
Zhuohan Li committed
110
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
111
  </picture>  <br>
112
113
  <em> Serving throughput when each request asks for 3 output completions. </em>
</p>
114

115
## Contributing
116

117
118
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
Woosuk Kwon's avatar
Woosuk Kwon committed
119
120
121
122
123
124

## Citation

If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
```bibtex
@inproceedings{kwon2023efficient,
125
  title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
Woosuk Kwon's avatar
Woosuk Kwon committed
126
127
128
129
130
  author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
  booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
  year={2023}
}
```