README.md 4.68 KB
Newer Older
Zhuohan Li's avatar
Zhuohan Li committed
1
2
<p align="center">
  <picture>
Zhuohan Li's avatar
Zhuohan Li committed
3
4
    <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
    <img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
Zhuohan Li's avatar
Zhuohan Li committed
5
6
  </picture>
</p>
Woosuk Kwon's avatar
Woosuk Kwon committed
7

Zhuohan Li's avatar
Zhuohan Li committed
8
9
10
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
Woosuk Kwon's avatar
Woosuk Kwon committed
11

Zhuohan Li's avatar
Zhuohan Li committed
12
<p align="center">
Woosuk Kwon's avatar
Woosuk Kwon committed
13
| <a href="https://vllm.readthedocs.io/en/latest/"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://github.com/vllm-project/vllm/discussions"><b>Discussions</b></a> |
Woosuk Kwon's avatar
Woosuk Kwon committed
14

Zhuohan Li's avatar
Zhuohan Li committed
15
</p>
Woosuk Kwon's avatar
Woosuk Kwon committed
16

Zhuohan Li's avatar
Zhuohan Li committed
17
---
18

Zhuohan Li's avatar
Zhuohan Li committed
19
*Latest News* 🔥
20
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
Lianmin Zheng's avatar
Lianmin Zheng committed
21
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
Zhuohan Li's avatar
Zhuohan Li committed
22
23

---
24

Woosuk Kwon's avatar
Woosuk Kwon committed
25
vLLM is a fast and easy-to-use library for LLM inference and serving.
26

Zhuohan Li's avatar
Zhuohan Li committed
27
vLLM is fast with:
28

Zhuohan Li's avatar
Zhuohan Li committed
29
- State-of-the-art serving throughput
30
- Efficient management of attention key and value memory with **PagedAttention**
31
- Continuous batching of incoming requests
32
- Optimized CUDA kernels
Zhuohan Li's avatar
Zhuohan Li committed
33
34
35
36
37

vLLM is flexible and easy to use with:

- Seamless integration with popular HuggingFace models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
38
39
40
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
41

42
43
vLLM seamlessly supports many Huggingface models, including the following architectures:

Woosuk Kwon's avatar
Woosuk Kwon committed
44
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
Zhuohan Li's avatar
Zhuohan Li committed
45
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
46
47
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
Zhuohan Li's avatar
Zhuohan Li committed
48
- LLaMA (`lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
49
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
Zhuohan Li's avatar
Zhuohan Li committed
50
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
51

52
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
Zhuohan Li's avatar
Zhuohan Li committed
53
54
55
56
57
58
59

```bash
pip install vllm
```

## Getting Started

60
61
62
63
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started.
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
Zhuohan Li's avatar
Zhuohan Li committed
64

65
## Performance
66

67
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
Woosuk Kwon's avatar
Woosuk Kwon committed
68
For details, check out our [blog post](https://vllm.ai).
69

70
<p align="center">
Zhuohan Li's avatar
Zhuohan Li committed
71
  <picture>
Zhuohan Li's avatar
Zhuohan Li committed
72
73
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_dark.png">
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
74
75
  </picture>
  <picture>
Woosuk Kwon's avatar
Woosuk Kwon committed
76
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_dark.png">
Zhuohan Li's avatar
Zhuohan Li committed
77
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
78
  </picture>
79
80
81
  <br>
  <em> Serving throughput when each request asks for 1 output completion. </em>
</p>
82

83
<p align="center">
Zhuohan Li's avatar
Zhuohan Li committed
84
  <picture>
Woosuk Kwon's avatar
Woosuk Kwon committed
85
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_dark.png">
Zhuohan Li's avatar
Zhuohan Li committed
86
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
87
88
  </picture>
  <picture>
Woosuk Kwon's avatar
Woosuk Kwon committed
89
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_dark.png">
Zhuohan Li's avatar
Zhuohan Li committed
90
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
91
  </picture>  <br>
92
93
  <em> Serving throughput when each request asks for 3 output completions. </em>
</p>
94

95
## Contributing
96

97
98
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.