README.md 4.16 KB
Newer Older
Zhuohan Li's avatar
Zhuohan Li committed
1
2
<p align="center">
  <picture>
Zhuohan Li's avatar
Zhuohan Li committed
3
4
    <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
    <img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
Zhuohan Li's avatar
Zhuohan Li committed
5
6
  </picture>
</p>
Woosuk Kwon's avatar
Woosuk Kwon committed
7

Zhuohan Li's avatar
Zhuohan Li committed
8
9
10
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
Woosuk Kwon's avatar
Woosuk Kwon committed
11

Zhuohan Li's avatar
Zhuohan Li committed
12
<p align="center">
Woosuk Kwon's avatar
Woosuk Kwon committed
13
| <a href="https://vllm.readthedocs.io/en/latest/"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://github.com/vllm-project/vllm/discussions"><b>Discussions</b></a> |
Woosuk Kwon's avatar
Woosuk Kwon committed
14

Zhuohan Li's avatar
Zhuohan Li committed
15
</p>
Woosuk Kwon's avatar
Woosuk Kwon committed
16

Zhuohan Li's avatar
Zhuohan Li committed
17
---
18

Zhuohan Li's avatar
Zhuohan Li committed
19
*Latest News* 🔥
20

Woosuk Kwon's avatar
Woosuk Kwon committed
21
- [2023/06] We officially released vLLM! vLLM has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid April. Check out our [blog post](https://vllm.ai).
Zhuohan Li's avatar
Zhuohan Li committed
22
23

---
24

Woosuk Kwon's avatar
Woosuk Kwon committed
25
vLLM is a fast and easy-to-use library for LLM inference and serving.
26

Zhuohan Li's avatar
Zhuohan Li committed
27
vLLM is fast with:
28

Zhuohan Li's avatar
Zhuohan Li committed
29
- State-of-the-art serving throughput
30
31
32
- Efficient management of attention key and value memory with **PagedAttention**
- Dynamic batching of incoming requests
- Optimized CUDA kernels
Zhuohan Li's avatar
Zhuohan Li committed
33
34
35
36
37

vLLM is flexible and easy to use with:

- Seamless integration with popular HuggingFace models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
38
39
40
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
41

42
43
vLLM seamlessly supports many Huggingface models, including the following architectures:

Zhuohan Li's avatar
Zhuohan Li committed
44
45
46
47
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
- GPTNeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
- LLaMA (`lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
48

49
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
Zhuohan Li's avatar
Zhuohan Li committed
50
51
52
53
54
55
56

```bash
pip install vllm
```

## Getting Started

57
58
59
60
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started.
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
Zhuohan Li's avatar
Zhuohan Li committed
61

62
## Performance
63

64
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
Woosuk Kwon's avatar
Woosuk Kwon committed
65
For details, check out our [blog post](https://vllm.ai).
66

67
<p align="center">
Zhuohan Li's avatar
Zhuohan Li committed
68
  <picture>
Zhuohan Li's avatar
Zhuohan Li committed
69
70
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_dark.png">
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n1_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
71
72
  </picture>
  <picture>
Woosuk Kwon's avatar
Woosuk Kwon committed
73
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_dark.png">
Zhuohan Li's avatar
Zhuohan Li committed
74
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n1_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
75
  </picture>
76
77
78
  <br>
  <em> Serving throughput when each request asks for 1 output completion. </em>
</p>
79

80
<p align="center">
Zhuohan Li's avatar
Zhuohan Li committed
81
  <picture>
Woosuk Kwon's avatar
Woosuk Kwon committed
82
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_dark.png">
Zhuohan Li's avatar
Zhuohan Li committed
83
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a10g_n3_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
84
85
  </picture>
  <picture>
Woosuk Kwon's avatar
Woosuk Kwon committed
86
  <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_dark.png">
Zhuohan Li's avatar
Zhuohan Li committed
87
  <img src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/figures/perf_a100_n3_light.png" width="45%">
Zhuohan Li's avatar
Zhuohan Li committed
88
  </picture>  <br>
89
90
  <em> Serving throughput when each request asks for 3 output completions. </em>
</p>
91

92
## Contributing
93

94
95
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.