test_attention.py 9.96 KB
Newer Older
1
import random
2
from typing import List, Optional
3
4

import torch
5
6
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask
7

Woosuk Kwon's avatar
Woosuk Kwon committed
8
from vllm import attention_ops
9

10
MAX_SEQ_LEN = 4096
11
TEST_SEED = 0
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

def ref_masked_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    query = query * scale
    attn = torch.einsum('qhd,khd->hqk', query, key)
    if attn_mask is not None:
        attn = attn + attn_mask
    attn = torch.softmax(attn, dim=-1)
    out = torch.einsum('hqk,khd->qhd', attn, value)
    return out


def ref_single_query_cached_kv_attention(
    output: torch.Tensor,
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
) -> None:
    num_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]

    num_input_tokens = query.shape[0]
    for i in range(num_input_tokens):
        q = query[i].unsqueeze(0)
        block_table = block_tables[i]
        context_len = int(context_lens[i])

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)

63
        scale = 1.0 / (head_size**0.5)
64
65
66
67
68
        out = ref_masked_attention(q, keys, values, scale)
        out = out.view(num_heads, head_size)
        output[i].copy_(out, non_blocking=True)


69
70
71
72
73
74
75
76
def ref_multi_query_kv_attention(
    cu_seq_lens: List[int],
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    head_size = query.shape[-1]
77
    scale = 1.0 / (head_size**0.5)
78
79
80
81
82
83
84
85

    num_seqs = len(cu_seq_lens) - 1
    ref_outputs = []
    for i in range(num_seqs):
        start_idx = cu_seq_lens[i]
        end_idx = cu_seq_lens[i + 1]
        seq_len = end_idx - start_idx

86
        # Create attention mask.
87
88
        attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
                               diagonal=1)
89
        attn_mask = attn_mask * torch.finfo(dtype).min
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        attn_mask = attn_mask.to(dtype=dtype, device='cuda')

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            key[start_idx:end_idx],
            value[start_idx:end_idx],
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)
    return ref_output


104
105
106
107
108
109
110
111
112
113
114
115
def ref_multi_query_cached_kv_attention(
    cu_query_lens: List[int],
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    num_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]
116
    scale = 1.0 / (head_size**0.5)
117
118
119
120
121
122
123
124
125
126
127

    num_queries = len(cu_query_lens) - 1
    ref_outputs = []
    for i in range(num_queries):
        start_idx = cu_query_lens[i]
        end_idx = cu_query_lens[i + 1]
        query_len = end_idx - start_idx
        context_len = int(context_lens[i])
        block_table = block_tables[i]

        # Create attention mask
128
129
        attn_mask = torch.triu(torch.ones(query_len, context_len),
                               diagonal=context_len - query_len + 1) * -1e5
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        attn_mask = attn_mask.to(dtype=dtype, device='cuda')

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            keys,
            values,
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)
    return ref_output


159
160
@torch.inference_mode()
def run_single_query_cached_kv_attention(
161
162
163
164
165
166
    num_tokens: int,
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
Tao Peng's avatar
Tao Peng committed
167
    num_kv_heads: int = None,
168
) -> None:
169
170
171
172
173
174
    qkv = torch.empty(num_tokens,
                      3,
                      num_heads,
                      head_size,
                      dtype=dtype,
                      device='cuda')
175
    qkv.uniform_(-1e-3, 1e-3)
Woosuk Kwon's avatar
Woosuk Kwon committed
176
    query, _, _ = qkv.unbind(dim=1)
177

178
179
    x = 16 // torch.tensor([], dtype=dtype).element_size()
    key_block_shape = (num_heads, head_size // x, block_size, x)
180
181
182
    key_cache = torch.empty(size=(num_blocks, *key_block_shape),
                            dtype=dtype,
                            device='cuda')
183
    key_cache.uniform_(-1e-3, 1e-3)
184
    value_block_shape = (num_heads, head_size, block_size)
185
186
187
    value_cache = torch.empty(size=(num_blocks, *value_block_shape),
                              dtype=dtype,
                              device='cuda')
188
    value_cache.uniform_(-1e-3, 1e-3)
Woosuk Kwon's avatar
Woosuk Kwon committed
189

190
    context_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_tokens)]
191
192
193
194
195
196
197
198
199
200
201
202
    max_context_len = max(context_lens)
    context_lens = torch.tensor(context_lens, dtype=torch.int, device='cuda')

    max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
    block_tables = []
    for _ in range(num_tokens):
        block_table = [
            random.randint(0, num_blocks - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables.append(block_table)
    block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')
203
    head_mapping = torch.arange(num_heads, dtype=torch.int32, device="cuda")
204

205
    scale = float(1.0 / (head_size**0.5))
Tao Peng's avatar
Tao Peng committed
206
207
208
209
210
211
212
213

    num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
    assert num_heads % num_kv_heads == 0
    num_queries_per_kv = num_heads // num_kv_heads
    head_mapping = torch.repeat_interleave(
        torch.arange(num_kv_heads, dtype=torch.int32, device="cuda"),
                     num_queries_per_kv)

214
215
216
217
218
    output = torch.empty(num_tokens,
                         num_heads,
                         head_size,
                         dtype=dtype,
                         device='cuda')
219
220
221
222
223
    attention_ops.single_query_cached_kv_attention(
        output,
        query,
        key_cache,
        value_cache,
224
        head_mapping,
225
226
227
228
229
        scale,
        block_tables,
        context_lens,
        block_size,
        max_context_len,
Woosuk Kwon's avatar
Woosuk Kwon committed
230
        None,  # ALiBi slopes.
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    )

    ref_output = torch.empty_like(query)
    ref_single_query_cached_kv_attention(
        ref_output,
        query,
        key_cache,
        value_cache,
        block_tables,
        context_lens,
    )
    # NOTE(woosuk): Due to the difference in the data types the two
    # implementations use for attention softmax logits and accumulation,
    # there is a small difference in the final outputs.
    # We should use a relaxed tolerance for the test.
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


249
250
@torch.inference_mode()
def run_multi_query_kv_attention(
251
252
253
254
255
256
257
258
    num_seqs: int,
    num_heads: int,
    head_size: int,
    dtype: torch.dtype,
) -> None:
    seq_lens = random.sample(range(1, MAX_SEQ_LEN), num_seqs)
    num_tokens = sum(seq_lens)

259
260
261
262
263
264
265
    scale = float(1.0 / (head_size**0.5))
    qkv = torch.empty(num_tokens,
                      3,
                      num_heads,
                      head_size,
                      dtype=dtype,
                      device='cuda')
266
    qkv.uniform_(-1e-3, 1e-3)
Woosuk Kwon's avatar
Woosuk Kwon committed
267
    query, key, value = qkv.unbind(dim=1)
268
269
270
271
272
273
274
275
276

    attn_bias = BlockDiagonalCausalMask.from_seqlens(seq_lens)
    output = xops.memory_efficient_attention_forward(
        query.unsqueeze(0),
        key.unsqueeze(0),
        value.unsqueeze(0),
        attn_bias=attn_bias,
        p=0.0,
        scale=scale,
Woosuk Kwon's avatar
Woosuk Kwon committed
277
    )
278
    output = output.squeeze(0)
279

280
281
282
    cu_seq_lens = [0]
    for seq_len in seq_lens:
        cu_seq_lens.append(cu_seq_lens[-1] + seq_len)
283
284
285
286
287
288
289
    ref_output = ref_multi_query_kv_attention(
        cu_seq_lens,
        query,
        key,
        value,
        dtype,
    )
290
291
292
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


293
294
295
def test_single_query_cached_kv_attention() -> None:
    torch.random.manual_seed(TEST_SEED)
    torch.cuda.manual_seed(TEST_SEED)
Woosuk Kwon's avatar
Woosuk Kwon committed
296
297
    for dtype in [torch.half, torch.bfloat16, torch.float]:
        for block_size in [8, 16, 32]:
298
            for head_size in [64, 80, 96, 112, 128, 256]:
299
300
301
                print(f'Testing single_query_cached_kv_attention with '
                      f'dtype={dtype}, block_size={block_size}, '
                      f'head_size={head_size}')
302
                run_single_query_cached_kv_attention(
303
304
305
306
307
308
309
310
                    num_tokens=37,
                    num_heads=3,
                    head_size=head_size,
                    block_size=block_size,
                    num_blocks=1024,
                    dtype=dtype,
                )

311
312
313
314

def test_multi_query_kv_attention() -> None:
    torch.random.manual_seed(TEST_SEED)
    torch.cuda.manual_seed(TEST_SEED)
Woosuk Kwon's avatar
Woosuk Kwon committed
315
    for dtype in [torch.half, torch.bfloat16, torch.float]:
316
        for head_size in [64, 80, 96, 112, 128, 256]:
317
318
            print(f'Testing multi_query_kv_attention with dtype={dtype}, '
                  f'head_size={head_size}')
319
            run_multi_query_kv_attention(
320
                num_seqs=5,
321
322
323
324
                num_heads=3,
                head_size=head_size,
                dtype=dtype,
            )