test_attention.py 9.58 KB
Newer Older
1
import random
2
from typing import List, Optional
3
4

import torch
5
6
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask
7

Woosuk Kwon's avatar
Woosuk Kwon committed
8
from vllm import attention_ops
9

10
MAX_SEQ_LEN = 4096
11
TEST_SEED = 0
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

def ref_masked_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    query = query * scale
    attn = torch.einsum('qhd,khd->hqk', query, key)
    if attn_mask is not None:
        attn = attn + attn_mask
    attn = torch.softmax(attn, dim=-1)
    out = torch.einsum('hqk,khd->qhd', attn, value)
    return out


def ref_single_query_cached_kv_attention(
    output: torch.Tensor,
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
) -> None:
    num_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]

    num_input_tokens = query.shape[0]
    for i in range(num_input_tokens):
        q = query[i].unsqueeze(0)
        block_table = block_tables[i]
        context_len = int(context_lens[i])

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)

63
        scale = 1.0 / (head_size**0.5)
64
65
66
67
68
        out = ref_masked_attention(q, keys, values, scale)
        out = out.view(num_heads, head_size)
        output[i].copy_(out, non_blocking=True)


69
70
71
72
73
74
75
76
def ref_multi_query_kv_attention(
    cu_seq_lens: List[int],
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    head_size = query.shape[-1]
77
    scale = 1.0 / (head_size**0.5)
78
79
80
81
82
83
84
85

    num_seqs = len(cu_seq_lens) - 1
    ref_outputs = []
    for i in range(num_seqs):
        start_idx = cu_seq_lens[i]
        end_idx = cu_seq_lens[i + 1]
        seq_len = end_idx - start_idx

86
        # Create attention mask.
87
88
        attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
                               diagonal=1)
89
        attn_mask = attn_mask * torch.finfo(dtype).min
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        attn_mask = attn_mask.to(dtype=dtype, device='cuda')

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            key[start_idx:end_idx],
            value[start_idx:end_idx],
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)
    return ref_output


104
105
106
107
108
109
110
111
112
113
114
115
def ref_multi_query_cached_kv_attention(
    cu_query_lens: List[int],
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    num_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]
116
    scale = 1.0 / (head_size**0.5)
117
118
119
120
121
122
123
124
125
126
127

    num_queries = len(cu_query_lens) - 1
    ref_outputs = []
    for i in range(num_queries):
        start_idx = cu_query_lens[i]
        end_idx = cu_query_lens[i + 1]
        query_len = end_idx - start_idx
        context_len = int(context_lens[i])
        block_table = block_tables[i]

        # Create attention mask
128
129
        attn_mask = torch.triu(torch.ones(query_len, context_len),
                               diagonal=context_len - query_len + 1) * -1e5
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        attn_mask = attn_mask.to(dtype=dtype, device='cuda')

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            keys,
            values,
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)
    return ref_output


159
160
@torch.inference_mode()
def run_single_query_cached_kv_attention(
161
162
163
164
165
166
167
    num_tokens: int,
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
) -> None:
168
169
170
171
172
173
    qkv = torch.empty(num_tokens,
                      3,
                      num_heads,
                      head_size,
                      dtype=dtype,
                      device='cuda')
174
    qkv.uniform_(-1e-3, 1e-3)
Woosuk Kwon's avatar
Woosuk Kwon committed
175
    query, _, _ = qkv.unbind(dim=1)
176

177
178
    x = 16 // torch.tensor([], dtype=dtype).element_size()
    key_block_shape = (num_heads, head_size // x, block_size, x)
179
180
181
    key_cache = torch.empty(size=(num_blocks, *key_block_shape),
                            dtype=dtype,
                            device='cuda')
182
    key_cache.uniform_(-1e-3, 1e-3)
183
    value_block_shape = (num_heads, head_size, block_size)
184
185
186
    value_cache = torch.empty(size=(num_blocks, *value_block_shape),
                              dtype=dtype,
                              device='cuda')
187
    value_cache.uniform_(-1e-3, 1e-3)
Woosuk Kwon's avatar
Woosuk Kwon committed
188

189
    context_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_tokens)]
190
191
192
193
194
195
196
197
198
199
200
201
202
    max_context_len = max(context_lens)
    context_lens = torch.tensor(context_lens, dtype=torch.int, device='cuda')

    max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
    block_tables = []
    for _ in range(num_tokens):
        block_table = [
            random.randint(0, num_blocks - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables.append(block_table)
    block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')

203
204
205
206
207
208
    scale = float(1.0 / (head_size**0.5))
    output = torch.empty(num_tokens,
                         num_heads,
                         head_size,
                         dtype=dtype,
                         device='cuda')
209
210
211
212
213
214
215
216
217
218
    attention_ops.single_query_cached_kv_attention(
        output,
        query,
        key_cache,
        value_cache,
        scale,
        block_tables,
        context_lens,
        block_size,
        max_context_len,
Woosuk Kwon's avatar
Woosuk Kwon committed
219
        None,  # ALiBi slopes.
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    )

    ref_output = torch.empty_like(query)
    ref_single_query_cached_kv_attention(
        ref_output,
        query,
        key_cache,
        value_cache,
        block_tables,
        context_lens,
    )
    # NOTE(woosuk): Due to the difference in the data types the two
    # implementations use for attention softmax logits and accumulation,
    # there is a small difference in the final outputs.
    # We should use a relaxed tolerance for the test.
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


238
239
@torch.inference_mode()
def run_multi_query_kv_attention(
240
241
242
243
244
245
246
247
    num_seqs: int,
    num_heads: int,
    head_size: int,
    dtype: torch.dtype,
) -> None:
    seq_lens = random.sample(range(1, MAX_SEQ_LEN), num_seqs)
    num_tokens = sum(seq_lens)

248
249
250
251
252
253
254
    scale = float(1.0 / (head_size**0.5))
    qkv = torch.empty(num_tokens,
                      3,
                      num_heads,
                      head_size,
                      dtype=dtype,
                      device='cuda')
255
    qkv.uniform_(-1e-3, 1e-3)
Woosuk Kwon's avatar
Woosuk Kwon committed
256
    query, key, value = qkv.unbind(dim=1)
257
258
259
260
261
262
263
264
265
266
267

    attn_op = xops.fmha.cutlass.FwOp()
    attn_bias = BlockDiagonalCausalMask.from_seqlens(seq_lens)
    output = xops.memory_efficient_attention_forward(
        query.unsqueeze(0),
        key.unsqueeze(0),
        value.unsqueeze(0),
        attn_bias=attn_bias,
        p=0.0,
        scale=scale,
        op=attn_op,
Woosuk Kwon's avatar
Woosuk Kwon committed
268
    )
269
    output = output.squeeze(0)
270

271
272
273
    cu_seq_lens = [0]
    for seq_len in seq_lens:
        cu_seq_lens.append(cu_seq_lens[-1] + seq_len)
274
275
276
277
278
279
280
    ref_output = ref_multi_query_kv_attention(
        cu_seq_lens,
        query,
        key,
        value,
        dtype,
    )
281
282
283
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


284
285
286
def test_single_query_cached_kv_attention() -> None:
    torch.random.manual_seed(TEST_SEED)
    torch.cuda.manual_seed(TEST_SEED)
Woosuk Kwon's avatar
Woosuk Kwon committed
287
288
    for dtype in [torch.half, torch.bfloat16, torch.float]:
        for block_size in [8, 16, 32]:
289
            for head_size in [64, 80, 96, 112, 128, 256]:
290
291
292
                print(f'Testing single_query_cached_kv_attention with '
                      f'dtype={dtype}, block_size={block_size}, '
                      f'head_size={head_size}')
293
                run_single_query_cached_kv_attention(
294
295
296
297
298
299
300
301
                    num_tokens=37,
                    num_heads=3,
                    head_size=head_size,
                    block_size=block_size,
                    num_blocks=1024,
                    dtype=dtype,
                )

302
303
304
305

def test_multi_query_kv_attention() -> None:
    torch.random.manual_seed(TEST_SEED)
    torch.cuda.manual_seed(TEST_SEED)
Woosuk Kwon's avatar
Woosuk Kwon committed
306
    for dtype in [torch.half, torch.bfloat16, torch.float]:
307
        for head_size in [64, 80, 96, 112, 128, 256]:
308
309
            print(f'Testing multi_query_kv_attention with dtype={dtype}, '
                  f'head_size={head_size}')
310
            run_multi_query_kv_attention(
311
                num_seqs=5,
312
313
314
315
                num_heads=3,
                head_size=head_size,
                dtype=dtype,
            )