test_attention.py 9.53 KB
Newer Older
1
import random
2
from typing import List, Optional
3
4

import torch
5
6
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask
7

Woosuk Kwon's avatar
Woosuk Kwon committed
8
from vllm import attention_ops
9

10
MAX_SEQ_LEN = 4096
11
TEST_SEED = 0
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

def ref_masked_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    query = query * scale
    attn = torch.einsum('qhd,khd->hqk', query, key)
    if attn_mask is not None:
        attn = attn + attn_mask
    attn = torch.softmax(attn, dim=-1)
    out = torch.einsum('hqk,khd->qhd', attn, value)
    return out


def ref_single_query_cached_kv_attention(
    output: torch.Tensor,
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
) -> None:
    num_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]

    num_input_tokens = query.shape[0]
    for i in range(num_input_tokens):
        q = query[i].unsqueeze(0)
        block_table = block_tables[i]
        context_len = int(context_lens[i])

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)

63
        scale = 1.0 / (head_size**0.5)
64
65
66
67
68
        out = ref_masked_attention(q, keys, values, scale)
        out = out.view(num_heads, head_size)
        output[i].copy_(out, non_blocking=True)


69
70
71
72
73
74
75
76
def ref_multi_query_kv_attention(
    cu_seq_lens: List[int],
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    head_size = query.shape[-1]
77
    scale = 1.0 / (head_size**0.5)
78
79
80
81
82
83
84
85

    num_seqs = len(cu_seq_lens) - 1
    ref_outputs = []
    for i in range(num_seqs):
        start_idx = cu_seq_lens[i]
        end_idx = cu_seq_lens[i + 1]
        seq_len = end_idx - start_idx

86
        # Create attention mask.
87
88
        attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
                               diagonal=1)
89
        attn_mask = attn_mask * torch.finfo(dtype).min
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        attn_mask = attn_mask.to(dtype=dtype, device='cuda')

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            key[start_idx:end_idx],
            value[start_idx:end_idx],
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)
    return ref_output


104
105
106
107
108
109
110
111
112
113
114
115
def ref_multi_query_cached_kv_attention(
    cu_query_lens: List[int],
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    num_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]
116
    scale = 1.0 / (head_size**0.5)
117
118
119
120
121
122
123
124
125
126
127

    num_queries = len(cu_query_lens) - 1
    ref_outputs = []
    for i in range(num_queries):
        start_idx = cu_query_lens[i]
        end_idx = cu_query_lens[i + 1]
        query_len = end_idx - start_idx
        context_len = int(context_lens[i])
        block_table = block_tables[i]

        # Create attention mask
128
129
        attn_mask = torch.triu(torch.ones(query_len, context_len),
                               diagonal=context_len - query_len + 1) * -1e5
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        attn_mask = attn_mask.to(dtype=dtype, device='cuda')

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            keys,
            values,
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)
    return ref_output


159
160
@torch.inference_mode()
def run_single_query_cached_kv_attention(
161
162
163
164
165
166
167
    num_tokens: int,
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
) -> None:
168
169
170
171
172
173
    qkv = torch.empty(num_tokens,
                      3,
                      num_heads,
                      head_size,
                      dtype=dtype,
                      device='cuda')
174
    qkv.uniform_(-1e-3, 1e-3)
Woosuk Kwon's avatar
Woosuk Kwon committed
175
    query, _, _ = qkv.unbind(dim=1)
176

177
178
    x = 16 // torch.tensor([], dtype=dtype).element_size()
    key_block_shape = (num_heads, head_size // x, block_size, x)
179
180
181
    key_cache = torch.empty(size=(num_blocks, *key_block_shape),
                            dtype=dtype,
                            device='cuda')
182
    key_cache.uniform_(-1e-3, 1e-3)
183
    value_block_shape = (num_heads, head_size, block_size)
184
185
186
    value_cache = torch.empty(size=(num_blocks, *value_block_shape),
                              dtype=dtype,
                              device='cuda')
187
    value_cache.uniform_(-1e-3, 1e-3)
Woosuk Kwon's avatar
Woosuk Kwon committed
188

189
    context_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_tokens)]
190
191
192
193
194
195
196
197
198
199
200
201
202
    max_context_len = max(context_lens)
    context_lens = torch.tensor(context_lens, dtype=torch.int, device='cuda')

    max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
    block_tables = []
    for _ in range(num_tokens):
        block_table = [
            random.randint(0, num_blocks - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables.append(block_table)
    block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')

203
204
205
206
207
208
    scale = float(1.0 / (head_size**0.5))
    output = torch.empty(num_tokens,
                         num_heads,
                         head_size,
                         dtype=dtype,
                         device='cuda')
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    attention_ops.single_query_cached_kv_attention(
        output,
        query,
        key_cache,
        value_cache,
        scale,
        block_tables,
        context_lens,
        block_size,
        max_context_len,
    )

    ref_output = torch.empty_like(query)
    ref_single_query_cached_kv_attention(
        ref_output,
        query,
        key_cache,
        value_cache,
        block_tables,
        context_lens,
    )
    # NOTE(woosuk): Due to the difference in the data types the two
    # implementations use for attention softmax logits and accumulation,
    # there is a small difference in the final outputs.
    # We should use a relaxed tolerance for the test.
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


237
238
@torch.inference_mode()
def run_multi_query_kv_attention(
239
240
241
242
243
244
245
246
    num_seqs: int,
    num_heads: int,
    head_size: int,
    dtype: torch.dtype,
) -> None:
    seq_lens = random.sample(range(1, MAX_SEQ_LEN), num_seqs)
    num_tokens = sum(seq_lens)

247
248
249
250
251
252
253
    scale = float(1.0 / (head_size**0.5))
    qkv = torch.empty(num_tokens,
                      3,
                      num_heads,
                      head_size,
                      dtype=dtype,
                      device='cuda')
254
    qkv.uniform_(-1e-3, 1e-3)
Woosuk Kwon's avatar
Woosuk Kwon committed
255
    query, key, value = qkv.unbind(dim=1)
256
257
258
259
260
261
262
263
264
265
266

    attn_op = xops.fmha.cutlass.FwOp()
    attn_bias = BlockDiagonalCausalMask.from_seqlens(seq_lens)
    output = xops.memory_efficient_attention_forward(
        query.unsqueeze(0),
        key.unsqueeze(0),
        value.unsqueeze(0),
        attn_bias=attn_bias,
        p=0.0,
        scale=scale,
        op=attn_op,
Woosuk Kwon's avatar
Woosuk Kwon committed
267
    )
268
    output = output.squeeze(0)
269

270
271
272
    cu_seq_lens = [0]
    for seq_len in seq_lens:
        cu_seq_lens.append(cu_seq_lens[-1] + seq_len)
273
274
275
276
277
278
279
    ref_output = ref_multi_query_kv_attention(
        cu_seq_lens,
        query,
        key,
        value,
        dtype,
    )
280
281
282
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


283
284
285
def test_single_query_cached_kv_attention() -> None:
    torch.random.manual_seed(TEST_SEED)
    torch.cuda.manual_seed(TEST_SEED)
Woosuk Kwon's avatar
Woosuk Kwon committed
286
287
288
    for dtype in [torch.half, torch.bfloat16, torch.float]:
        for block_size in [8, 16, 32]:
            for head_size in [64, 80, 96, 128]:
289
290
291
                print(f'Testing single_query_cached_kv_attention with '
                      f'dtype={dtype}, block_size={block_size}, '
                      f'head_size={head_size}')
292
                run_single_query_cached_kv_attention(
293
294
295
296
297
298
299
300
                    num_tokens=37,
                    num_heads=3,
                    head_size=head_size,
                    block_size=block_size,
                    num_blocks=1024,
                    dtype=dtype,
                )

301
302
303
304

def test_multi_query_kv_attention() -> None:
    torch.random.manual_seed(TEST_SEED)
    torch.cuda.manual_seed(TEST_SEED)
Woosuk Kwon's avatar
Woosuk Kwon committed
305
306
    for dtype in [torch.half, torch.bfloat16, torch.float]:
        for head_size in [64, 80, 96, 128]:
307
308
            print(f'Testing multi_query_kv_attention with dtype={dtype}, '
                  f'head_size={head_size}')
309
            run_multi_query_kv_attention(
310
                num_seqs=5,
311
312
313
314
                num_heads=3,
                head_size=head_size,
                dtype=dtype,
            )