llm_server.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
import time
from typing import Any, List, Optional

from cacheflow.config import (CacheConfig, ModelConfig, ParallelConfig,
                              SchedulerConfig)
from cacheflow.core.scheduler import Scheduler
from cacheflow.logger import init_logger
from cacheflow.outputs import RequestOutput
from cacheflow.sampling_params import SamplingParams
10
from cacheflow.server.arg_utils import ServerArgs
11
from cacheflow.server.ray_utils import ray, initialize_cluster
12
13
from cacheflow.server.tokenizer_utils import (get_tokenizer,
                                              detokenize_incrementally)
14
from cacheflow.sequence import Sequence, SequenceGroup, SequenceStatus
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from cacheflow.utils import Counter
from cacheflow.worker.worker import Worker

logger = init_logger(__name__)


class LLMServer:

    def __init__(
        self,
        model_config: ModelConfig,
        cache_config: CacheConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        distributed_init_method: str,
        stage_devices: List[List[Any]],
31
        log_stats: bool,
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    ) -> None:
        logger.info(
            "Initializing an LLM server with config: "
            f"model={model_config.model!r}, "
            f"dtype={model_config.dtype}, "
            f"use_dummy_weights={model_config.use_dummy_weights}, "
            f"download_dir={model_config.download_dir!r}, "
            f"use_np_weights={model_config.use_np_weights}, "
            f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
            f"seed={model_config.seed})"
        )
        # TODO(woosuk): Print more configs in debug mode.

        self.model_config = model_config
        self.cache_config = cache_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.log_stats = log_stats
        self._verify_args()

        self.tokenizer = get_tokenizer(model_config.model)
        self.seq_counter = Counter()

        # Create the parallel GPU workers.
        self.workers: List[Worker] = []
        assert len(stage_devices) == 1, "Only support one stage for now."
        for rank, node_resource, _ in stage_devices[0]:
            worker_cls = Worker
60
            if self.parallel_config.worker_use_ray:
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
                worker_cls = ray.remote(
                    num_cpus=0,
                    num_gpus=1,
                    resources={node_resource: 1e-5},
                )(worker_cls).remote

            worker = worker_cls(
                model_config,
                parallel_config,
                scheduler_config,
                rank,
                distributed_init_method,
            )
            self.workers.append(worker)
        # Profile the memory usage and initialize the cache.
        self._init_cache()

        # Create the scheduler.
        self.scheduler = Scheduler(scheduler_config, cache_config, log_stats)

    def _verify_args(self) -> None:
        self.model_config.verify_with_parallel_config(self.parallel_config)
83
        self.cache_config.verify_with_parallel_config(self.parallel_config)
84
85
86
87
88
89
90
91

    def _init_cache(self) -> None:
        # Get the maximum number of blocks that can be allocated on GPU and CPU.
        num_blocks = self._run_workers(
            "profile_num_available_blocks",
            get_all_outputs=True,
            block_size=self.cache_config.block_size,
            gpu_memory_utilization=self.cache_config.gpu_memory_utilization,
92
            cpu_swap_space=self.cache_config.swap_space_bytes,
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        )

        # Since we use a shared centralized controller, we take the minimum
        # number of blocks across all workers to make sure all the memory
        # operators can be applied to all workers.
        num_gpu_blocks = min(b[0] for b in num_blocks)
        num_cpu_blocks = min(b[1] for b in num_blocks)
        # FIXME(woosuk): Change to debug log.
        logger.info(f'# GPU blocks: {num_gpu_blocks}, '
                    f'# CPU blocks: {num_cpu_blocks}')
        self.cache_config.num_gpu_blocks = num_gpu_blocks
        self.cache_config.num_cpu_blocks = num_cpu_blocks

        # Initialize the cache.
        self._run_workers("init_cache_engine", cache_config=self.cache_config)

109
110
111
112
113
114
115
116
117
118
119
120
    @classmethod
    def from_server_args(cls, server_args: ServerArgs) -> "LLMServer":
        # Create the server configs.
        server_configs = server_args.create_server_configs()
        parallel_config = server_configs[2]
        # Initialize the cluster.
        distributed_init_method, devices = initialize_cluster(parallel_config)
        # Create the LLM server.
        server = cls(*server_configs, distributed_init_method, devices,
                     log_stats=not server_args.disable_log_stats)
        return server

121
122
123
    def add_request(
        self,
        request_id: str,
Woosuk Kwon's avatar
Woosuk Kwon committed
124
        prompt: Optional[str],
125
126
127
128
129
130
131
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]] = None,
        arrival_time: Optional[float] = None,
    ) -> None:
        if arrival_time is None:
            arrival_time = time.time()
        if prompt_token_ids is None:
Woosuk Kwon's avatar
Woosuk Kwon committed
132
            assert prompt is not None
133
134
135
136
137
            prompt_token_ids = self.tokenizer.encode(prompt)

        # Create the sequences.
        block_size = self.cache_config.block_size
        seqs: List[Sequence] = []
138
        for _ in range(sampling_params.best_of):
139
140
141
142
143
144
145
146
147
148
149
            seq_id = next(self.seq_counter)
            seq = Sequence(seq_id, prompt, prompt_token_ids, block_size)
            seqs.append(seq)

        # Create the sequence group.
        seq_group = SequenceGroup(request_id, seqs, sampling_params,
                                  arrival_time)

        # Add the sequence group to the scheduler.
        self.scheduler.add_seq_group(seq_group)

150
151
152
    def abort_request(self, request_id: str) -> None:
        self.scheduler.abort_seq_group(request_id)

153
154
155
    def get_num_unfinished_requests(self) -> int:
        return self.scheduler.get_num_unfinished_seq_groups()

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    def has_unfinished_requests(self) -> bool:
        return self.scheduler.has_unfinished_seqs()

    def step(self) -> List[RequestOutput]:
        seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
        if (not seq_group_metadata_list) and scheduler_outputs.is_empty():
            # Nothing to do.
            return []

        # Execute the model.
        output = self._run_workers(
            "execute_model",
            seq_group_metadata_list=seq_group_metadata_list,
            blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
            blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
            blocks_to_copy=scheduler_outputs.blocks_to_copy,
        )
173
174
175
176
177
178
179
180
181
        # Update the scheduler with the model outputs.
        seq_groups = self.scheduler.update(output)

        # Decode the sequences.
        self._decode_sequences(seq_groups)
        # Stop the sequences that meet the stopping criteria.
        self._stop_sequences(seq_groups)
        # Free the finished sequence groups.
        self.scheduler.free_finished_seq_groups()
182
183
184

        # Create the outputs.
        request_outputs: List[RequestOutput] = []
185
186
        for seq_group in seq_groups:
            request_output = RequestOutput.from_seq_group(seq_group)
187
188
189
            request_outputs.append(request_output)
        return request_outputs

190
    def _decode_sequences(self, seq_groups: List[SequenceGroup]) -> None:
191
        # Decode the sequence outputs.
192
        for seq_group in seq_groups:
193
194
195
196
197
198
199
200
201
            for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
                new_token, new_output_text = detokenize_incrementally(
                    self.tokenizer,
                    seq.output_tokens,
                    seq.get_last_token_id(),
                    skip_special_tokens=True,
                )
                seq.output_tokens.append(new_token)
                seq.output_text = new_output_text
202
203
204
205
206
207
208
209
210
211
212
213
214

    def _stop_sequences(self, seq_groups: List[SequenceGroup]) -> None:
        # Stop the sequences.
        for seq_group in seq_groups:
            sampling_params = seq_group.sampling_params
            for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
                # Check if the sequence has generated a stop string.
                stopped = False
                for stop_str in sampling_params.stop:
                    if seq.output_text.endswith(stop_str):
                        # Truncate the output text so that the stop string is
                        # not included in the output.
                        seq.output_text = seq.output_text[:-len(stop_str)]
Zhuohan Li's avatar
Zhuohan Li committed
215
216
                        self.scheduler.free_seq(seq,
                                                SequenceStatus.FINISHED_STOPPED)
217
218
219
220
221
222
223
                        stopped = True
                        break
                if stopped:
                    continue

                # Check if the sequence has reached max_tokens.
                if seq.get_output_len() == sampling_params.max_tokens:
Zhuohan Li's avatar
Zhuohan Li committed
224
225
                    self.scheduler.free_seq(
                        seq, SequenceStatus.FINISHED_LENGTH_CAPPED)
226
227
228
229
                    continue
                # Check if the sequence has generated the EOS token.
                if not sampling_params.ignore_eos:
                    if seq.get_last_token_id() == self.tokenizer.eos_token_id:
Zhuohan Li's avatar
Zhuohan Li committed
230
231
                        self.scheduler.free_seq(seq,
                                                SequenceStatus.FINISHED_STOPPED)
232
233
                        continue

234
235
236
237
238
239
240
241
242
243
    def _run_workers(
        self,
        method: str,
        get_all_outputs: bool = False,
        *args,
        **kwargs,
    ) -> Any:
        all_outputs = []
        for worker in self.workers:
            executor = getattr(worker, method)
244
            if self.parallel_config.worker_use_ray:
245
                executor = executor.remote
Zhuohan Li's avatar
Zhuohan Li committed
246

247
248
            output = executor(*args, **kwargs)
            all_outputs.append(output)
Zhuohan Li's avatar
Zhuohan Li committed
249

250
        if self.parallel_config.worker_use_ray:
251
252
253
254
255
256
257
258
259
260
            all_outputs = ray.get(all_outputs)

        if get_all_outputs:
            return all_outputs

        # Make sure all workers have the same results.
        output = all_outputs[0]
        for other_output in all_outputs[1:]:
            assert output == other_output
        return output