llm_server.py 6.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import time
from typing import Any, List, Optional

try:
    import ray
except ImportError:
    ray = None

from cacheflow.config import (CacheConfig, ModelConfig, ParallelConfig,
                              SchedulerConfig)
from cacheflow.core.scheduler import Scheduler
from cacheflow.logger import init_logger
from cacheflow.outputs import RequestOutput
from cacheflow.sampling_params import SamplingParams
from cacheflow.server.tokenizer_utils import get_tokenizer
from cacheflow.sequence import Sequence, SequenceGroup
from cacheflow.utils import Counter
from cacheflow.worker.worker import Worker

logger = init_logger(__name__)


class LLMServer:

    def __init__(
        self,
        model_config: ModelConfig,
        cache_config: CacheConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        distributed_init_method: str,
        stage_devices: List[List[Any]],
        log_stats: bool = True,
    ) -> None:
        logger.info(
            "Initializing an LLM server with config: "
            f"model={model_config.model!r}, "
            f"dtype={model_config.dtype}, "
            f"use_dummy_weights={model_config.use_dummy_weights}, "
            f"download_dir={model_config.download_dir!r}, "
            f"use_np_weights={model_config.use_np_weights}, "
            f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
            f"seed={model_config.seed})"
        )
        # TODO(woosuk): Print more configs in debug mode.

        self.model_config = model_config
        self.cache_config = cache_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.log_stats = log_stats

        self._verify_args()

        self.tokenizer = get_tokenizer(model_config.model)
        self.seq_counter = Counter()

        # Create the parallel GPU workers.
        self.workers: List[Worker] = []
        assert len(stage_devices) == 1, "Only support one stage for now."
        for rank, node_resource, _ in stage_devices[0]:
            worker_cls = Worker
            if self.parallel_config.use_ray:
                worker_cls = ray.remote(
                    num_cpus=0,
                    num_gpus=1,
                    resources={node_resource: 1e-5},
                )(worker_cls).remote

            worker = worker_cls(
                model_config,
                parallel_config,
                scheduler_config,
                rank,
                distributed_init_method,
            )
            self.workers.append(worker)
        # Profile the memory usage and initialize the cache.
        self._init_cache()

        # Create the scheduler.
        self.scheduler = Scheduler(scheduler_config, cache_config, log_stats)

    def _verify_args(self) -> None:
        self.model_config.verify_with_parallel_config(self.parallel_config)

    def _init_cache(self) -> None:
        # Get the maximum number of blocks that can be allocated on GPU and CPU.
        num_blocks = self._run_workers(
            "profile_num_available_blocks",
            get_all_outputs=True,
            block_size=self.cache_config.block_size,
            gpu_memory_utilization=self.cache_config.gpu_memory_utilization,
            cpu_swap_space=self.cache_config.swap_space,
        )

        # Since we use a shared centralized controller, we take the minimum
        # number of blocks across all workers to make sure all the memory
        # operators can be applied to all workers.
        num_gpu_blocks = min(b[0] for b in num_blocks)
        num_cpu_blocks = min(b[1] for b in num_blocks)
        # FIXME(woosuk): Change to debug log.
        logger.info(f'# GPU blocks: {num_gpu_blocks}, '
                    f'# CPU blocks: {num_cpu_blocks}')
        self.cache_config.num_gpu_blocks = num_gpu_blocks
        self.cache_config.num_cpu_blocks = num_cpu_blocks

        # Initialize the cache.
        self._run_workers("init_cache_engine", cache_config=self.cache_config)

    def add_request(
        self,
        request_id: str,
        prompt: str,
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]] = None,
        arrival_time: Optional[float] = None,
    ) -> None:
        if arrival_time is None:
            arrival_time = time.time()
        if prompt_token_ids is None:
            prompt_token_ids = self.tokenizer.encode(prompt)

        # Create the sequences.
        block_size = self.cache_config.block_size
        seqs: List[Sequence] = []
        for _ in range(sampling_params.n):
            seq_id = next(self.seq_counter)
            seq = Sequence(seq_id, prompt, prompt_token_ids, block_size)
            seqs.append(seq)

        # FIXME(woosuk)
        # Add the EOS token to the stop token list.
        sampling_params.stop_token_ids.add(self.tokenizer.eos_token_id)

        # Create the sequence group.
        seq_group = SequenceGroup(request_id, seqs, sampling_params,
                                  arrival_time)

        # Add the sequence group to the scheduler.
        self.scheduler.add_seq_group(seq_group)

    def has_unfinished_requests(self) -> bool:
        return self.scheduler.has_unfinished_seqs()

    def step(self) -> List[RequestOutput]:
        seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
        if (not seq_group_metadata_list) and scheduler_outputs.is_empty():
            # Nothing to do.
            return []

        # Execute the model.
        output = self._run_workers(
            "execute_model",
            seq_group_metadata_list=seq_group_metadata_list,
            blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
            blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
            blocks_to_copy=scheduler_outputs.blocks_to_copy,
        )
        # Update the scheduler.
        updated_seq_groups = self.scheduler.update(output)

        # Create the outputs.
        request_outputs: List[RequestOutput] = []
        for seq_group in updated_seq_groups:
            # TODO(woosuk): Batch-decode the outputs for speedup.
            request_output = RequestOutput.from_seq_group(seq_group,
                                                          self.tokenizer)
            request_outputs.append(request_output)
        return request_outputs

    def _run_workers(
        self,
        method: str,
        get_all_outputs: bool = False,
        *args,
        **kwargs,
    ) -> Any:
        all_outputs = []
        for worker in self.workers:
            executor = getattr(worker, method)
            if self.parallel_config.use_ray:
                executor = executor.remote
    
            output = executor(*args, **kwargs)
            all_outputs.append(output)
        
        if self.parallel_config.use_ray:
            all_outputs = ray.get(all_outputs)

        if get_all_outputs:
            return all_outputs

        # Make sure all workers have the same results.
        output = all_outputs[0]
        for other_output in all_outputs[1:]:
            assert output == other_output
        return output