llm_server.py 9.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import time
from typing import Any, List, Optional

try:
    import ray
except ImportError:
    ray = None

from cacheflow.config import (CacheConfig, ModelConfig, ParallelConfig,
                              SchedulerConfig)
from cacheflow.core.scheduler import Scheduler
from cacheflow.logger import init_logger
from cacheflow.outputs import RequestOutput
from cacheflow.sampling_params import SamplingParams
15
16
from cacheflow.server.arg_utils import ServerArgs
from cacheflow.server.ray_utils import initialize_cluster
17
18
from cacheflow.server.tokenizer_utils import (get_tokenizer,
                                              detokenize_incrementally)
19
from cacheflow.sequence import Sequence, SequenceGroup, SequenceStatus
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from cacheflow.utils import Counter
from cacheflow.worker.worker import Worker

logger = init_logger(__name__)


class LLMServer:

    def __init__(
        self,
        model_config: ModelConfig,
        cache_config: CacheConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        distributed_init_method: str,
        stage_devices: List[List[Any]],
36
        log_stats: bool,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    ) -> None:
        logger.info(
            "Initializing an LLM server with config: "
            f"model={model_config.model!r}, "
            f"dtype={model_config.dtype}, "
            f"use_dummy_weights={model_config.use_dummy_weights}, "
            f"download_dir={model_config.download_dir!r}, "
            f"use_np_weights={model_config.use_np_weights}, "
            f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
            f"seed={model_config.seed})"
        )
        # TODO(woosuk): Print more configs in debug mode.

        self.model_config = model_config
        self.cache_config = cache_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.log_stats = log_stats
        self._verify_args()

        self.tokenizer = get_tokenizer(model_config.model)
        self.seq_counter = Counter()

        # Create the parallel GPU workers.
        self.workers: List[Worker] = []
        assert len(stage_devices) == 1, "Only support one stage for now."
        for rank, node_resource, _ in stage_devices[0]:
            worker_cls = Worker
            if self.parallel_config.use_ray:
                worker_cls = ray.remote(
                    num_cpus=0,
                    num_gpus=1,
                    resources={node_resource: 1e-5},
                )(worker_cls).remote

            worker = worker_cls(
                model_config,
                parallel_config,
                scheduler_config,
                rank,
                distributed_init_method,
            )
            self.workers.append(worker)
        # Profile the memory usage and initialize the cache.
        self._init_cache()

        # Create the scheduler.
        self.scheduler = Scheduler(scheduler_config, cache_config, log_stats)

    def _verify_args(self) -> None:
        self.model_config.verify_with_parallel_config(self.parallel_config)
88
        self.cache_config.verify_with_parallel_config(self.parallel_config)
89
90
91
92
93
94
95
96

    def _init_cache(self) -> None:
        # Get the maximum number of blocks that can be allocated on GPU and CPU.
        num_blocks = self._run_workers(
            "profile_num_available_blocks",
            get_all_outputs=True,
            block_size=self.cache_config.block_size,
            gpu_memory_utilization=self.cache_config.gpu_memory_utilization,
97
            cpu_swap_space=self.cache_config.swap_space_bytes,
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        )

        # Since we use a shared centralized controller, we take the minimum
        # number of blocks across all workers to make sure all the memory
        # operators can be applied to all workers.
        num_gpu_blocks = min(b[0] for b in num_blocks)
        num_cpu_blocks = min(b[1] for b in num_blocks)
        # FIXME(woosuk): Change to debug log.
        logger.info(f'# GPU blocks: {num_gpu_blocks}, '
                    f'# CPU blocks: {num_cpu_blocks}')
        self.cache_config.num_gpu_blocks = num_gpu_blocks
        self.cache_config.num_cpu_blocks = num_cpu_blocks

        # Initialize the cache.
        self._run_workers("init_cache_engine", cache_config=self.cache_config)

114
115
116
117
118
119
120
121
122
123
124
125
    @classmethod
    def from_server_args(cls, server_args: ServerArgs) -> "LLMServer":
        # Create the server configs.
        server_configs = server_args.create_server_configs()
        parallel_config = server_configs[2]
        # Initialize the cluster.
        distributed_init_method, devices = initialize_cluster(parallel_config)
        # Create the LLM server.
        server = cls(*server_configs, distributed_init_method, devices,
                     log_stats=not server_args.disable_log_stats)
        return server

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    def add_request(
        self,
        request_id: str,
        prompt: str,
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]] = None,
        arrival_time: Optional[float] = None,
    ) -> None:
        if arrival_time is None:
            arrival_time = time.time()
        if prompt_token_ids is None:
            prompt_token_ids = self.tokenizer.encode(prompt)

        # Create the sequences.
        block_size = self.cache_config.block_size
        seqs: List[Sequence] = []
142
        for _ in range(sampling_params.best_of):
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
            seq_id = next(self.seq_counter)
            seq = Sequence(seq_id, prompt, prompt_token_ids, block_size)
            seqs.append(seq)

        # Create the sequence group.
        seq_group = SequenceGroup(request_id, seqs, sampling_params,
                                  arrival_time)

        # Add the sequence group to the scheduler.
        self.scheduler.add_seq_group(seq_group)

    def has_unfinished_requests(self) -> bool:
        return self.scheduler.has_unfinished_seqs()

    def step(self) -> List[RequestOutput]:
        seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
        if (not seq_group_metadata_list) and scheduler_outputs.is_empty():
            # Nothing to do.
            return []

        # Execute the model.
        output = self._run_workers(
            "execute_model",
            seq_group_metadata_list=seq_group_metadata_list,
            blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
            blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
            blocks_to_copy=scheduler_outputs.blocks_to_copy,
        )
171
172
173
174
175
176
177
178
179
        # Update the scheduler with the model outputs.
        seq_groups = self.scheduler.update(output)

        # Decode the sequences.
        self._decode_sequences(seq_groups)
        # Stop the sequences that meet the stopping criteria.
        self._stop_sequences(seq_groups)
        # Free the finished sequence groups.
        self.scheduler.free_finished_seq_groups()
180
181
182

        # Create the outputs.
        request_outputs: List[RequestOutput] = []
183
184
        for seq_group in seq_groups:
            request_output = RequestOutput.from_seq_group(seq_group)
185
186
187
            request_outputs.append(request_output)
        return request_outputs

188
    def _decode_sequences(self, seq_groups: List[SequenceGroup]) -> None:
189
        # Decode the sequence outputs.
190
        for seq_group in seq_groups:
191
192
193
194
195
196
197
198
199
            for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
                new_token, new_output_text = detokenize_incrementally(
                    self.tokenizer,
                    seq.output_tokens,
                    seq.get_last_token_id(),
                    skip_special_tokens=True,
                )
                seq.output_tokens.append(new_token)
                seq.output_text = new_output_text
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

    def _stop_sequences(self, seq_groups: List[SequenceGroup]) -> None:
        # Stop the sequences.
        for seq_group in seq_groups:
            sampling_params = seq_group.sampling_params
            for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
                # Check if the sequence has generated a stop string.
                stopped = False
                for stop_str in sampling_params.stop:
                    if seq.output_text.endswith(stop_str):
                        # Truncate the output text so that the stop string is
                        # not included in the output.
                        seq.output_text = seq.output_text[:-len(stop_str)]
                        self.scheduler.free_seq(seq)
                        stopped = True
                        break
                if stopped:
                    continue

                # Check if the sequence has reached max_tokens.
                if seq.get_output_len() == sampling_params.max_tokens:
                    self.scheduler.free_seq(seq)
                    continue
                # Check if the sequence has generated the EOS token.
                if not sampling_params.ignore_eos:
                    if seq.get_last_token_id() == self.tokenizer.eos_token_id:
                        self.scheduler.free_seq(seq)
                        continue

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    def _run_workers(
        self,
        method: str,
        get_all_outputs: bool = False,
        *args,
        **kwargs,
    ) -> Any:
        all_outputs = []
        for worker in self.workers:
            executor = getattr(worker, method)
            if self.parallel_config.use_ray:
                executor = executor.remote
    
            output = executor(*args, **kwargs)
            all_outputs.append(output)
        
        if self.parallel_config.use_ray:
            all_outputs = ray.get(all_outputs)

        if get_all_outputs:
            return all_outputs

        # Make sure all workers have the same results.
        output = all_outputs[0]
        for other_output in all_outputs[1:]:
            assert output == other_output
        return output