YOLOV5.cpp 8.46 KB
Newer Older
liucong's avatar
liucong committed
1
#include <YOLOV5.h>
Your Name's avatar
Your Name committed
2
3
4
5
6
7
8
9
10
11
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
#include <Filesystem.h>
#include <SimpleLog.h>


namespace migraphxSamples
{

liucong's avatar
liucong committed
12
DetectorYOLOV5::DetectorYOLOV5()
Your Name's avatar
Your Name committed
13
14
15
16
17
18
19
20
21
{

}

DetectorYOLOV5::~DetectorYOLOV5()
{
    configurationFile.release();
}

shizhm's avatar
shizhm committed
22
ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializationParameterOfDetector, bool dynamic)
Your Name's avatar
Your Name committed
23
{
liucong's avatar
liucong committed
24
25
    // 读取配置文件
    std::string configFilePath=initializationParameterOfDetector.configFilePath;
liucong's avatar
liucong committed
26
    if(!Exists(configFilePath))
Your Name's avatar
Your Name committed
27
    {
liucong's avatar
liucong committed
28
29
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
Your Name's avatar
Your Name committed
30
    }
liucong's avatar
liucong committed
31
32
33
34
35
36
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");
Your Name's avatar
Your Name committed
37
38
    
    // 获取配置文件参数
liucong's avatar
liucong committed
39
    cv::FileNode netNode = configurationFile["DetectorYOLOV5"];
shizhm's avatar
shizhm committed
40
41
42
43
44
45
46
47
    if(dynamic)
    {
        modelPath=(std::string)netNode["ModelPathDynamic"];
    }
    else
    {
        modelPath=(std::string)netNode["ModelPathStatic"];
    }
liucong's avatar
liucong committed
48
    std::string pathOfClassNameFile=(std::string)netNode["ClassNameFile"];
Your Name's avatar
Your Name committed
49
50
51
52
53
54
    yolov5Parameter.confidenceThreshold = (float)netNode["ConfidenceThreshold"];
    yolov5Parameter.nmsThreshold = (float)netNode["NMSThreshold"];
    yolov5Parameter.objectThreshold = (float)netNode["ObjectThreshold"];
    yolov5Parameter.numberOfClasses=(int)netNode["NumberOfClasses"];
    useFP16=(bool)(int)netNode["UseFP16"];

shizhm's avatar
shizhm committed
55
    if(dynamic)
Your Name's avatar
Your Name committed
56
    {
shizhm's avatar
shizhm committed
57
        // 加载模型
liucong's avatar
liucong committed
58
        if(!Exists(modelPath))
shizhm's avatar
shizhm committed
59
60
61
62
63
        {
            LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
            return MODEL_NOT_EXIST;
        }
        
shizhm's avatar
shizhm committed
64
        migraphx::onnx_options onnx_options;
shizhm's avatar
shizhm committed
65
        onnx_options.map_input_dims["images"]={1,3,800,800};
shizhm's avatar
shizhm committed
66
67
68
        net = migraphx::parse_onnx(modelPath, onnx_options);
        LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

liucong's avatar
liucong committed
69
70
71
72
73
        // 获取模型输入/输出节点信息
        std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
        std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
        inputName=inputs.begin()->first;
        inputShape=inputs.begin()->second;
shizhm's avatar
shizhm committed
74
75
76
77
78
79
80
81
        int N=inputShape.lens()[0];
        int C=inputShape.lens()[1];
        int H=inputShape.lens()[2];
        int W=inputShape.lens()[3];
        inputSize=cv::Size(W,H);

        // log
        LOG_INFO(stdout,"InputMaxSize:%dx%d\n",inputSize.width,inputSize.height);
Your Name's avatar
Your Name committed
82
    }
shizhm's avatar
shizhm committed
83
84
    else
    {
shizhm's avatar
shizhm committed
85
        // 加载模型
liucong's avatar
liucong committed
86
        if(!Exists(modelPath))
shizhm's avatar
shizhm committed
87
88
89
90
        {
            LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
            return MODEL_NOT_EXIST;
        }
shizhm's avatar
shizhm committed
91
92
93
        net = migraphx::parse_onnx(modelPath);
        LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

liucong's avatar
liucong committed
94
95
96
97
98
        // 获取模型输入/输出节点信息
        std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
        std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
        inputName=inputs.begin()->first;
        inputShape=inputs.begin()->second;
shizhm's avatar
shizhm committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        int N=inputShape.lens()[0];
        int C=inputShape.lens()[1];
        int H=inputShape.lens()[2];
        int W=inputShape.lens()[3];
        inputSize=cv::Size(W,H);

        // log
        LOG_INFO(stdout,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    }

    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());
    LOG_INFO(stdout,"ConfidenceThreshold:%f\n",yolov5Parameter.confidenceThreshold);
    LOG_INFO(stdout,"NMSThreshold:%f\n",yolov5Parameter.nmsThreshold);
    LOG_INFO(stdout,"objectThreshold:%f\n",yolov5Parameter.objectThreshold);
    LOG_INFO(stdout,"NumberOfClasses:%d\n",yolov5Parameter.numberOfClasses);
Your Name's avatar
Your Name committed
114
115
116
117
118
119
120
121
122
123
124
125

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化    
    if(useFP16)
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
126
    options.device_id=0; 
liucong's avatar
liucong committed
127
    options.offload_copy=true;
Your Name's avatar
Your Name committed
128
    net.compile(gpuTarget,options);
liucong's avatar
liucong committed
129
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
130

liucong's avatar
liucong committed
131
132
133
    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
Your Name's avatar
Your Name committed
134
135
136
137
138
    net.eval(inputData);

    // 读取类别名
    if(!pathOfClassNameFile.empty())
    {
liucong's avatar
liucong committed
139
140
        std::ifstream classNameFile(pathOfClassNameFile);
        std::string line;
Your Name's avatar
Your Name committed
141
142
143
144
145
146
147
148
149
150
151
152
153
        while (getline(classNameFile, line))
        {
            classNames.push_back(line);
        }
    }
    else
    {
        classNames.resize(yolov5Parameter.numberOfClasses);
    }

    return SUCCESS;
}

shizhm's avatar
shizhm committed
154
ErrorCode DetectorYOLOV5::Detect(const cv::Mat &srcImage, std::vector<std::size_t> &relInputShape, std::vector<ResultOfDetection> &resultsOfDetection, bool dynamic)
Your Name's avatar
Your Name committed
155
156
157
{
    if(srcImage.empty()||srcImage.type()!=CV_8UC3)
    {
liucong's avatar
liucong committed
158
        LOG_ERROR(stdout, "image error!\n");
Your Name's avatar
Your Name committed
159
160
161
        return IMAGE_ERROR;
    }

shizhm's avatar
shizhm committed
162
163
    // 数据预处理并转换为NCHW格式
    inputSize = cv::Size(relInputShape[3], relInputShape[2]);
Your Name's avatar
Your Name committed
164
    cv::Mat inputBlob;
shizhm's avatar
shizhm committed
165
    cv::dnn::blobFromImage(srcImage,
Your Name's avatar
Your Name committed
166
167
168
                    inputBlob,
                    1 / 255.0,
                    inputSize,
liucong's avatar
liucong committed
169
                    cv::Scalar(0, 0, 0),
Your Name's avatar
Your Name committed
170
171
                    true,
                    false);
liucong's avatar
liucong committed
172
173

    // 创建输入数据
174
    migraphx::parameter_map inputData;
shizhm's avatar
shizhm committed
175
176
177
178
179
180
181
182
183
    if(dynamic)
    {
        inputData[inputName]= migraphx::argument{migraphx::shape(inputShape.type(), relInputShape), (float*)inputBlob.data};
    }
    else
    {
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
    }
    
shizhm's avatar
shizhm committed
184

Your Name's avatar
Your Name committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);

    // 获取推理结果
    std::vector<cv::Mat> outs;
    migraphx::argument result = inferenceResults[0]; 

    // 转换为cv::Mat
    migraphx::shape outputShape = result.get_shape();
    int shape[]={outputShape.lens()[0],outputShape.lens()[1],outputShape.lens()[2]};
    cv::Mat out(3,shape,CV_32F);
    memcpy(out.data,result.data(),sizeof(float)*outputShape.elements());
    outs.push_back(out);

    //获取先验框的个数
    int numProposal = outs[0].size[1];
    int numOut = outs[0].size[2];
    //变换输出的维度
    outs[0] = outs[0].reshape(0, numProposal);

    //生成先验框
    std::vector<float> confidences;
    std::vector<cv::Rect> boxes;
    std::vector<int> classIds;
    float ratioh = (float)srcImage.rows / inputSize.height, ratiow = (float)srcImage.cols / inputSize.width;

    //计算cx,cy,w,h,box_sore,class_sore
    int n = 0, rowInd = 0;
    float* pdata = (float*)outs[0].data;
    for (n = 0; n < numProposal; n++)
    {
        float boxScores = pdata[4];
        if (boxScores > yolov5Parameter.objectThreshold)
        {
            cv::Mat scores = outs[0].row(rowInd).colRange(5, numOut);
            cv::Point classIdPoint;
            double maxClassScore;
            cv::minMaxLoc(scores, 0, &maxClassScore, 0, &classIdPoint);
            maxClassScore *= boxScores;
            if (maxClassScore > yolov5Parameter.confidenceThreshold)
            {
                const int classIdx = classIdPoint.x;
                float cx = pdata[0] * ratiow;
                float cy = pdata[1] * ratioh;
                float w = pdata[2] * ratiow;
                float h = pdata[3] * ratioh;

                int left = int(cx - 0.5 * w);
                int top = int(cy - 0.5 * h);

                confidences.push_back((float)maxClassScore);
                boxes.push_back(cv::Rect(left, top, (int)(w), (int)(h)));
                classIds.push_back(classIdx);
            }
        }
        rowInd++;
        pdata += numOut;
    }

    //执行non maximum suppression消除冗余重叠boxes
    std::vector<int> indices;
liucong's avatar
liucong committed
246
    cv::dnn::NMSBoxes(boxes, confidences, yolov5Parameter.confidenceThreshold, yolov5Parameter.nmsThreshold, indices);
Your Name's avatar
Your Name committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        int classID=classIds[idx];
        string className=classNames[classID];
        float confidence=confidences[idx];
        cv::Rect box = boxes[idx];

        ResultOfDetection result;
        result.boundingBox=box;
        result.confidence=confidence;// confidence
        result.classID=classID; // label
        result.className=className;
        resultsOfDetection.push_back(result);
    }

    return SUCCESS;
}

}