YOLOV5.cpp 9.06 KB
Newer Older
liucong's avatar
liucong committed
1
#include <YOLOV5.h>
Your Name's avatar
Your Name committed
2
3
4
5
6
7
8
9
10
11
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
#include <Filesystem.h>
#include <SimpleLog.h>


namespace migraphxSamples
{

liucong's avatar
liucong committed
12
DetectorYOLOV5::DetectorYOLOV5()
Your Name's avatar
Your Name committed
13
14
15
16
17
18
19
20
21
22
23
{

}

DetectorYOLOV5::~DetectorYOLOV5()
{

    configurationFile.release();
    
}

shizhm's avatar
shizhm committed
24
ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializationParameterOfDetector, bool dynamic)
Your Name's avatar
Your Name committed
25
{
liucong's avatar
liucong committed
26
27
28
    // 读取配置文件
    std::string configFilePath=initializationParameterOfDetector.configFilePath;
    if(Exists(configFilePath)==false)
Your Name's avatar
Your Name committed
29
    {
liucong's avatar
liucong committed
30
31
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
Your Name's avatar
Your Name committed
32
    }
liucong's avatar
liucong committed
33
34
35
36
37
38
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");
Your Name's avatar
Your Name committed
39
40
    
    // 获取配置文件参数
liucong's avatar
liucong committed
41
    cv::FileNode netNode = configurationFile["DetectorYOLOV5"];
shizhm's avatar
shizhm committed
42
43
44
45
46
47
48
49
    if(dynamic)
    {
        modelPath=(std::string)netNode["ModelPathDynamic"];
    }
    else
    {
        modelPath=(std::string)netNode["ModelPathStatic"];
    }
liucong's avatar
liucong committed
50
    std::string pathOfClassNameFile=(std::string)netNode["ClassNameFile"];
Your Name's avatar
Your Name committed
51
52
53
54
55
56
    yolov5Parameter.confidenceThreshold = (float)netNode["ConfidenceThreshold"];
    yolov5Parameter.nmsThreshold = (float)netNode["NMSThreshold"];
    yolov5Parameter.objectThreshold = (float)netNode["ObjectThreshold"];
    yolov5Parameter.numberOfClasses=(int)netNode["NumberOfClasses"];
    useFP16=(bool)(int)netNode["UseFP16"];

shizhm's avatar
shizhm committed
57
    if(dynamic)
Your Name's avatar
Your Name committed
58
    {
shizhm's avatar
shizhm committed
59
60
61
62
63
64
65
        // 加载模型
        if(Exists(modelPath)==false)
        {
            LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
            return MODEL_NOT_EXIST;
        }
        
shizhm's avatar
shizhm committed
66
        migraphx::onnx_options onnx_options;
shizhm's avatar
shizhm committed
67
        onnx_options.map_input_dims["images"]={1,3,800,800};
shizhm's avatar
shizhm committed
68
69
70
        net = migraphx::parse_onnx(modelPath, onnx_options);
        LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

liucong's avatar
liucong committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        // 获取模型输入/输出节点信息
        std::cout<<"inputs:"<<std::endl;
        std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
        for(auto i:inputs)
        {
            std::cout<<i.first<<":"<<i.second<<std::endl;
        }
        std::cout<<"outputs:"<<std::endl;
        std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
        for(auto i:outputs)
        {
            std::cout<<i.first<<":"<<i.second<<std::endl;
        }
        inputName=inputs.begin()->first;
        inputShape=inputs.begin()->second;
shizhm's avatar
shizhm committed
86
87
88
89
90
91
92
93
        int N=inputShape.lens()[0];
        int C=inputShape.lens()[1];
        int H=inputShape.lens()[2];
        int W=inputShape.lens()[3];
        inputSize=cv::Size(W,H);

        // log
        LOG_INFO(stdout,"InputMaxSize:%dx%d\n",inputSize.width,inputSize.height);
Your Name's avatar
Your Name committed
94
    }
shizhm's avatar
shizhm committed
95
96
    else
    {
shizhm's avatar
shizhm committed
97
98
99
100
101
102
        // 加载模型
        if(Exists(modelPath)==false)
        {
            LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
            return MODEL_NOT_EXIST;
        }
shizhm's avatar
shizhm committed
103
104
105
        net = migraphx::parse_onnx(modelPath);
        LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

liucong's avatar
liucong committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        // 获取模型输入/输出节点信息
        std::cout<<"inputs:"<<std::endl;
        std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
        for(auto i:inputs)
        {
            std::cout<<i.first<<":"<<i.second<<std::endl;
        }
        std::cout<<"outputs:"<<std::endl;
        std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
        for(auto i:outputs)
        {
            std::cout<<i.first<<":"<<i.second<<std::endl;
        }
        inputName=inputs.begin()->first;
        inputShape=inputs.begin()->second;
shizhm's avatar
shizhm committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        int N=inputShape.lens()[0];
        int C=inputShape.lens()[1];
        int H=inputShape.lens()[2];
        int W=inputShape.lens()[3];
        inputSize=cv::Size(W,H);

        // log
        LOG_INFO(stdout,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    }

    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());
    LOG_INFO(stdout,"ConfidenceThreshold:%f\n",yolov5Parameter.confidenceThreshold);
    LOG_INFO(stdout,"NMSThreshold:%f\n",yolov5Parameter.nmsThreshold);
    LOG_INFO(stdout,"objectThreshold:%f\n",yolov5Parameter.objectThreshold);
    LOG_INFO(stdout,"NumberOfClasses:%d\n",yolov5Parameter.numberOfClasses);
Your Name's avatar
Your Name committed
136
137
138
139
140
141
142
143
144
145
146
147

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化    
    if(useFP16)
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
148
    options.device_id=0; 
liucong's avatar
liucong committed
149
    options.offload_copy=true;
Your Name's avatar
Your Name committed
150
    net.compile(gpuTarget,options);
liucong's avatar
liucong committed
151
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
152

liucong's avatar
liucong committed
153
154
155
    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
Your Name's avatar
Your Name committed
156
157
158
159
160
    net.eval(inputData);

    // 读取类别名
    if(!pathOfClassNameFile.empty())
    {
liucong's avatar
liucong committed
161
162
        std::ifstream classNameFile(pathOfClassNameFile);
        std::string line;
Your Name's avatar
Your Name committed
163
164
165
166
167
168
169
170
171
172
        while (getline(classNameFile, line))
        {
            classNames.push_back(line);
        }
    }
    else
    {
        classNames.resize(yolov5Parameter.numberOfClasses);
    }

shizhm's avatar
shizhm committed
173

Your Name's avatar
Your Name committed
174
175
176
177
    return SUCCESS;

}

shizhm's avatar
shizhm committed
178
ErrorCode DetectorYOLOV5::Detect(const cv::Mat &srcImage, std::vector<std::size_t> &relInputShape, std::vector<ResultOfDetection> &resultsOfDetection, bool dynamic)
Your Name's avatar
Your Name committed
179
180
181
{
    if(srcImage.empty()||srcImage.type()!=CV_8UC3)
    {
liucong's avatar
liucong committed
182
        LOG_ERROR(stdout, "image error!\n");
Your Name's avatar
Your Name committed
183
184
185
        return IMAGE_ERROR;
    }

shizhm's avatar
shizhm committed
186
187
    // 数据预处理并转换为NCHW格式
    inputSize = cv::Size(relInputShape[3], relInputShape[2]);
Your Name's avatar
Your Name committed
188
    cv::Mat inputBlob;
shizhm's avatar
shizhm committed
189
    cv::dnn::blobFromImage(srcImage,
Your Name's avatar
Your Name committed
190
191
192
                    inputBlob,
                    1 / 255.0,
                    inputSize,
liucong's avatar
liucong committed
193
                    cv::Scalar(0, 0, 0),
Your Name's avatar
Your Name committed
194
195
                    true,
                    false);
liucong's avatar
liucong committed
196
197

    // 创建输入数据
198
    migraphx::parameter_map inputData;
shizhm's avatar
shizhm committed
199
200
201
202
203
204
205
206
207
    if(dynamic)
    {
        inputData[inputName]= migraphx::argument{migraphx::shape(inputShape.type(), relInputShape), (float*)inputBlob.data};
    }
    else
    {
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
    }
    
shizhm's avatar
shizhm committed
208

Your Name's avatar
Your Name committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);

    // 获取推理结果
    std::vector<cv::Mat> outs;
    migraphx::argument result = inferenceResults[0]; 

    // 转换为cv::Mat
    migraphx::shape outputShape = result.get_shape();
    int shape[]={outputShape.lens()[0],outputShape.lens()[1],outputShape.lens()[2]};
    cv::Mat out(3,shape,CV_32F);
    memcpy(out.data,result.data(),sizeof(float)*outputShape.elements());
    outs.push_back(out);

    //获取先验框的个数
    int numProposal = outs[0].size[1];
    int numOut = outs[0].size[2];
    //变换输出的维度
    outs[0] = outs[0].reshape(0, numProposal);

    //生成先验框
    std::vector<float> confidences;
    std::vector<cv::Rect> boxes;
    std::vector<int> classIds;
    float ratioh = (float)srcImage.rows / inputSize.height, ratiow = (float)srcImage.cols / inputSize.width;

    //计算cx,cy,w,h,box_sore,class_sore
    int n = 0, rowInd = 0;
    float* pdata = (float*)outs[0].data;
    for (n = 0; n < numProposal; n++)
    {
        float boxScores = pdata[4];
        if (boxScores > yolov5Parameter.objectThreshold)
        {
            cv::Mat scores = outs[0].row(rowInd).colRange(5, numOut);
            cv::Point classIdPoint;
            double maxClassScore;
            cv::minMaxLoc(scores, 0, &maxClassScore, 0, &classIdPoint);
            maxClassScore *= boxScores;
            if (maxClassScore > yolov5Parameter.confidenceThreshold)
            {
                const int classIdx = classIdPoint.x;
                float cx = pdata[0] * ratiow;
                float cy = pdata[1] * ratioh;
                float w = pdata[2] * ratiow;
                float h = pdata[3] * ratioh;

                int left = int(cx - 0.5 * w);
                int top = int(cy - 0.5 * h);

                confidences.push_back((float)maxClassScore);
                boxes.push_back(cv::Rect(left, top, (int)(w), (int)(h)));
                classIds.push_back(classIdx);
            }
        }
        rowInd++;
        pdata += numOut;
    }

    //执行non maximum suppression消除冗余重叠boxes
    std::vector<int> indices;
liucong's avatar
liucong committed
270
    cv::dnn::NMSBoxes(boxes, confidences, yolov5Parameter.confidenceThreshold, yolov5Parameter.nmsThreshold, indices);
Your Name's avatar
Your Name committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        int classID=classIds[idx];
        string className=classNames[classID];
        float confidence=confidences[idx];
        cv::Rect box = boxes[idx];

        ResultOfDetection result;
        result.boundingBox=box;
        result.confidence=confidence;// confidence
        result.classID=classID; // label
        result.className=className;
        resultsOfDetection.push_back(result);
    }

    return SUCCESS;
}

}