YOLOV5.cpp 8.46 KB
Newer Older
liucong's avatar
liucong committed
1
#include <YOLOV5.h>
Your Name's avatar
Your Name committed
2
3
4
5
6
7
8
9
10
11
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
#include <Filesystem.h>
#include <SimpleLog.h>


namespace migraphxSamples
{

liucong's avatar
liucong committed
12
DetectorYOLOV5::DetectorYOLOV5()
Your Name's avatar
Your Name committed
13
14
15
16
17
18
19
20
21
22
23
{

}

DetectorYOLOV5::~DetectorYOLOV5()
{

    configurationFile.release();
    
}

shizhm's avatar
shizhm committed
24
ErrorCode DetectorYOLOV5::Initialize(InitializationParameterOfDetector initializationParameterOfDetector, bool dynamic)
Your Name's avatar
Your Name committed
25
{
liucong's avatar
liucong committed
26
27
28
    // 读取配置文件
    std::string configFilePath=initializationParameterOfDetector.configFilePath;
    if(Exists(configFilePath)==false)
Your Name's avatar
Your Name committed
29
    {
liucong's avatar
liucong committed
30
31
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
Your Name's avatar
Your Name committed
32
    }
liucong's avatar
liucong committed
33
34
35
36
37
38
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");
Your Name's avatar
Your Name committed
39
40
    
    // 获取配置文件参数
liucong's avatar
liucong committed
41
    cv::FileNode netNode = configurationFile["DetectorYOLOV5"];
shizhm's avatar
shizhm committed
42
43
44
45
46
47
48
49
    if(dynamic)
    {
        modelPath=(std::string)netNode["ModelPathDynamic"];
    }
    else
    {
        modelPath=(std::string)netNode["ModelPathStatic"];
    }
liucong's avatar
liucong committed
50
    std::string pathOfClassNameFile=(std::string)netNode["ClassNameFile"];
Your Name's avatar
Your Name committed
51
52
53
54
55
56
    yolov5Parameter.confidenceThreshold = (float)netNode["ConfidenceThreshold"];
    yolov5Parameter.nmsThreshold = (float)netNode["NMSThreshold"];
    yolov5Parameter.objectThreshold = (float)netNode["ObjectThreshold"];
    yolov5Parameter.numberOfClasses=(int)netNode["NumberOfClasses"];
    useFP16=(bool)(int)netNode["UseFP16"];

shizhm's avatar
shizhm committed
57
58
59
60
61
62
63
    if(Exists(modelPath)==false)
    {
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
        return MODEL_NOT_EXIST;
    }

    // 加载模型
shizhm's avatar
shizhm committed
64
    if(dynamic)
Your Name's avatar
Your Name committed
65
    {
shizhm's avatar
shizhm committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        migraphx::onnx_options onnx_options;
        onnx_options.map_input_dims["images"]={1,3,800,800};// 
        net = migraphx::parse_onnx(modelPath, onnx_options);
        LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

        // 获取模型输入属性
        std::unordered_map<std::string, migraphx::shape> inputMap=net.get_parameter_shapes();
        inputName=inputMap.begin()->first;
        inputShape=inputMap.begin()->second;
        int N=inputShape.lens()[0];
        int C=inputShape.lens()[1];
        int H=inputShape.lens()[2];
        int W=inputShape.lens()[3];
        inputSize=cv::Size(W,H);

        // log
        LOG_INFO(stdout,"InputMaxSize:%dx%d\n",inputSize.width,inputSize.height);
Your Name's avatar
Your Name committed
83
    }
shizhm's avatar
shizhm committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    else
    {
        net = migraphx::parse_onnx(modelPath);
        LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

        // 获取模型输入属性
        std::unordered_map<std::string, migraphx::shape> inputMap=net.get_parameter_shapes();
        inputName=inputMap.begin()->first;
        inputShape=inputMap.begin()->second;
        int N=inputShape.lens()[0];
        int C=inputShape.lens()[1];
        int H=inputShape.lens()[2];
        int W=inputShape.lens()[3];
        inputSize=cv::Size(W,H);

        // log
        LOG_INFO(stdout,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    }

    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());
    LOG_INFO(stdout,"ConfidenceThreshold:%f\n",yolov5Parameter.confidenceThreshold);
    LOG_INFO(stdout,"NMSThreshold:%f\n",yolov5Parameter.nmsThreshold);
    LOG_INFO(stdout,"objectThreshold:%f\n",yolov5Parameter.objectThreshold);
    LOG_INFO(stdout,"NumberOfClasses:%d\n",yolov5Parameter.numberOfClasses);
Your Name's avatar
Your Name committed
108
109
110
111
112
113
114
115
116
117
118
119

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化    
    if(useFP16)
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
120
    options.device_id=0; 
liucong's avatar
liucong committed
121
    options.offload_copy=true;
Your Name's avatar
Your Name committed
122
    net.compile(gpuTarget,options);
liucong's avatar
liucong committed
123
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
Your Name's avatar
Your Name committed
124

liucong's avatar
liucong committed
125
126
127
    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
Your Name's avatar
Your Name committed
128
129
130
131
132
    net.eval(inputData);

    // 读取类别名
    if(!pathOfClassNameFile.empty())
    {
liucong's avatar
liucong committed
133
134
        std::ifstream classNameFile(pathOfClassNameFile);
        std::string line;
Your Name's avatar
Your Name committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        while (getline(classNameFile, line))
        {
            classNames.push_back(line);
        }
    }
    else
    {
        classNames.resize(yolov5Parameter.numberOfClasses);
    }

    return SUCCESS;

}

shizhm's avatar
shizhm committed
149
ErrorCode DetectorYOLOV5::Detect(const cv::Mat &srcImage, std::vector<ResultOfDetection> &resultsOfDetection, bool dynamic)
Your Name's avatar
Your Name committed
150
151
152
{
    if(srcImage.empty()||srcImage.type()!=CV_8UC3)
    {
liucong's avatar
liucong committed
153
        LOG_ERROR(stdout, "image error!\n");
Your Name's avatar
Your Name committed
154
155
156
        return IMAGE_ERROR;
    }

shizhm's avatar
shizhm committed
157
    // 数据预处理
Your Name's avatar
Your Name committed
158
    cv::Mat inputBlob;
shizhm's avatar
shizhm committed
159
160
161
162
163
164
165
    std::vector<std::size_t> relInputShape;
    int height, width;
    if(dynamic)
    {
        width = srcImage.rows;
        height = srcImage.cols;
        relInputShape = {1,3,height,width};
shizhm's avatar
shizhm committed
166
167
168
169
170
171
172
        cv::dnn::blobFromImage(srcImage,
                    inputBlob,
                    1 / 255.0,
                    cv::Size(width, height),
                    cv::Scalar(0, 0, 0),
                    true,
                    false);
shizhm's avatar
shizhm committed
173
174
175
176
    }
    else
    {
        cv::dnn::blobFromImage(srcImage,
Your Name's avatar
Your Name committed
177
178
179
                    inputBlob,
                    1 / 255.0,
                    inputSize,
liucong's avatar
liucong committed
180
                    cv::Scalar(0, 0, 0),
Your Name's avatar
Your Name committed
181
182
                    true,
                    false);
shizhm's avatar
shizhm committed
183
    }
liucong's avatar
liucong committed
184
185

    // 创建输入数据
186
    migraphx::parameter_map inputData;
shizhm's avatar
shizhm committed
187
188
189
190
191
192
193
194
195
    if(dynamic)
    {
        inputData[inputName]= migraphx::argument{migraphx::shape(inputShape.type(), relInputShape), (float*)inputBlob.data};
    }
    else
    {
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
    }
    
Your Name's avatar
Your Name committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);

    // 获取推理结果
    std::vector<cv::Mat> outs;
    migraphx::argument result = inferenceResults[0]; 

    // 转换为cv::Mat
    migraphx::shape outputShape = result.get_shape();
    int shape[]={outputShape.lens()[0],outputShape.lens()[1],outputShape.lens()[2]};
    cv::Mat out(3,shape,CV_32F);
    memcpy(out.data,result.data(),sizeof(float)*outputShape.elements());
    outs.push_back(out);

    //获取先验框的个数
    int numProposal = outs[0].size[1];
    int numOut = outs[0].size[2];
    //变换输出的维度
    outs[0] = outs[0].reshape(0, numProposal);

    //生成先验框
    std::vector<float> confidences;
    std::vector<cv::Rect> boxes;
    std::vector<int> classIds;
    float ratioh = (float)srcImage.rows / inputSize.height, ratiow = (float)srcImage.cols / inputSize.width;

    //计算cx,cy,w,h,box_sore,class_sore
    int n = 0, rowInd = 0;
    float* pdata = (float*)outs[0].data;
    for (n = 0; n < numProposal; n++)
    {
        float boxScores = pdata[4];
        if (boxScores > yolov5Parameter.objectThreshold)
        {
            cv::Mat scores = outs[0].row(rowInd).colRange(5, numOut);
            cv::Point classIdPoint;
            double maxClassScore;
            cv::minMaxLoc(scores, 0, &maxClassScore, 0, &classIdPoint);
            maxClassScore *= boxScores;
            if (maxClassScore > yolov5Parameter.confidenceThreshold)
            {
                const int classIdx = classIdPoint.x;
                float cx = pdata[0] * ratiow;
                float cy = pdata[1] * ratioh;
                float w = pdata[2] * ratiow;
                float h = pdata[3] * ratioh;

                int left = int(cx - 0.5 * w);
                int top = int(cy - 0.5 * h);

                confidences.push_back((float)maxClassScore);
                boxes.push_back(cv::Rect(left, top, (int)(w), (int)(h)));
                classIds.push_back(classIdx);
            }
        }
        rowInd++;
        pdata += numOut;
    }

    //执行non maximum suppression消除冗余重叠boxes
    std::vector<int> indices;
liucong's avatar
liucong committed
257
    cv::dnn::NMSBoxes(boxes, confidences, yolov5Parameter.confidenceThreshold, yolov5Parameter.nmsThreshold, indices);
Your Name's avatar
Your Name committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        int classID=classIds[idx];
        string className=classNames[classID];
        float confidence=confidences[idx];
        cv::Rect box = boxes[idx];

        ResultOfDetection result;
        result.boundingBox=box;
        result.confidence=confidence;// confidence
        result.classID=classID; // label
        result.className=className;
        resultsOfDetection.push_back(result);
    }

    return SUCCESS;
}

}