README.md 3.62 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
# ViT
sunxx1's avatar
sunxx1 committed
2
## 论文
Rayyyyy's avatar
Rayyyyy committed
3
4
`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929
unknown's avatar
unknown committed
5
6

## 模型结构
sunxx1's avatar
sunxx1 committed
7
Vision Transformer先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将序列添加位置编码和cls token,再输入多层Transformer结构提取特征,最后将cls tooken取出来通过一个MLP(多层感知机)用于分类。
unknown's avatar
unknown committed
8

sunxx1's avatar
sunxx1 committed
9
10
11
12
13
14
15
16
17
18
19
20
![img](https://developer.hpccube.com/codes/modelzoo/megatron-deepspeed-vit_pytorch/-/raw/main/doc/vit.png)

## 算法原理
图像领域借鉴《Transformer is all you need!》算法论文中的Encoder结构提取特征,Transformer的核心思想是利用注意力模块attention提取特征:

![img](https://developer.hpccube.com/codes/modelzoo/megatron-deepspeed-vit_pytorch/-/raw/main/doc/attention.png)

## 环境配置
### Docker(方法一)
```plaintext
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
sunxx1's avatar
sunxx1 committed
21
docker run --shm-size 10g --network=host --name=nit-pytorch --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/vit-pytorch:/home/vit-pytorch -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
22
23
24
25
26
27
28
29
30
31
32
33
34
pip install -r requirements.txt
```

### Dockerfile(方法二)
```plaintext
cd ViT-PyTorch/docker
docker build --no-cache -t ViT-PyTorch:latest .
docker run --rm --shm-size 10g --network=host --name=megatron --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../ViT-PyTorch:/home/ViT-PyTorch -it megatron bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```

### Anaconda(方法三)
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/
unknown's avatar
unknown committed
35

sunxx1's avatar
sunxx1 committed
36
37
38
39
40
41
42
43
44
```plaintext
DTK驱动:dtk22.10.1
python:python3.7
torch:1.10.0
torchvision:0.10.0
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装
unknown's avatar
unknown committed
45

sunxx1's avatar
sunxx1 committed
46
47
48
```plaintext
pip install -r requirements.txt
```
unknown's avatar
unknown committed
49

sunxx1's avatar
sunxx1 committed
50
## 数据集
Rayyyyy's avatar
Rayyyyy committed
51
[cifar10](http://113.200.138.88:18080/aidatasets/project-dependency/cifar)
unknown's avatar
unknown committed
52

sunxx1's avatar
sunxx1 committed
53
54
55
56
57
58
59
60
61
62
63
```
├── batches.meta
├── data_batch_1
├── data_batch_2
├── data_batch_3
├── data_batch_4
├── data_batch_5
├── readme.html
└── test_batch
```

sunxx1's avatar
sunxx1 committed
64
## 训练
unknown's avatar
unknown committed
65
66
67
68
69
下载预训练模型放在checkpoint目录下:
```
wget https://storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz
```

sunxx1's avatar
sunxx1 committed
70
### 单机单卡
Rayyyyy's avatar
Rayyyyy committed
71
72
73
74
```
export HIP_VISIBLE_DEVICES=0
python3 -m torch.distributed.launch --nproc_per_node=1 train.py --name cifar10-100_500 --dataset cifar10 --model_type ViT-B_16 --pretrained_dir checkpoint/ViT-B_16.npz --train_batch_size 64 --num_steps 500
```
unknown's avatar
unknown committed
75

sunxx1's avatar
sunxx1 committed
76
77
78
79
### 单机多卡
```
python3 -m torch.distributed.launch --nproc_per_node=8 train.py --name cifar10-100_500 --dataset cifar10 --model_type ViT-B_16 --pretrained_dir checkpoint/ViT-B_16.npz --train_batch_size 64 --num_steps 500
```
Rayyyyy's avatar
Rayyyyy committed
80

sunxx1's avatar
sunxx1 committed
81
82
## result
![1695381570003](image/README/1695381570003.png)
sunxx1's avatar
sunxx1 committed
83
## 精度
unknown's avatar
unknown committed
84
85
测试数据使用的是cifar10,使用的加速卡是DCU Z100L。

sunxx1's avatar
sunxx1 committed
86
87
88
| 卡数 | 精度 |
| :------: | :------: |
| 1 | Best Accuracy=0.3051 |
sunxx1's avatar
sunxx1 committed
89

Rayyyyy's avatar
Rayyyyy committed
90
## 应用场景
sunxx1's avatar
sunxx1 committed
91
92
93
94
95
96
### 算法类别
图像分类

### 热点行业
制造,能源,交通,网安

sunxx1's avatar
sunxx1 committed
97
### 源码仓库及问题反馈
Rayyyyy's avatar
Rayyyyy committed
98
- https://developer.hpccube.com/codes/modelzoo/vit-pytorch
sunxx1's avatar
sunxx1 committed
99

unknown's avatar
unknown committed
100
### 参考
Rayyyyy's avatar
Rayyyyy committed
101
- https://github.com/jeonsworld/ViT-pytorch