README.md 3.65 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
# ViT
unknown's avatar
unknown committed
2

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
## 论文

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://arxiv.org/abs/2010.11929
unknown's avatar
unknown committed
8
9
10

## 模型结构

sunxx1's avatar
sunxx1 committed
11
Vision Transformer先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将序列添加位置编码和cls token,再输入多层Transformer结构提取特征,最后将cls tooken取出来通过一个MLP(多层感知机)用于分类。
unknown's avatar
unknown committed
12

sunxx1's avatar
sunxx1 committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
![img](https://developer.hpccube.com/codes/modelzoo/megatron-deepspeed-vit_pytorch/-/raw/main/doc/vit.png)

## 算法原理
图像领域借鉴《Transformer is all you need!》算法论文中的Encoder结构提取特征,Transformer的核心思想是利用注意力模块attention提取特征:

![img](https://developer.hpccube.com/codes/modelzoo/megatron-deepspeed-vit_pytorch/-/raw/main/doc/attention.png)

## 环境配置

### Docker(方法一)

```plaintext
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
sunxx1's avatar
sunxx1 committed
27
docker run --shm-size 10g --network=host --name=nit-pytorch --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/vit-pytorch:/home/vit-pytorch -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
pip install -r requirements.txt
```

### Dockerfile(方法二)

```plaintext
cd ViT-PyTorch/docker
docker build --no-cache -t ViT-PyTorch:latest .
docker run --rm --shm-size 10g --network=host --name=megatron --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../ViT-PyTorch:/home/ViT-PyTorch -it megatron bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```

### Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/
unknown's avatar
unknown committed
43

sunxx1's avatar
sunxx1 committed
44
45
46
47
48
49
50
51
52
```plaintext
DTK驱动:dtk22.10.1
python:python3.7
torch:1.10.0
torchvision:0.10.0
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装
unknown's avatar
unknown committed
53

sunxx1's avatar
sunxx1 committed
54
55
56
```plaintext
pip install -r requirements.txt
```
unknown's avatar
unknown committed
57

sunxx1's avatar
sunxx1 committed
58
## 数据集
unknown's avatar
unknown committed
59

sunxx1's avatar
sunxx1 committed
60
cifar10
unknown's avatar
unknown committed
61

sunxx1's avatar
sunxx1 committed
62
链接:https://pan.baidu.com/s/1ZFMQVBGQZI6UWZKJcTYPAQ?pwd=fq3l 提取码:fq3l 
unknown's avatar
unknown committed
63

sunxx1's avatar
sunxx1 committed
64
65
66
67
68
69
70
71
72
73
74
```
├── batches.meta
├── data_batch_1
├── data_batch_2
├── data_batch_3
├── data_batch_4
├── data_batch_5
├── readme.html
└── test_batch
```

sunxx1's avatar
sunxx1 committed
75
## 训练
unknown's avatar
unknown committed
76
77
78
79
80
81
下载预训练模型放在checkpoint目录下:

```
wget https://storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz
```

sunxx1's avatar
sunxx1 committed
82
### 单机单卡
unknown's avatar
unknown committed
83

sunxx1's avatar
sunxx1 committed
84
    export HIP_VISIBLE_DEVICES=0
unknown's avatar
unknown committed
85
86
    python3 -m torch.distributed.launch --nproc_per_node=1 train.py --name cifar10-100_500 --dataset cifar10 --model_type ViT-B_16 --pretrained_dir checkpoint/ViT-B_16.npz --train_batch_size 64 --num_steps 500

sunxx1's avatar
sunxx1 committed
87
88
89
90
91
### 单机多卡

```
python3 -m torch.distributed.launch --nproc_per_node=8 train.py --name cifar10-100_500 --dataset cifar10 --model_type ViT-B_16 --pretrained_dir checkpoint/ViT-B_16.npz --train_batch_size 64 --num_steps 500
```
sunxx1's avatar
sunxx1 committed
92
93
## result
![1695381570003](image/README/1695381570003.png)
sunxx1's avatar
sunxx1 committed
94
95
## 精度

unknown's avatar
unknown committed
96
97
测试数据使用的是cifar10,使用的加速卡是DCU Z100L。

sunxx1's avatar
sunxx1 committed
98
99
100
| 卡数 | 精度 |
| :------: | :------: |
| 1 | Best Accuracy=0.3051 |
sunxx1's avatar
sunxx1 committed
101
102
103
104
105
106
107
108
109
110
## 应用场景

### 算法类别

图像分类

### 热点行业

制造,能源,交通,网安

sunxx1's avatar
sunxx1 committed
111
### 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
112
113
114

https://developer.hpccube.com/codes/modelzoo/vit-pytorch

unknown's avatar
unknown committed
115
116
117
### 参考

https://github.com/jeonsworld/ViT-pytorch