main.py 7.38 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
from pathlib import Path
import sys

parent_dir = Path(__file__).resolve().parent
sys.path.append(str(parent_dir))

from models import vgg16

import os
import torch
import torch.distributed as dist

from tqdm import tqdm
from utils.data import prepare_dataloader
mashun1's avatar
mashun1 committed
15
from utils.qat import *
mashun1's avatar
mashun1 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
from torch.nn.parallel import DistributedDataParallel as DDP

from pytorch_quantization import nn as quant_nn
from pytorch_quantization import quant_modules

def cleanup():
    dist.destroy_process_group()


def prepare_training_obj(lr: float = 1e-3, 
                         num_classes=10, 
                         ckpt_root: str = '',
                         resume: bool = True,
mashun1's avatar
mashun1 committed
29
                         qat: bool = True):
mashun1's avatar
mashun1 committed
30
31
    model = vgg16(num_classes=num_classes)
    
mashun1's avatar
mashun1 committed
32
    if resume or qat:
mashun1's avatar
mashun1 committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        model.load_state_dict(torch.load(os.path.join(ckpt_root, "pretrained_model.pth"), map_location="cpu"))
        optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=20)
        lr_scheduler.load_state_dict(torch.load(os.path.join(ckpt_root, "scheduler.pth")))
        lr_scheduler.step()
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=20)
        
    loss_fc = torch.nn.CrossEntropyLoss()
    
    return model, optimizer, lr_scheduler, loss_fc


def train_one_epoch(model, 
                    optimizer, 
                    lr_scheduler, 
                    loss_fc, 
                    dataloader, 
                    device):
    model.train()
    epoch_loss = torch.zeros(1).to(device)
    for it, (data, label) in enumerate(dataloader):
        output = model(data.to(device))
        
        loss = loss_fc(output, label.to(device))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        epoch_loss += (loss / label.size(0)) 
    
    lr_scheduler.step()
    dist.reduce(epoch_loss, dst=0)
    return epoch_loss


def evaluate(model,
             dataloader,
             device):
    correct = 0
    total = 0
    model.eval()
    for data, label in dataloader:
        output = model(data.to(device))
        _, predictions = torch.max(output, dim=-1)
        correct += torch.sum(predictions.cpu()==label)
        total += label.size(0)
    
    return correct / total
    

def pretrain(args):
    dist.init_process_group('nccl')
    
    rank = dist.get_rank()
        
mashun1's avatar
mashun1 committed
90
    model, optimizer, lr_scheduler, loss_fc = prepare_training_obj(args.lr, ckpt_root="./checkpoints/pretrained", resume=args.resume, qat=args.qat)
mashun1's avatar
mashun1 committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    
    device = torch.device(f"cuda:{rank}")
    model.to(device)
    
    ddp_model = DDP(model, device_ids=[rank])
    
    train_dataloader, sampler = prepare_dataloader("./data/cifar10", True, args.batch_size)
    
    if rank == 0:
        test_dataloader, _ = prepare_dataloader("./data/cifar10", False)
    
    for epoch in range(args.epochs):

        if rank == 0:
            train_dataloader = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{args.epochs}", position=0, leave=False)
            
        dist.barrier()
        
        sampler.set_epoch(epoch)
        
        loss = train_one_epoch(ddp_model, optimizer, lr_scheduler, loss_fc, train_dataloader, device)
        
        if dist.get_rank() == 0:
            avg_loss = loss.item() / dist.get_world_size()
            if (epoch + 1) % 5 == 0:
                acc = evaluate(model, test_dataloader, device)
                tqdm.write(f"Epoch: {epoch+1}, Avg Train Loss: {avg_loss:.4f}, Eval Acc: {acc}")
            else:
                tqdm.write(f"Epoch: {epoch+1}, Avg Train Loss: {avg_loss:.4f}")

            if (epoch + 1) % 5 == 0:
                # save checkpoints and lr.
                ckpt_path = "./checkpoints/pretrained"
                
                if not os.path.exists(ckpt_path):
                    os.makedirs(ckpt_path)
                
                torch.save(model.state_dict(), os.path.join(ckpt_path, "pretrained_model.pth"))
                torch.save(lr_scheduler.state_dict(), os.path.join(ckpt_path, "scheduler.pth"))
    
    cleanup()


mashun1's avatar
mashun1 committed
134
def qat(args):
mashun1's avatar
mashun1 committed
135
136
137
138
139
140
141
    dist.init_process_group('nccl')
    
    rank = dist.get_rank()
    
    quant_modules.initialize()
    
    if args.resume:
mashun1's avatar
mashun1 committed
142
        model, optimizer, lr_scheduler, loss_fc = prepare_training_obj(args.lr, ckpt_root="./checkpoints/qat", resume=args.resume, qat=args.qat)
mashun1's avatar
mashun1 committed
143
    else:
mashun1's avatar
mashun1 committed
144
        model, optimizer, lr_scheduler, loss_fc = prepare_training_obj(args.lr, ckpt_root="./checkpoints/pretrained", resume=args.resume, qat=args.qat)
mashun1's avatar
mashun1 committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    
    device = torch.device(f"cuda:{rank}")
    model.to(device)
    
    train_dataloader, sampler = prepare_dataloader("./data/cifar10", True, args.batch_size)
    
    ddp_model = DDP(model, device_ids=[rank])
    
    with torch.no_grad():
        collect_stats(ddp_model, train_dataloader, num_batches=2, device=device)
        compute_amax(ddp_model, device=device, method="percentile", percentile=99.99)
    
    if rank == 0:
        test_dataloader, _ = prepare_dataloader("./data/cifar10", False)
    
    for epoch in range(args.epochs):

        if rank == 0:
            train_dataloader = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{args.epochs}", position=0, leave=False)
            
        dist.barrier()
        
        sampler.set_epoch(epoch)
        
        loss = train_one_epoch(ddp_model, optimizer, lr_scheduler, loss_fc, train_dataloader, device)
        
        if dist.get_rank() == 0:
            avg_loss = loss.item() / dist.get_world_size()
            if (epoch + 1) % 5 == 0:
                acc = evaluate(model, test_dataloader, device)
                tqdm.write(f"Epoch: {epoch+1}, Avg Train Loss: {avg_loss:.4f}, Eval Acc: {acc}")
            else:
                tqdm.write(f"Epoch: {epoch+1}, Avg Train Loss: {avg_loss:.4f}")

            if (epoch + 1) % 5 == 0:
                # save checkpoints and lr.
mashun1's avatar
mashun1 committed
181
                ckpt_path = "./checkpoints/qat"
mashun1's avatar
mashun1 committed
182
183
184
185
186
187
188
189
190
191
192
193
194
                
                if not os.path.exists(ckpt_path):
                    os.makedirs(ckpt_path)
                
                torch.save(model.state_dict(), os.path.join(ckpt_path, "pretrained_model.pth"))
                torch.save(lr_scheduler.state_dict(), os.path.join(ckpt_path, "scheduler.pth"))
    
    if rank == 0:
        quant_nn.TensorQuantizer.use_fb_fake_quant = True
        
        model.eval()
        with torch.no_grad():
            jit_model = torch.jit.trace(model, torch.randn((16, 3, 32, 32)).to(device))
mashun1's avatar
mashun1 committed
195
            # torch.jit.save(jit_model, "./checkpoints/qat/pretrained_model.jit")
mashun1's avatar
mashun1 committed
196
            jit_model.eval()
mashun1's avatar
mashun1 committed
197
            torch.onnx.export(jit_model.to(device), torch.randn((16, 3, 32, 32)).to(device), "checkpoints/qat/pretrained_qat.onnx")
mashun1's avatar
mashun1 committed
198
199
200
201
202
    
    cleanup()


def main(args):
mashun1's avatar
mashun1 committed
203
204
    if args.qat:
        qat(args)
mashun1's avatar
mashun1 committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    else:
        pretrain(args)
        
        
if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser()
    
    parser.add_argument("--epochs", type=int, default=100)
    
    parser.add_argument("--lr", type=float, default=1e-3)
    
    parser.add_argument("--batch_size", type=int, default=512)
    
    parser.add_argument("--num_classes", type=int, default=10)
    
    parser.add_argument("--resume", action="store_true")
    
mashun1's avatar
mashun1 committed
224
    parser.add_argument("--qat", action="store_true")
mashun1's avatar
mashun1 committed
225
226
227
228
229
    
    args = parser.parse_args()
    
    main(args)