main.py 7.48 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from pathlib import Path
import sys

parent_dir = Path(__file__).resolve().parent
sys.path.append(str(parent_dir))

from models import vgg16

import os
import torch
import torch.distributed as dist

from tqdm import tqdm
from utils.data import prepare_dataloader
from utils.calibrate import *
from torch.nn.parallel import DistributedDataParallel as DDP

from pytorch_quantization import nn as quant_nn
from pytorch_quantization import quant_modules

def cleanup():
    dist.destroy_process_group()


def prepare_training_obj(lr: float = 1e-3, 
                         num_classes=10, 
                         ckpt_root: str = '',
                         resume: bool = True,
                         calibrate: bool = True):
    model = vgg16(num_classes=num_classes)
    
    if resume or calibrate:
        model.load_state_dict(torch.load(os.path.join(ckpt_root, "pretrained_model.pth"), map_location="cpu"))
        optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=20)
        lr_scheduler.load_state_dict(torch.load(os.path.join(ckpt_root, "scheduler.pth")))
        lr_scheduler.step()
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=20)
        
    loss_fc = torch.nn.CrossEntropyLoss()
    
    return model, optimizer, lr_scheduler, loss_fc


def train_one_epoch(model, 
                    optimizer, 
                    lr_scheduler, 
                    loss_fc, 
                    dataloader, 
                    device):
    model.train()
    epoch_loss = torch.zeros(1).to(device)
    for it, (data, label) in enumerate(dataloader):
        output = model(data.to(device))
        
        loss = loss_fc(output, label.to(device))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        epoch_loss += (loss / label.size(0)) 
    
    lr_scheduler.step()
    dist.reduce(epoch_loss, dst=0)
    return epoch_loss


def evaluate(model,
             dataloader,
             device):
    correct = 0
    total = 0
    model.eval()
    for data, label in dataloader:
        output = model(data.to(device))
        _, predictions = torch.max(output, dim=-1)
        correct += torch.sum(predictions.cpu()==label)
        total += label.size(0)
    
    return correct / total
    

def pretrain(args):
    dist.init_process_group('nccl')
    
    rank = dist.get_rank()
        
    model, optimizer, lr_scheduler, loss_fc = prepare_training_obj(args.lr, ckpt_root="./checkpoints/pretrained", resume=args.resume, calibrate=args.calibrate)
    
    device = torch.device(f"cuda:{rank}")
    model.to(device)
    
    ddp_model = DDP(model, device_ids=[rank])
    
    train_dataloader, sampler = prepare_dataloader("./data/cifar10", True, args.batch_size)
    
    if rank == 0:
        test_dataloader, _ = prepare_dataloader("./data/cifar10", False)
    
    for epoch in range(args.epochs):

        if rank == 0:
            train_dataloader = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{args.epochs}", position=0, leave=False)
            
        dist.barrier()
        
        sampler.set_epoch(epoch)
        
        loss = train_one_epoch(ddp_model, optimizer, lr_scheduler, loss_fc, train_dataloader, device)
        
        if dist.get_rank() == 0:
            avg_loss = loss.item() / dist.get_world_size()
            if (epoch + 1) % 5 == 0:
                acc = evaluate(model, test_dataloader, device)
                tqdm.write(f"Epoch: {epoch+1}, Avg Train Loss: {avg_loss:.4f}, Eval Acc: {acc}")
            else:
                tqdm.write(f"Epoch: {epoch+1}, Avg Train Loss: {avg_loss:.4f}")

            if (epoch + 1) % 5 == 0:
                # save checkpoints and lr.
                ckpt_path = "./checkpoints/pretrained"
                
                if not os.path.exists(ckpt_path):
                    os.makedirs(ckpt_path)
                
                torch.save(model.state_dict(), os.path.join(ckpt_path, "pretrained_model.pth"))
                torch.save(lr_scheduler.state_dict(), os.path.join(ckpt_path, "scheduler.pth"))
    
    cleanup()


def calibrate(args):
    dist.init_process_group('nccl')
    
    rank = dist.get_rank()
    
    quant_modules.initialize()
    
    if args.resume:
        model, optimizer, lr_scheduler, loss_fc = prepare_training_obj(args.lr, ckpt_root="./checkpoints/calibrated", resume=args.resume, calibrate=args.calibrate)
    else:
        model, optimizer, lr_scheduler, loss_fc = prepare_training_obj(args.lr, ckpt_root="./checkpoints/pretrained", resume=args.resume, calibrate=args.calibrate)
    
    device = torch.device(f"cuda:{rank}")
    model.to(device)
    
    train_dataloader, sampler = prepare_dataloader("./data/cifar10", True, args.batch_size)
    
    ddp_model = DDP(model, device_ids=[rank])
    
    with torch.no_grad():
        collect_stats(ddp_model, train_dataloader, num_batches=2, device=device)
        compute_amax(ddp_model, device=device, method="percentile", percentile=99.99)
    
    if rank == 0:
        test_dataloader, _ = prepare_dataloader("./data/cifar10", False)
    
    for epoch in range(args.epochs):

        if rank == 0:
            train_dataloader = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{args.epochs}", position=0, leave=False)
            
        dist.barrier()
        
        sampler.set_epoch(epoch)
        
        loss = train_one_epoch(ddp_model, optimizer, lr_scheduler, loss_fc, train_dataloader, device)
        
        if dist.get_rank() == 0:
            avg_loss = loss.item() / dist.get_world_size()
            if (epoch + 1) % 5 == 0:
                acc = evaluate(model, test_dataloader, device)
                tqdm.write(f"Epoch: {epoch+1}, Avg Train Loss: {avg_loss:.4f}, Eval Acc: {acc}")
            else:
                tqdm.write(f"Epoch: {epoch+1}, Avg Train Loss: {avg_loss:.4f}")

            if (epoch + 1) % 5 == 0:
                # save checkpoints and lr.
                ckpt_path = "./checkpoints/calibrated"
                
                if not os.path.exists(ckpt_path):
                    os.makedirs(ckpt_path)
                
                torch.save(model.state_dict(), os.path.join(ckpt_path, "pretrained_model.pth"))
                torch.save(lr_scheduler.state_dict(), os.path.join(ckpt_path, "scheduler.pth"))
    
    if rank == 0:
        quant_nn.TensorQuantizer.use_fb_fake_quant = True
        
        model.eval()
        with torch.no_grad():
            jit_model = torch.jit.trace(model, torch.randn((16, 3, 32, 32)).to(device))
            # torch.jit.save(jit_model, "./checkpoints/calibrated/pretrained_model.jit")
            jit_model.eval()
            torch.onnx.export(jit_model.to(device), torch.randn((16, 3, 32, 32)).to(device), "checkpoints/calibrated/pretrained_qat.onnx")
    
    cleanup()


def main(args):
    if args.calibrate:
        calibrate(args)
    else:
        pretrain(args)
        
        
if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser()
    
    parser.add_argument("--epochs", type=int, default=100)
    
    parser.add_argument("--lr", type=float, default=1e-3)
    
    parser.add_argument("--batch_size", type=int, default=512)
    
    parser.add_argument("--num_classes", type=int, default=10)
    
    parser.add_argument("--resume", action="store_true")
    
    parser.add_argument("--calibrate", action="store_true")
    
    args = parser.parse_args()
    
    main(args)